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Abstract

We propose a novel deep metric learning method by re-

visiting the learning to rank approach. Our method, named

FastAP, optimizes the rank-based Average Precision mea-

sure, using an approximation derived from distance quan-

tization. FastAP has a low complexity compared to exist-

ing methods, and is tailored for stochastic gradient descent.

To fully exploit the benefits of the ranking formulation, we

also propose a new minibatch sampling scheme, as well as

a simple heuristic to enable large-batch training. On three

few-shot image retrieval datasets, FastAP consistently out-

performs competing methods, which often involve complex

optimization heuristics or costly model ensembles.

1. Introduction

Metric learning [3, 18] is concerned with learning dis-

tance functions that conform to a certain definition of simi-

larity. Often, in pattern recognition problems, the definition

of similarity is task-specific, and the success of metric learn-

ing hinges on aligning its learning objectives with the task.

In this paper, we focus on what is arguably the most im-

portant application area of metric learning: nearest neigh-

bor retrieval. For nearest neighbor retrieval applications,

the similarity definition typically involves neighborhood re-

lationships, and nearly all metric learning methods follow

the same guiding principle: the true “neighbors” of a refer-

ence object should be closer than its “non-neighbors” in the

learned metric space.

Taking inspirations from the information retrieval liter-

ature, we treat metric learning as a learning to rank prob-

lem [22], where the goal is to optimize the total ordering of

objects as induced by the learned metric. The learning to

rank perspective has been adopted by classical metric learn-

ing methods [20,24], but has received less attention recently

in deep metric learning. Working directly with ranked lists
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Figure 1: We propose FastAP, a novel deep metric learning

method that optimizes Average Precision over ranked lists

of examples. This solution avoids a high-order explosion

of the training set, which is a common problem in existing

losses defined on pairs or triplets. FastAP is optimized using

SGD, and achieves state-of-the-art results.

has two primary advantages over many other approaches:

we avoid the high-order explosion of the training set, and

focus on orderings that are invariant to distance distortions.

This second property is noteworthy in particular, as it al-

lows circumventing the use of highly sensitive parameters

such as distance thresholds and margins.

Our main contribution is a novel solution to optimizing

Average Precision [4], a performance measure that has seen

wide usage within and beyond information retrieval, such

as in image retrieval [29], feature matching [14], and few-

shot learning [37]. To tackle the highly challenging prob-

lem of optimizing this rank-based and non-decomposable

objective, we employ an efficient quantization-based ap-

proximation, and tailor our algorithmic design for stochastic

gradient descent. The result is a new deep metric learning

method that we call FastAP.

We evaluate FastAP on three few-shot image datasets,

and observe state-of-the-art retrieval results. Notably, with
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a single neural network, FastAP often significantly outper-

forms recent ensemble metric learning methods, which are

costly to train and evaluate.

2. Related Work

Metric learning [3, 18] is a general umbrella term for

learning distance functions in supervised settings. The dis-

tance functions can be parameterized in various ways, for

example, a large body of the metric learning literature fo-

cuses on Mahalanobis distances [20, 24, 31, 40], which es-

sentially learn a linear transformation of the input data. For

nonlinear metric learning, solutions that employ deep neu-

ral networks have received much attention recently.

Aside from relatively few exceptions, e.g. [33, 38], deep

metric learning approaches commonly optimize loss func-

tions defined on pairs or triplets of training examples. Pair-

based approaches, such as contrastive embedding [11], min-

imize the distance between a reference object and its neigh-

bors, while ensuring a margin of separation between the ref-

erence and its non-neighbors. Alternatively, local ranking

approaches based on triplet supervision [30, 31] optimize

the relative ranking of two objects given a reference. These

losses are also used to train individual learners in ensemble

methods [16, 27, 41, 42].

Given a large training set, it is infeasible to enumerate

all the possible pairs or triplets. This has motivated vari-

ous mining or sampling heuristics aimed at identifying the

“hard” pairs or triplets. A partial list includes lifted em-

bedding [34], semi-hard negative mining [30], distance-

weighted sampling [39], group-based sampling [2], and hi-

erarchical sampling [8]. There are also other remedies such

as adding auxiliary losses [15, 27] and generating novel

training examples [26, 44]. Still, these approaches typically

include nontrivial threshold or margin parameters that apply

equally to all pairs or triplets, rendering them inflexible to

distortions in the metric space.

Pair-based and triplet-based metric learning approaches

can be viewed as instantiations of learning to rank [22],

where the ranking function is induced by the learned dis-

tance metric. The learning to rank view has been adopted

by classical metric learning methods with success [20, 24].

We revisit learning to rank for deep metric learning, and

propose to learn a distance metric by optimizing Average

Precision (AP) [4] over entire ranked lists. This is a listwise

approach [5], and allows us to focus on the true quantity of

interest: orderings in the metric space. AP naturally empha-

sizes performance at the top, predicts other metrics well [1],

and has found wide usage in various metric learning appli-

cations [13, 14, 21, 29, 37].

Average Precision has also been studied considerably as

an objective function for learning to rank. However, its op-

timization is highly challenging, as it is non-decomposable

over ranked items, and differentiating through the discrete

sorting operation is difficult. One notable optimization ap-

proach is based on smoothed rankings [7, 36], which con-

siders the orderings to be random variables, allowing for

probabilistic and differentiable formulations. However, the

probabilistic orderings are expensive to estimate. Alterna-

tively, the well-known SVM-MAP [43] optimizes the struc-

tured hinge loss surrogate using a cutting plane algorithm,

and the direct loss minimization framework [25,35] approx-

imates the gradients of AP in an asymptotic manner. These

methods critically depend on the loss-augmented inference

to generate cutting planes or approximate gradients, which

can scale quadratically in the list size.

We propose a novel approximation of Average Precision

that only scales linearly in the list size, using distance quan-

tization and a differentiable relaxation of histogram bin-

ning [38]. For the special case of binary embeddings, [13]

uses a histogram-based technique to optimize a closed-form

expression of AP for Hamming distances. [14] subsequently

extends it to the real-valued case for learning local im-

age descriptors, by simply dropping the binary constraints.

However, doing so implies a different underlying distance

metric than Euclidean, thus creating a mismatch. In con-

trast, our solution directly targets the Euclidean metric in a

general metric learning setup, derives from a different prob-

abilistic interpretation of AP, and is capable of large-batch

training beyond GPU memory limits.

3. Learning to Rank with Average Precision

We assume a standard information retrieval setup, where

given a feature space X , there is a query q ∈ X and a re-

trieval set R ⊂ X . Our goal is to learn a deep neural net-

work Ψ : X → R
m that embeds inputs to an m-dimensional

Euclidean space, and is optimized for Average Precision un-

der the Euclidean metric.

To perform nearest neighbor retrieval, we first rank items

in R according to their distances to q in the embedding

space, producing a ranked list {x1, x2, . . . , xN} with N =
|R|. Then, we derive the precision-recall curve as:

PR(q) = {(Prec(i),Rec(i)), i = 0, . . . , N}, (1)

where Prec(i) and Rec(i) are the precision and recall eval-

uated at the i-th position in the ranking, respectively. The

Average Precision (AP) of the ranking, can then be evalu-

ated as:

AP =

N
∑

i=1

Prec(i)△Rec(i) (2)

=
N
∑

i=1

Prec(i)(Rec(i)− Rec(i− 1)). (3)

Note that we assume Prec(0) = Rec(0) = 0 for conve-

nience.
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Figure 2: The discrete sorting operation prevents learning to rank methods from directly applying gradient optimization

on standard rank-based metrics. FastAP approximates Average Precision by exploiting distance quantization, which refor-

mulates precision and recall as parametric functions of distance, and permits differentiable relaxations. Our approximation

derives from the interpretation of AP as the area under the precision-recall curve.

A problem with the above definition of AP is that to ob-

tain the precision-recall curve, the ranked list first needs to

be generated, which involves the discrete sorting operation.

Sorting is a major hurdle for gradient-based optimization:

although it is differentiable almost everywhere, the deriva-

tives are either zero or undefined. Instead, our main insight

is that there exists an alternative interpretation for AP, and

it is based on representing precision and recall as functions

of distance, rather than ranked items.

3.1. FastAP: Efficient AP Approximation

In the information retrieval literature, AP is often also

interpreted as the area under the precision-recall curve

(AUPR) [4]. Such a relation exists since (3) asymptotically

approaches AUPR when the neighbor set cardinality goes

to infinity:

AUPR =

∫ 1

0

Prec(Rec) dRec (4)

= lim
|R+|→∞

N
∑

i=1

Prec(i)△Rec(i). (5)

where R+, (R−) ⊂ R denotes the (non) neighbor set

of query q. The AUPR interpretation of AP is particu-

larly interesting as it allows viewing precision and recall as

parametric functions of distance, rather than ranked items.

As we will show, this will help us circumvent the non-

differentiable sorting operation, and develop an efficient ap-

proximation of AP.

Formally, a continuous precision-recall curve (as op-

posed to the finite set in (1)) can be defined as

PRz(q) = {(Prec(z),Rec(z)), z ∈ Ω}, (6)

where z denotes distance values between the query and

items in R, with domain Ω. With this change of variables,

AP becomes:

AP =

∫

Ω

Prec(z) dRec(z). (7)

We next define some probabilistic quantities so as to

evaluate (7). Let Z be the random variable corresponding

to distances z. Then, the distance distributions for R+ and

R− are denoted as p(z|R+) and p(z|R−). Let P (R+) and

P (R−) = 1−P (R+) denote prior probabilities, which in-

dicate the skewness of the retrieval set R with respect to the

query. Finally, let F (z) = P (Z < z) denote the cumulative

distribution function (CDF) for Z .

Given these definitions, we redefine precision and recall

as follows:

Prec(z) = P (R+|Z < z) =
P (Z < z|R+)P (R+)

P (Z < z)
(8)

=
F (z|R+)P (R+)

F (z)
, (9)

Rec(z) = P (Z < z |R+) = F (z|R+). (10)

Substituting these terms in (7), we get:

AP =

∫

Ω

P (R+|Z < z) dP (Z < z|R+) (11)

=

∫

Ω

F (z|R+)P (R+)

F (z)
p(z|R+) dz. (12)

Note that we have used the fact that dP (Z < z|R+) =
p(z|R+) dz, i.e., the derivative of the CDF is its corre-

sponding PDF.

It should be clear now that (12) can also be approxi-

mately evaluated using finite sums. We first assume that

the output of the embedding function Ψ is L2-normalized,

so that Ω, or the support of the distributions in (12), is a

bounded range [0, 2]. Then, we quantize the interval [0, 2]
using a finite set Z = {z1, z2, . . . , zL}, and denote the re-

sulting discrete PDF as P . Finally, we name our new ap-

proximation FastAP:

FastAP =
∑

z∈Z

F (z|R+)P (R+)

F (z)
P (z|R+). (13)

We next re-express FastAP using histogram notation.

Specifically, we create a distance histogram with bins cen-

tered on each element of Z. Let hj be the number of items
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that fall into the j-th bin, and let Hj =
∑

k≤j hk be the

cumulative sum of the histogram. Also, let h+
j count the

number of neighbors of q in the j-th bin, and H+
j be its

cumulative sum. With these definitions, we can rewrite the

probabilistic quantities in (13), and get a simple expression

for FastAP:

FastAP =

L
∑

j=1

H
+

j

N
+
q

·
N+

q

N

Hj

N

·
h+
j

N+
q

=
1

N+
q

L
∑

j=1

H+
j h+

j

Hj

. (14)

It takes O(NL) time to perform histogram binning and

compute the FastAP approximation. A small L suffices in

practice, as we will show in the experiments section.

4. Stochastic Optimization

In this section, we describe how to optimize FastAP (14)

using SGD. AP is defined with respect to the retrieval prob-

lem between a query and a retrieval set. With minibatches,

the natural choice is to define in-batch retrieval problems

where retrieval set R is restricted to examples in the mini-

batch. Specifically, we use each example as the query q to

retrieve its neighbors from the rest of the batch. Each of

these in-batch retrieval problems emits one AP value, and

the overall objective of the minibatch is the average of them,

or the mean AP (mAP).

To perform gradient descent, we must ensure the his-

tograms in (14) are constructed as to permit gradient back-

propagation. To this end, we adopt the simple linear in-

terpolation technique proposed by [38] which replaces the

regular binning operation for histogram construction with

a differentiable soft binning technique. Essentially, this in-

terpolation relaxes the integer-valued histogram bin counts

h to continuous values, which we denote using ĥ. The cu-

mulative sums are also relaxed as Ĥ . With a differentiable

binning operation, we can now obtain partial derivatives for

FastAP. Specifically, using subscript i to indicate that the

current query is xi, we have:†

∂FastAPi

∂ĥ+

i,k

=
1

N+
i

L
∑

j=1

∂

∂ĥ+

i,k

(

Ĥ+
i,j ĥ

+
i,j

Ĥi,j

)

(15)

=
1

N+
i

∑

j≥k

Ĥi,j ĥ
+
i,j + Ĥ−

i,j ĥ
+
i,j

Ĥ2
i,j

. (16)

The relaxation of histogram binning is also used by

[6,13] to tackle the “leaning to hash” problem, with similar

in-batch retrieval formulations. FastAP differs in two main

aspects: the objective function, and the underlying distance

metric. In particular, [13] optimizes a complex closed form

of AP for the Hamming distance. In this case, the number of

†The complete derivations are provided in the supplementary material.

histogram bins naturally corresponds to the number of dis-

crete levels in the Hamming distance. However, such a con-

venience does not exist for real-valued distances. Instead,

histogram binning is used for approximation purposes in

FastAP. The number of histogram bins now becomes a vari-

able parameter, which involves an interesting trade-off, as

we will discuss later.

4.1. LargeBatch Training

Large batch sizes can be beneficial for training deep neu-

ral networks with SGD [32]; this is also observed in our ex-

periments (Section 5.3). However, batch sizes are limited

by GPU memory. In the case of classification, the effective

batch size can be increased through data parallelism [10].

However, data parallelism for FastAP is less trivial, as it is

a non-decomposable objective: the objective value for each

example in a minibatch depends on other examples in the

same batch.

Inspired by a similar solution for the triplet loss [9],

we propose a heuristic to enable large-batch training for

FastAP. The main insight is that the loss layer takes the

embedding matrix of the minibatch as input (see supple-

mentary material). Thus, a large batch can be first broken

into smaller chunks to incrementally compute the embed-

ding matrix. Then, we compute the gradients with respect

to the embedding matrix, which is a relatively lightweight

operation involving only the loss layer. Finally, gradients

are back-propagated through the network, again in chunks.

This solution works even with a single GPU.

4.2. Minibatch Sampling

Typically, metric learning methods derive neighborhood

relationships from class labels – instances sharing the same

class label are considered neighbors. In this scheme, sam-

pling strategies for pairs and triplets have been well-studied.

However, the listwise formulation of FastAP leads to differ-

ent considerations for minibatch sampling. The first consid-

eration is that sampling should be done on the class level;

instance-level sampling cannot guarantee that each example

has at least one neighbor in the same minibatch, thus might

lead to ill-defined in-batch retrieval problems.

The second consideration is that the sampled mini-

batches need to represent “sufficiently hard” in-batch re-

trieval problems to train the network. One option, as we

mentioned above, is to use large batches. However, when

training with large batches is not feasible, a sampling strat-

egy for classes becomes crucial. Our reasoning, illustrated

in Figure 3, is that sampling classes purely at random may

not create hard retrieval problems: for example, it is easy to

retrieve images of a bicycle from a pool of toasters, chairs,

etc. However, if the pool also includes images of other bi-

cycles, the retrieval problem becomes more challenging.

Rather than treating all classes as equally different from
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Figure 3: Minibatch sampling: examples of the random

strategy and our hard strategy. Our strategy constructs more

challenging in-batch retrieval problems by sampling classes

from a small number of categories in each minibatch.

each other, we would like to utilize any available side infor-

mation on the similarities between classes. One example of

such information is WordNet similarity [28] for ImageNet

class labels. Alternatively, for the datasets considered in our

experiments, category labels are available: classes belong-

ing to the same category are more similar. For example,

a category can be “bicycle” while class labels correspond

to individual bicycle instances. Following this intuition,

we develop a category-based sampling strategy as follows:

each minibatch first samples a small number of categories,

e.g. bicycle and chair, and then samples individual classes

from them. Experimentally, this “hard” sampling strategy

consistently outperforms sampling classes at random, and

therefore is used in all experiments reported in Section 5.

Please refer to the supplementary material for more details.

5. Experiments

We evaluate our metric learning method, FastAP, on

three standard image retrieval datasets that are commonly

used in the deep metric learning literature. These datasets

are: Stanford Online Products, In-Shop Clothes Retrieval,

and PKU VehicleID.

• Stanford Online Products is proposed in [34] for

evaluating deep metric learning algorithms. It con-

tains 120,053 images of 22,634 online products from

eBay.com, where each product is annotated with a dis-

tinct class label. Each class has 5.3 images on average.

Following [34], we use 59,551 images from 11,318

classes for training, and the remaining 60,502 images

from 11,316 classes for testing.

• In-Shop Clothes Retrieval [23] is another popular

dataset in image retrieval. Following the setup in [23],

7,982 classes of clothing items with 52,712 images are

used in experiments. Among them, 3,997 classes are

for training (25,882 images) and 3,985 classes are for

testing (28,760 images). The test set is partitioned into

a query set and a gallery set, where the query set con-

tains 14,218 images of 3,985 classes, and the gallery

set contains 12,612 images of 3,985 classes. At test

time, given an image in the query set, we retrieve its

neighbors from the gallery set.

• PKU VehicleID [21] is a dataset of 221,763 images

from 26,267 vehicles captured by surveillance cam-

eras. The training set has 110,178 images of 13,134

vehicles and the test set has 111,585 images of 13,133

vehicles. This dataset is particularly challenging as

different vehicle identities are considered as different

classes even if they share the same model. We fol-

low the standard experimental protocol [21] to test on

the small, medium and large test sets, which contain

7,332 images of 800 vehicles, 12,995 images of 1,600

vehicles, and 20,038 images of 2,400 vehicles, respec-

tively.

These datasets all have a limited number of images

per class, which results in challenging few-shot retrieval

problems. Also, as we mentioned, all three datasets pro-

vide high-level category labels: Stanford Online Products

contains 12 product categories such as “bicycle”, “chair”,

etc. For In-Shop Clothes Retrieval, each clothing item be-

longs to one of 23 categories such as “MEN/Denim” and

“WOMEN/Dresses”. For PKU VehicleID, each category

corresponds to a unique vehicle model.

5.1. Experimental Setup

We consider the binary relevance setup where images

with the same class label are neighbors, and non-neighbors

otherwise. We report a standard retrieval metric, Recall at k

(R@k), defined as the percentage of queries having at least

one neighbor retrieved in the first k results.

We fine-tune ResNet [12] models pretrained on Ima-

geNet, and replace the final softmax classification layer

with a fully-connected embedding layer, with random ini-

tialization. We experiment with both ResNet-18 and

ResNet-50, and set the embedding dimensionality to 512

by default. The embeddings are normalized to have unit L2

norm. In all experiments, we use the Adam optimizer [17]

with base learning rate 10−5 and no weight decay, and am-

plify the embedding layer’s learning rate by 10 times. Fol-

lowing standard practice, images in all datasets are resized

to 256×256, and the embedding network takes crops of size

224×224 as input. Random crops and random flipping are

used during training for data augmentation, and a single

center crop is used at test time.

Our experiments are run on an NVIDIA Titan X Pas-

cal GPU with 12GB memory, which permits a batch size
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Method Dim.
Stanford Online Products

R@1 R@10 R@100 R@1000

LiftStruct [34] 512 62.1 79.8 91.3 97.4

Histogram [38] 512 63.9 81.7 92.2 97.7

Clustering [33] 64 67.0 83.7 93.2 –

Spectral [19] 512 67.6 83.7 93.3 –

Hard-aware Cascade [42]† 384 70.1 84.9 93.2 97.8

Margin [39] 128 72.7 86.2 93.8 98.0

BIER [27]† 512 72.7 86.5 94.0 98.0

Proxy NCA [26] 64 73.7 – – –

A-BIER [27] † 512 74.2 86.9 94.8 98.2

Hierarchical Triplets [8] 512 74.8 88.3 94.8 98.4

ABE-8 [16]† 512 76.3 88.4 94.8 98.2

FastAP, ResNet-18, M = 256 512 73.2 86.8 94.1 97.8

FastAP, ResNet-50, M = 96 128 73.8 88.0 94.9 98.3

FastAP, ResNet-50, M = 96 512 75.8 89.1 95.4 98.5

FastAP, ResNet-50, M = 256 ‡ 512 76.4 89.0 95.1 98.2
† Ensemble method
‡ Large-batch training heuristic to overcome GPU memory limit

Table 1: Retrieval performance comparison on Stanford Online Products [34]. FastAP achieves state-of-the-art results,

outperforming competing methods with either a simpler architecture or fewer embedding dimensions. M : batch size.

of M = 256 for ResNet-18, and M = 96 for ResNet-50.

Our large-batch heuristic further enables training with arbi-

trary batch sizes. An ablation study on the batch size is also

included in Section 5.3.

5.2. Comparison with Stateoftheart

We compare FastAP to a series of state-of-the-art deep

metric learning methods. Most of these work either exclu-

sively use pair-based or triplet-based local ranking losses

[2, 8, 34, 39, 42, 44], or use them in ensembles [16, 27, 41].

The exceptions include [19, 33] where clustering objectives

are optimized, as well as Histogram [38] that proposes a

quadruplet-based loss. In addition, some methods also pro-

pose novelties other than the loss function: Proxy NCA [26]

and HTG [44] generate novel training examples to improve

triplet-based training, and ABE [16] employs an attention

mechanism.

Stanford Online Products

We present R@k results for k ∈ {1, 10, 100, 1000} on Stan-

ford Online Products in Table 1. With a single ResNet-50

and 512 embedding dimensions, FastAP obtains state-of-

the-art results, both with and without large-batch training.

FastAP is also very competitive with 128 embedding di-

mensions, for example, it significantly outperforms Mar-

gin [39], a leading triplet-based method equipped with a

principled sampling strategy. In fact, only HTL [8] and

ABE-8 [16], both of which learn 512-d embeddings, are

able to achieve better overall performance than the 128-d

embeddings learned by FastAP.

We also compare FastAP to the ensemble methods,

namely, HDC [42], BIER/A-BIER [27], and ABE-8 [16].

These methods combine embedding vectors obtained either

from different layers in the same network, or from differ-

ent networks. Ensemble models can be very demanding to

train: for example, BIER ensembles 3 learners with a differ-

ent loss in each, and A-BIER extends it with the addition of

adversarial loss. Next, ABE-8 is an ensemble of 8 different

learners, trained on a GPU with 24GB memory. In contrast,

FastAP trains a single embedding network with a single loss

function, and outperforms these methods when using 12GB

of GPU memory. Therefore, the complexity-performance

trade-off for FastAP is much more desirable.

It is also noteworthy to contrast FastAP with Histogram

[38], which first proposed the differentiable relaxation of

histogram binning for deep metric learning. The histogram

loss is a quadruplet-based loss that encourages the distance

distributions of neighbors and non-neighbors to be sepa-

rated. However, this loss is only loosely correlated with

retrieval performance metrics, and we suspect that design-

ing appropriate sampling strategies for quadruplets is even

more challenging than for triplets. FastAP strongly outper-

forms the histogram loss.

In-Shop Clothes Retrieval

On the In-Shop Clothes Retrieval dataset, we add two meth-

ods into our comparisons: the original FashionNet [23] that

learns clothing features by predicting landmark locations

and multiple attributes, and a recently proposed ensemble

model named DREML [41].
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Method Dim.
In-Shop Clothes Retrieval

R@1 R@10 R@20 R@30 R@40 R@50

FashionNet [23] 4096 53.0 73.0 76.0 77.0 79.0 80.0

Hard-aware Cascade [42]† 384 62.1 84.9 89.0 91.2 92.3 93.1

BIER [27]† 512 76.9 92.8 95.2 96.2 96.7 97.1

DREML [41]† 9216 78.4 93.7 95.8 96.7 – –

Hard Triplet Generation [44] – 80.3 93.9 95.8 96.6 97.1 –

Hierarchical Triplets [8] 128 80.9 94.3 95.8 97.2 97.4 97.8

A-BIER [27]† 512 83.1 95.1 96.9 97.5 97.8 98.0

ABE-8 [16]† 512 87.3 96.7 97.9 98.2 98.5 98.7

FastAP, ResNet-18, M = 256 512 89.0 97.2 98.1 98.5 98.7 98.9

FastAP, ResNet-50, M = 96 512 90.0 97.5 98.3 98.7 98.9 99.1

FastAP, ResNet-50, M = 256‡ 512 90.9 97.7 98.5 98.8 98.9 99.1
† Ensemble method
‡ Large-batch training heuristic to overcome GPU memory limit

Table 2: Retrieval performance comparison on the In-Shop Clothes Retrieval dataset [23]. Both the ResNet-18 and ResNet-50

versions of FastAP outperform all competing methods.

Method Dim.

PKU VehicleID

Small Medium Large

R@1 R@5 R@1 R@5 R@1 R@5

Mixed Diff+CCL [21] 1024 49.0 73.5 42.8 66.8 38.2 61.6

GS-TRS [2] 1024 75.0 83.0 74.1 82.6 73.2 81.9

BIER [27]† 512 82.6 90.6 79.3 88.3 76.0 86.4

A-BIER [27]† 512 86.3 92.7 83.3 88.7 81.9 88.7

DREML [41]† 2304 88.5 94.8 87.2 94.2 83.1 92.4

FastAP, ResNet-18, M = 256 512 90.9 96.0 88.9 95.2 85.3 93.9

FastAP, ResNet-50, M = 96 512 90.4 96.5 88.0 95.4 84.5 93.9

FastAP, ResNet-50, M = 256‡ 512 91.9 96.8 90.6 95.9 87.5 95.1
† Ensemble method
‡ Large-batch training heuristic to overcome GPU memory limit

Table 3: Retrieval performance comparison on PKU VehicleID [21]. FastAP performs significantly better than recent ensem-

ble models which are costly to train and evaluate.

The R@k results for In-Shop Clothes Retrieval are

presented in Table 2, with k ∈ {1, 10, 20, 30, 40, 50}.

FastAP outperforms all competing methods with a clear

margin. Notably, we point out that for this dataset, DREML

uses a large ensemble of 48 ResNet-18 models, each pro-

ducing a 198-d embedding vector, resulting in a 9216-d em-

bedding when concatenated. With a single ResNet-18 and

512-d embeddings, FastAP obtains a 15% relative increase

in R@1 compared to DREML, and also outperforms two

strong ensemble models, A-BIER and ABE-8.

PKU VehicleID

We report R@k for k ∈ {1, 5} on the small, medium, and

large test sets of PKU VehicleID. We include the original

baseline, Mixed Diff+CCL from [21], as well as GS-TRS

[2] which proposes a group-based triplet method to reduce

intra-class variance. Other included methods that report re-

sults on this dataset are ensemble methods: BIER, A-BIER,

and DREML. For this dataset, DREML employs an ensem-

ble of 12 ResNet-18 models with a 192-d embedding from

each model, resulting in 2304-d embeddings.

Table 3 presents retrieval performance comparisons.

FastAP again is able to outperform the state-of-the-art with

both ResNet-18 and ResNet-50. An interesting observa-

tion is that unlike on other datasets, when using the same

amount of GPU memory, ResNet-18 consistently outper-

forms ResNet-50 in R@1. We hypothesize that since the

ResNet-18 model is able to use larger batches, the increased

hardness of the in-batch retrieval problems partially out-

weighs its lower model capability on this dataset.

5.3. Ablation Studies

Batch Size

During SGD training, the list size in the in-batch retrieval

problems is determined by the minibatch size. Here, we
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Figure 4: Ablation studies. We monitor R@1 as a function of hyper-parameters on all datasets. (a) FastAP benefits from

using large batch sizes. (b) Distance quantization induces a trade-off between close approximation of AP vs. “hardness” of

the resulting objective, and peak performance is observed around 10 bins. (c) Illustration of the trade-off.

present an ablation study where we vary the training batch

size for FastAP, with the ResNet-18 backbone. We measure

the R@1 on all three datasets (for VehicleID we use the

large subset).

As provided in Figure 4a, R@1 monotonically improves

with larger batch size on all three datasets. This observa-

tion resonates with the fact that large batches reduce the

variance of the stochastic gradients, which has been shown

to be beneficial [32]. On the other hand, from the learn-

ing to rank perspective, we argue that larger batches result

in harder in-batch retrieval problems during training, since

the network is required to rank the neighbors in front of a

larger set of non-neighbors, and this in turn leads to better

generalization.

Distance Quantization

A hyper-parameter of FastAP is the number of histogram

bins used in distance quantization, which controls the qual-

ity of approximation. To study its effects, we also run an ab-

lation study with varying numbers of histogram bins during

training, keeping other parameters fixed (ResNet-18, batch

size 256). Figure 4b shows the impact on test set perfor-

mance in terms of R@1.

Intuitively, using more histogram bins during training

would result in a closer approximation of Average Preci-

sion. However, we observe that retrieval performance does

not necessarily improve with more bins, and in fact consis-

tently peaks around 10 bins. To understand this trade-off,

we give a simple example in Figure 4c, where a ranked list

achieves perfect AP, with a small margin of separation ǫ be-

tween positive and negative examples. A fine-grained quan-

tization of this ranked list produces all-positive histogram

bins, followed by all-negative ones, which means that the

FastAP approximation also evaluates to 1. In this case, the

gradients are zero, i.e., there are no learning signals for the

network. In contrast, we argue that a coarser quantization

would produce histogram bins where positives and nega-

tives are mixed, thus generating nonzero gradients to further

push them apart, which helps generalization.

The width of histogram bins has a similar effect as the

margin parameter in triplet losses, and it is desirable to keep

it reasonably large, or equivalently, the number of bins rel-

atively small. On the other hand, if there are too few bins in

the histogram, approximation quality also deteriorates; in

the extreme case of there being only one bin, no learning

is possible. In our experiments, 10-bin histograms usually

provide the best trade-off, and performance is not overly

sensitive to this parameter.

6. Conclusion

We revisit the “learning to rank” principle to propose

a deep metric learning method, FastAP. Our main contri-

bution is a novel solution to optimizing Average Precision

under the Euclidean metric, based on the probabilistic in-

terpretation of AP as the area under precision-recall curve,

as well as distance quantization. Compared to many exist-

ing solutions to this much-studied problem, FastAP is more

efficient, and works in a stochastic setting by design. We

further propose a category-based minibatch sampling strat-

egy and a large-batch training heuristic. On three standard

datasets, FastAP consistently outperforms the current state-

of-the-art in few-shot image retrieval, and demonstrates an

excellent performance-complexity trade-off.
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