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Abstract

Determining the position and orientation of a calibrated

camera from a single image with respect to a 3D model is

an essential task for many applications. When 2D–3D cor-

respondences can be obtained reliably, perspective-n-point

solvers can be used to recover the camera pose. However,

without the pose it is non-trivial to find cross-modality cor-

respondences between 2D images and 3D models, particu-

larly when the latter only contains geometric information.

Consequently, the problem becomes one of estimating pose

and correspondences jointly. Since outliers and local op-

tima are so prevalent, robust objective functions and global

search strategies are desirable. Hence, we cast the problem

as a 2D–3D mixture model alignment task and propose the

first globally-optimal solution to this formulation under the

robustL2 distance between mixture distributions. We derive

novel bounds on this objective function and employ branch-

and-bound to search the 6D space of camera poses, guaran-

teeing global optimality without requiring a pose estimate.

To accelerate convergence, we integrate local optimization,

implement GPU bound computations, and provide an intu-

itive way to incorporate side information such as semantic

labels. The algorithm is evaluated on challenging synthetic

and real datasets, outperforming existing approaches and

reliably converging to the global optimum.

1. Introduction

Estimating the pose of a calibrated camera given a sin-

gle image and a 3D model, is useful for many applications,

including localization and tracking [20, 33], augmented re-

ality [41], motion segmentation [44] and object recognition

[3]. The problem can be cast as a 2D–3D alignment prob-

lem in the image plane or on the unit sphere. The task is to

find the rotation and translation that aligns the projection of

a 3D model with the 2D image data, using points [16, 12],

lines [7], silhouettes [14], or mixture models [4]. This is vi-

sualized in Figure 1 for mixture models on the unit sphere.

O
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Figure 1. Spherical mixture alignment for estimating the 6-DoF

absolute pose (R, t) of a camera from a single image I, relative to

a 3D model (e.g. point-set P), without 2D–3D correspondences.

Our algorithm recovers the transformation by generating mixture

distributions from the data — a von Mises–Fisher Mixture Model

(vMFMM) from the image via a bearing vector set F and a Gaus-

sian Mixture Model (GMM) from the 3D model, projected onto

the sphere as a quasi-Projected Normal Mixture Model (qPNMM)

— and applying branch-and-bound with tight novel bounds to find

R and t that optimally aligns these spherical mixtures.

When 2D–3D correspondences are known, this becomes

the well-studied Perspective-n-Point (PnP) problem [37,

25]. However, correspondences between 2D and 3D modal-

ities can be difficult to estimate, not least for the general

case of aligning an image with a texture-less 3D model.

Even when the model contains visual information, such as

SIFT features [40], repetitive elements, occlusions, and ap-

pearance variations due to lighting and weather make the

correspondence problem non-trivial. Methods that solve

for pose and correspondences jointly avoid these problems.

They include local optimization approaches [16, 43], which

can only yield correct results when a good pose prior is pro-

vided, and randomized global search [20], which becomes

computationally intractable as the problem size increases.

In contrast, globally-optimal approaches [7, 12] obviate the

need for pose priors and guarantee optimality.
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This work is the first to propose a globally-optimal so-

lution to the 2D–3D mixture alignment problem for camera

pose estimation, depicted in Figure 1. The algorithm opti-

mizes the robust L2 density distance and uses the branch-

and-bound framework to guarantee global optimality, ad-

dressing the twin challenges of outliers and non-convexity.

It provides a geometric solution without assuming that cor-

respondences, pose priors, or training data are available.

The primary contributions are (i) a new closed-form mix-

ture distribution on the sphere, the quasi-Projected Normal

mixture, that approximates the projection of a 3D Gaussian

mixture; (ii) a new robust objective function, the L2 dis-

tance between von Mises–Fisher and quasi-Projected Nor-

mal mixture distributions; (iii) an extension of the objec-

tive function to exploit information from deep networks to

accelerate convergence; (iv) a fast local optimization algo-

rithm using the objective function and closed-form gradient;

(v) novel bounds on the objective function; and (vi) a glob-

ally-optimal algorithm for camera pose estimation, with

bound computations implemented on the GPU.

An advantage of this approach is that aligning densities

is closer to the fundamental 2D–3D problem of aligning

physical and imaged surfaces than aligning discrete point

samples, since densities model the underlying surfaces with

arbitrarily accurate estimates [17], albeit at the limit. An-

other advantage is that it leverages the adaptive compres-

sion properties of mixture model clustering algorithms, en-

abling the processing of large noisy point-sets. In addition,

the continuous objective function admits the use of local

gradient-based optimization, which greatly expedites con-

vergence. The algorithm can also be applied to a wide range

of 3D data, including mesh and volume representations as

well as point-sets. Finally, the approach solves the prob-

lem of extracting geometrically-meaningful elements in 2D

and 3D by (optionally) using semantic information during

optimization. This simple but effective extension reduces

runtime and susceptibility to degenerate poses, using only

easily-obtainable information.

2. Related Work

When 2D–3D correspondences are known, PnP solvers

[37, 25] can accurately estimate the camera pose. However,

outliers are almost always present in the correspondence set.

When this is the case, the inlier set can be retrieved using

RANSAC [20] or robust global optimization [19, 2, 18, 55].

Some of these approaches [20, 19] can be applied when

correspondences are not available by providing all possible

permutations of the correspondence set. However this hard

combinatorial problem quickly becomes infeasible. Match-

ing and filtering techniques have also been developed for

large-scale localization problems to reduce the number of

outliers in the initial set [49, 39, 61, 18, 55, 50]. These

methods are only practical when 2D–3D correspondences

can be found and so are mostly used with Structure-from-

Motion (SfM) point-sets. Each 3D point in these datasets

is at a visually-distinctive location and is augmented with

an image feature, simplifying the correspondence problem.

This is not the case for standard point-sets, which contain

only geometric information.

The problem is more complex when correspondences are

not available at the outset. Local optimization approaches

include SoftPOSIT [16], which iterates between solving for

correspondences and solving for pose, and 2D/3D GMM

registration [4], which projects 3D points into the cam-

era plane then applies 2D Gaussian mixture alignment.

This formulation treats points close to the camera iden-

tically to distant points and so neglects 3D scale infor-

mation and creates false optima. Moreover, these meth-

ods only find locally-optimal solutions within the conver-

gence basin of the provided pose prior. To alleviate this,

global optimization approaches have been proposed, in-

cluding random-start local search [16] and BlindPnP [43],

which uses Kalman filtering to search over a probabilistic

pose prior. RANSAC and variants [23] do not require a pose

prior, but are only tractable for small numbers of points and

outliers. Other approaches use regression forests or convo-

lutional neural networks to learn 2D–3D correspondences

from the data and thereby regress pose [52, 29, 5, 28]. These

methods require a large training set of pose-labeled images,

do not localize the camera with respect to an explicit 3D

model, and cannot guarantee optimality.

Globally-optimal approaches can provide this guarantee

without needing a pose estimate. They certify that the com-

puted camera pose is a global optimizer of the objective

function. The Branch-and-Bound (BB) [35] algorithm has

been widely used for this purpose, with tractability contin-

uing to be a significant impediment. For example, BB has

been used for 2D–2D registration [6], relative pose estima-

tion [24], 3D–3D rotational registration [38], 3D–3D regis-

tration with known correspondences [45], full 3D–3D regi-

stration [60], and robust 3D–3D registration [10].

For 2D–3D registration, Brown et al. [7] proposed a

globally-optimal method using BB with a geometric error.

Trimming was used to make the objective function robust

to outliers. However this requires knowing the true outlier

fraction in advance; if incorrectly specified, the optimum

may not occur at the correct pose. Campbell et al. [11, 12]

proposed a globally-optimal inlier set cardinality maximiza-

tion solution to the problem. While robust, this objective

function is discrete and challenging to optimize, and oper-

ates on sampled points instead of the underlying surfaces.

Our work is the first globally-optimal L2 density dis-

tance minimization solution to the camera pose estimation

problem. It removes the assumptions that correspondences,

training data or pose priors are available and is guaranteed

to find the optimum of a robust objective function.

11797



Table 1. Probability distributions in R
3 and S

2.

Distribution Notation Parameters Manifold

Gaussian N µ, σ2
R

3

Projected Normal PN µ, σ2
R

3

quasi-Projected Normal qPN µ, σ2
S
2

von Mises–Fisher vMF µ̂, κ S
2

3. Probability Distributions on the Sphere

2D directional data such as bearing vectors can be repre-

sented as points on the unit 2-sphere. These can be treated

as samples from an underlying probability distribution in

S
2. For images, this distribution models the projection of

visible surfaces onto the sphere. In this section, we will

outline the probability distributions used in this work and

derive a closed-form approximation for the last. The distri-

butions referred to in this paper are summarized in Table 1.

The von Mises–Fisher distribution (vMF) [21], visual-

ized in Figure 2, is the spherical analog of the isotropic

Gaussian distribution and has a closed form in 3D, unlike

more expressive non-isotropic distributions [30]. The prob-

ability density function of the vMF distribution in 3D is

vMF (f | µ̂, κ) = exp(κµ̂⊺f)

2πZ(κ)
(1)

for the random unit bearing vector f , mean direction µ̂, and

concentration κ > 0, and where

Z(κ) = (exp (κ)− exp (−κ))κ−1. (2)

The Projected Normal (PN) distribution [42, 59, 58] is

the projection of a Gaussian distributionN onto the sphere.

That is, if a random variable p follows a Gaussian distri-

bution, then the bearing vector f = p/‖p‖ follows a PN

distribution. For a Gaussian mixture that models the distri-

bution of 3D surfaces in a scene, the associated PN mixture

models the scene as observed by a 2D sensor, albeit with-

out visibility constraints. The probability density function

of the isotropic PN distribution in 3D [46] is

PN(f | µ, σ2) =
e

−ρ2

2

2π

[

α√
2π

+Φ(α) e
α2

2

(

1+α2
)

]

(3)

for the bearing vector f , mean position µ ∈ R
3, and vari-

ance σ2, and where ρ = ‖µ‖/σ, α = ρµ⊺f/‖µ‖, and Φ(·)
is the cumulative distribution function of N .

While PN is the true distribution, it does not have a

closed form. Moreover, similarity measures between PN

distributions, such as the L2 distance, are not tractable to

compute, since they do not simplify to a closed form when

integrated over the sphere and would therefore require time-

consuming numerical integration. As a result, it is imprac-

tical for alignment problems. Instead, we propose a new

(a) κ = 1 (b) κ = 10 (c) κ → ∞

Figure 2. 2D visualization of a 3D von Mises–Fisher distribution

as the concentration parameter κ increases. As κ → ∞, the distri-

bution approaches a delta function on the sphere.
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Figure 3. Comparison of the qPN and PN distributions. (a) The

qPN and PN probability density functions are plotted with respect

to the angle ∠(f ,µ) for ρ = ‖µ‖/σ = 1. The distributions are

very similar, even for this small value of ρ. (b) The Mean Absolute

Error (MAE) across the entire angular range is plotted with respect

to ρ and is less than 0.01 for all ρ > 1.

closed-form distribution, the quasi-Projected Normal (qPN)

distribution, that approximates a PN with a vMF distribu-

tion. Its probability density function is given by

qPN
(

f | µ, σ2
)

= vMF

(

f

∣

∣

∣

∣

∣

µ

‖µ‖ ,
(‖µ‖

σ

)2

+1

)

. (4)

This was derived by equating the vMF and PN density func-

tions at f = µ̂ = µ/‖µ‖, since they should evaluate to the

same value in the direction of the mean vector. This gives

κ

2π (1− e−2κ)
=
e

−ρ2

2

2π

[

ρ√
2π

+Φ(ρ) e
ρ2

2

(

1+ρ2
)

]

(5)

which simplifies as κ→∞ and ρ = ‖µ‖/σ →∞ to

κ =

(‖µ‖
σ

)2

+ 1. (6)

While this derivation only proves equality in the limit in

the direction of the mean vector, the empirical results in

Figure 3 show that the distributions are very similar across

the entire angular range, even for low values of ρ.

4. Spherical Mixture Alignment

The alignment of mixture distributions to estimate rel-

ative sensor pose is a well-studied problem in R
2, R

3

[15, 57, 27, 10], and the sphere S
2 [54]. For 2D–3D cam-

era pose estimation, we require a 3D positional and a 2D
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directional mixture distribution to model the input data. We

model the distribution of 3D points p ∈ R
3 in the set

P = {pi}N1

i=1
as a Gaussian Mixture Model (GMM). Let

θ1 =
{

µ1i, σ
2
1i, φ1i

}n1

i=1
be the parameter set of the n1-

component GMM with means µ1i ∈ R
3, variances σ2

1i, and

mixture weights φ1i > 0, where
∑

φ1i = 1, with density

p (p | θ1) =

n1
∑

i=1

φ1iN
(

p | µ1i, σ
2

1i

)

. (7)

We also require a projection of this distribution onto the

sphere. For this, we use the qPN Mixture Model (qPNMM)

associated with this GMM, with density

p (f | θ1) =

n1
∑

i=1

φ1i qPN
(

f | µ1i, σ
2

1i

)

. (8)

Finally, we model the distribution of bearing vectors f ∈ S
2

in the set F = {fi}N2

i=1
as a vMF Mixture Model (vMFMM)

[22, 53]. Let θ2 = {µ̂2j , κ2j , φ2j}n2

j=1
be the parameter set

of the n2-component vMFMM with mean directions µ̂2j ∈
S
2, concentrations κ2j > 0, and mixture weights φ2j > 0,

where
∑

φ2j = 1, with density

p (f | θ2) =

n2
∑

j=1

φ2j vMF
(

f | µ̂2j , κ2j
)

. (9)

The bearing vector f corresponds to a 2D point imaged by

a calibrated camera. That is, f ∝ K−1x̂ where K is the

matrix of intrinsic camera parameters and x̂ is the homoge-

neous image point. These mixture distributions admit arbi-

trarily accurate estimates of noisy surface densities [17] and

can be computed efficiently from the data [9, 34, 53].

The L2 distance between probability densities is a robust

objective function that can be used to measure the alignment

of two sets of sensor data, given a specific transformation

[27, 54]. Unlike the Kullback–Leibler divergence, it is in-

herently robust to outliers [51] and operates on statistical

densities generated from the raw sensor data. The densities

model the underlying surfaces of the scene, which is bene-

ficial because the fundamental 2D–3D registration problem

is a surface alignment problem, not a discrete sampled point

alignment problem.

Lemma 1. (L2 objective function) TheL2 distance between

qPNMM and vMFMM models with rotation R ∈ SO(3)
and translation t ∈ R

3 can be minimized using the function

f(R, t) =

n1
∑

i=1

n1
∑

j=1

φ1iφ1jZ (K1i1j(t))

Z(κ1i(t))Z(κ1j(t))

− 2

n1
∑

i=1

n2
∑

j=1

φ1iφ2jZ (K1i2j(R, t))

Z(κ1i(t))Z(κ2j)
(10)

where

K1i1j(t) =

∥

∥

∥

∥

κ1i(t)
µ1i − t

‖µ1i − t‖+κ1j(t)
µ1j − t

‖µ1j − t‖

∥

∥

∥

∥

(11)

K1i2j(R, t) =

∥

∥

∥

∥

κ1i(t)R
µ1i − t

‖µ1i − t‖ + κ2jµ̂2j

∥

∥

∥

∥

(12)

κ1i(t) =

(‖µ1i − t‖
σ1i

)2

+ 1 (13)

and Z(·) is defined as given in (2).

Proof. Given qPNMM and vMFMM models of the input

data and a rigid transformation function T (θ1,R, t) =
{

R(µ1i − t), σ2
1i, φ1i

}n1

i=1
, the L2 distance between den-

sities for a rotation R and translation t is given by

dL2
=

∫

S2

[p (f | T (θ1,R, t))− p (f | θ2)]
2
df (14)

=

∫

S2

[p (f | T (θ1,R, t))]
2
+ [p (f | θ2)]

2

− 2p (f | T (θ1,R, t)) p (f | θ2) df . (15)

The function (10) is obtained by removing constant sum-

mands and factors, substituting (8), (9), (4) and (1) into (15),

and replacing integrals of the form
∫

S2
exp(x⊺f) df with the

normalization constant of a vMF density with κ= ‖x‖ and

µ̂=x/κ; see appendix for details.

The objective is then to find a rotation and translation

that minimizes the L2 distance between the densities

(R∗, t∗) = argmin
R, t

f(R, t). (16)

Furthermore, if semantic class labels are available, for

example using CNN–based semantic segmentation for 2D

images [47, 13, 48] and 3D point-sets [36, 26, 56], the op-

timization problem can be formulated as a joint L2 dis-

tance minimization over the semantic classes, providing

semantic-aware alignment and accelerating convergence.

That is, given a class label set Λ, one can construct sepa-

rate mixture distributions for each class and solve

(R∗, t∗) = argmin
R, t

∑

l∈Λ

φlfl(R, t). (17)

where φl > 0 are the class weights and fl is the per-class

function value computed according to (10).

5. Branch-and-Bound

To solve the highly non-convex L2 distance problem

(16), the Branch-and-Bound (BB) algorithm [35] may be

applied. It requires an efficient way to branch the function

domain and bound the function optimum for each branch,
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(a) Rotation Domain Ωr

τx

τz

τy

(b) Translation Domain Ωt

Figure 4. Parameterization and branching of SE(3). (a) Rota-

tions are parameterized by angle-axis 3-vectors in a solid radius-π
ball. (b) Translations are parameterized by 3-vectors bounded by a

cuboid with half-widths [τx, τy, τz]. The joint domain is branched

into 6D cuboids using an adaptive octree-like branching strategy.

such that the bounds converge as the branch size tends to

zero. The efficiency of the algorithm depends on both the

computational complexity of the bounds and how tight they

are, since tighter bounds reduce the search space quicker by

allowing suboptimal branches to be pruned.

5.1. Parameterizing and Branching the Domain

To find a globally-optimal solution, the L2 distance must

be optimized over the domain of 3D motions, that is, the

group SE(3) = SO(3) × R
3. For BB, the domain must

be bounded, so we restrict the space of translations to the

set Ωt, under the assumption that the camera is a finite dis-

tance from the 3D model. The domains are shown in Fig-

ure 4. We minimally parameterize rotation space SO(3)
with angle-axis 3-vectors r with rotation angle ‖r‖ and

rotation axis r̂ = r/‖r‖. As a result, the space of all

3D rotations can be represented as a solid ball of radius

π in R
3. For ease of manipulation, we use the 3D cube

circumscribing the π-ball as the rotation domain Ωr [38].

The notation Rr ∈ SO(3) is used to denote the rotation

matrix obtained from r using Rodrigues’ rotation formula.

We parameterize translation space R
3 with 3-vectors in a

bounded domain chosen as the cuboid Ω′
t containing the

bounding box of the model. To avoid the non-physical case

where the camera is located within a small value ζ of a

3D surface, the translation domain is restricted such that

Ωt = Ω′
t ∩ {t ∈ R

3 | ‖µ − t‖ > ζ, ∀µ ∈ θ1}. Fi-

nally, we branch the domain into 6D cuboids (6-orthotopes)

Cr × Ct using an adaptive branching strategy that chooses

to subdivide the rotation or translation dimensions based on

which has the greater angular uncertainty, reducing redun-

dant branching.

5.2. Bounding the Branches

The success of a branch-and-bound algorithm is predi-

cated on the quality of its bounds. For L2 distance mini-

mization, we require bounds on the minimum of the objec-

tive function (10) within a transformation domain Cr × Ct.

An upper bound can be found by evaluating the function

at any transformation in the branch. A lower bound can

be found using the bounds ψr and ψt on the rotation and

translation uncertainty angles derived in Lemmas 3 and 5 in

Campbell et al. [12], reproduced here as Lemmas 2 and 3.

Lemma 2. (Rotation uncertainty angle bound) Given a 3D

point p and a rotation cube Cr centered at r0 with surface

Sr, then ∀r ∈ Cr,

∠(Rrp,Rr0
p) 6 min

{

max
r∈Sr

∠(Rrp,Rr0
p), π

}

, ψr(p, Cr). (18)

Lemma 3. (Translation uncertainty angle bound) Given a

3D point p and a translation cuboid Ct centered at t0 with

vertices Vt, then ∀t ∈ Ct,

∠(p− t,p− t0) 6

{

max
t∈Vt

∠(p− t,p− t0) if p /∈ Ct
π else

, ψt(p, Ct). (19)

Theorem 1. (Objective function bounds) For the transfor-

mation domain Cr×Ct centered at (r0, t0), the minimum of

the objective function (10) has an upper bound

d , f(Rr0
, t0) (20)

and a lower bound

d ,

n1
∑

i=1

n1
∑

j=1

φ1iφ1j min
t∈Ct

Z (K1i1j(t))

Z(κ1i(t))Z(κ1j(t))

− 2

n1
∑

i=1

n2
∑

j=1

φ1iφ2j max
t∈Ct

Z
(

K1i2j(t)
)

Z(κ1i(t))Z(κ2j)
(21)

where

K1i1j(t) =
√

κ2
1i(t)+κ

2
1j(t)+2κ1i(t)κ1j(t) cosA (22)

K1i2j(t) =
√

κ2
1i(t) + κ2

2j + 2κ1i(t)κ2j cosB (23)

A = min{π,∠
(

µ1i − t0,µ1j − t0
)

+ ψt(µ1i, Ct) + ψt(µ1j , Ct)} (24)

B = max{0,∠
(

µ1i − t0,R
−1

r0
µ̂2j

)

− ψt(µ1i, Ct)− ψr(µ̂2j , Cr)}. (25)

Proof. The validity of the upper bound follows from

f(Rr0
, t0) > min

r∈Cr

t∈Ct

f(Rr, t). (26)
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That is, the function value at a specific point within the do-

main is greater than or equal to the minimum within the

domain. For the lower bound, observe that ∀t ∈ Ct,

K1i1j(t) =

√

√

√

√

2κ1i(t)κ1j(t) cos∠(µ1i−t,µ1j−t)
+ κ21i(t) + κ21j(t)

(27)

>
√

κ2
1i(t)+κ

2
1j(t)+2κ1i(t)κ1j(t) cosA (28)

= K1i1j(t) (29)

where (28) follows from the triangle inequality in spherical

geometry and Lemma 3, since

∠(a,b) 6 ∠(c,d) + ∠(a, c) + ∠(b,d) (30)

6 ∠(c,d) + ψt(µ1i, Ct) + ψt(µ1j , Ct) (31)

for a = µ1i−t, b = µ1j−t, c = µ1i−t0, and d = µ1j−t0.

Also observe that ∀(r, t) ∈ (Cr × Ct),

K1i2j(Rr, t)=

√

√

√

√

2κ1i(t)κ2j cos∠(µ1i−t,R−1

r
µ̂2j)

+ κ21i(t) + κ22j
(32)

6
√

κ2
1i(t)+κ

2
2j+2κ1i(t)κ2j cosB (33)

= K1i2j(t) (34)

where (33) follows from the reverse triangle inequality in

spherical geometry and Lemmas 3 and 2. With K1i1j and

K1i2j , a valid lower bound for (10) can be constructed by

observing that Z(x) (2) is a monotonically increasing func-

tion for x > 0 and the dependency of κ1i on t can be opti-

mized separately. See the appendix for the full proof.

6. The GOSMA Algorithm

The Globally-Optimal Spherical Mixture Alignment

(GOSMA) algorithm is outlined in Algorithm 1. It employs

a depth-first search strategy using a priority queue (line 5)

where the priority is inverse to the lower bound. The algo-

rithm terminates with ǫ-optimality, whereby the difference

between the best function value d∗ and the global lower

bound d is less than ǫ (line 6). Branching and bounding is

performed on the GPU (line 7), with each thread computing

the bounds for a single branch.

We also developed a local optimization algorithm de-

noted as Spherical Mixture Alignment (SMA), which was

integrated into GOSMA (line 9). We use the quasi-Newton

L-BFGS algorithm [8] to minimize (10), with the gradient

derived in the appendix. SMA is run whenever the BB al-

gorithm finds a sub-cube Cij that has an upper bound less

than the best-so-far function value d∗ (line 9), initialized

with the center transformation of Cij . In this way, BB and

SMA collaborate, with SMA quickly converging to the clos-

est local minimum and BB guiding the search into the con-

vergence basins of better local minima. SMA accelerates

Algorithm 1 GOSMA: a globally-optimal spherical mix-

ture alignment algorithm for camera pose estimation

Input: GMM–vMFMM pair, threshold ǫ, domain Ωr×Ωt

Output: optimal function value d∗, camera pose (r∗, t∗)
1: d∗ ←∞
2: Add domain Ωr × Ωt to priority queue Q
3: loop

4: Update lowest lower bound d from Q
5: Remove set of hypercubes {Ci} from Q
6: if d∗ − d 6 ǫ then terminate

7: Evaluate dij & dij in parallel for subcubes of {Ci}
8: for all sub-cubes Cij ∈ {Ci} do

9: if dij<d
∗ then (d∗, r∗, t∗)← SMA(r0ij , t0ij)

10: if dij<d
∗ then add Cij to queue Q

convergence since reducing d∗ early allows larger branches

to be culled (line 10), greatly reducing the search space.

7. Results

The GOSMA algorithm, denoted GS, was evaluated

with respect to the baseline algorithms SoftPOSIT [16],

BlindPnP [43], RANSAC [20], and GOPAC [12], de-

noted SP, BP, RS and GP respectively, using both syn-

thetic and real data. The RANSAC approach uses the

OpenGV framework [31] and the P3P algorithm [32] with

randomly-sampled correspondences. To generate GMMs

and vMFMMs, we cluster the point-set with DP-means [34]

and the bearing vector set with DP-vMF-means [53], and fit

maximum likelihood mixture models to the clusters. These

methods automatically select a parsimonious representation

that adapts to the complexity of the scene geometry.

We report the median translation error (in metres), ro-

tation error (degrees), and runtime (seconds) including on-

the-fly mixture generation. We also report the success rate,

a summary statistic defined as the fraction of experiments

where the correct pose was found: an angular error less than

0.1 radians and a relative translation error less than 5%. Ex-

cept where otherwise specified, the normalized L2 distance

threshold ǫ was set to 0.1, the point-to-camera limit ζ was

set to 0.5, the scale parameters for mixture model genera-

tion λp and λf were set to 0.25m and 2◦ respectively, and

semantic information was used in the real data experiments

only, with class weights φl = |Λ|−1, the inverse of the num-

ber of classes. All experiments were run on a 3.4GHz CPU

and two GeForce GTX 1080Ti GPUs, and the C++ code is

available on the first author’s website.

7.1. Synthetic Data Experiments

To evaluate GOSMA under a range of perturbations, 25

independent Monte Carlo simulations were performed per

parameter setting using the framework of BlindPnP [43]:
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(a) 3D Results (b) 2D Results (c) Bound Evolution

Figure 5. Sample 2D and 3D results for the random point data.

(a) 3D points, true and GOSMA-estimated camera fulcra (com-

pletely overlapping) and toroidal pose prior. (b) 2D points (dots)

and 3D points projected using the GOSMA-estimated camera pose

(circles), with 2D and 3D outliers shown in red. (c) Evolution over

time of the upper (red) and lower (magenta) bounds, remaining un-

explored volume (blue) and queue size (green) as a fraction of their

maximum values.

NI random 3D point inliers and ω3DNI outliers were gener-

ated from [−1, 1]3; the inliers were projected to a 640×480
virtual image with a focal length of 800; normal noise with

σ = 2 pixels was added to the 2D points; and ω2DNI ran-

dom outlier points were added to the image. An example of

the data and alignment results is shown in Figure 5.

The time evolution of the global upper and lower bounds

is shown in Figure 5(c). The plot reveals how local and

global optimization strategies collaborate to decrease the

upper bound with BB guiding the search into better con-

vergence basins and SMA jumping to the nearest local min-

imum (the staircase pattern). It also shows that the majority

of the runtime is spent increasing the lower bound, indicat-

ing that GOSMA will often find the global optimum when

terminated early, albeit without an optimality guarantee.

To facilitate fair comparison with the local methods Soft-

POSIT and BlindPnP, a torus pose prior was used for these

experiments. It constrains the camera center to a torus

around the 3D point-set with the optical axis directed to-

wards the model [43]. The torus prior was represented as a

50 component GMM for BlindPnP and 50 initial poses for

SoftPOSIT. GOSMA and GOPAC were given a set of trans-

lation cubes that approximated the torus and were not given

any rotation prior. RANSAC was set to explore correspon-

dence space for up to 120s. The results are shown in Fig-

ure 6. Runtime values are clipped to an upper limit of 120s

so that the scale is interpretable. GOSMA and GOPAC out-

perform the other methods, reliably finding the correct pose

while still being relatively efficient. While GOSMA has

longer runtimes in the first two experiments, it has much

better behaviour than the other methods when 2D outliers

are present. For example, when ω2D = 1, the median

runtime of GOPAC (167s) is more than 30x higher than

GOSMA (5s), while both always find the correct pose, with

median angular errors below 1◦ and relative translation er-

rors below 2%. In fact, this random point setup significantly

favors point-based methods such as GOPAC at the expense

of our approach. For real surfaces, GOSMA is able to lever-
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Figure 6. Results for the random points dataset with the torus prior.

The success rates and median runtimes are plotted with respect

to the number of inlier points (NI ), the fraction of additional 3D

outliers (ω3D), 2D outliers (ω2D), and both, with default parameters

NI = 30 inlier points and ω3D = ω2D = 0, for 25 Monte Carlo

simulations per parameter value.

age its ability to adaptively compress the data, allowing it to

quickly process a very large number of points.

7.2. Real Data Experiments

The Stanford 2D-3D-Semantics (2D-3D-S) [1] dataset

contains panoramic images, point-sets, and semantic anno-

tations for both modalities. It is a large indoor dataset with

approximately 1 million points per room and 8 million pix-

els per photo, collected using a structured-light RGBD cam-

era. We evaluated our algorithm on area 3 of the dataset,

which contains lounges, offices and a conference room. The

test data has 33 panoramic images taken from distinct cam-

era poses where the camera is at least 50cm from any sur-

face, and covers 13 rooms. Each room is a separate point-

set, which models visibility constraints but assumes that the

camera’s position is known to the room level. Using this

information, we set the translation domain to be the room

size. Semantic information is used by all methods in these

tests: GOPAC and RANSAC use the pre-processing strat-

egy from Campbell et al. [12], selecting points and pixels

from furniture classes only, whereas GOSMA uses class la-

bels during optimization (17), making more effective use of

the information. We also randomly downsample the point-

sets and images to 100k points and pixels to reduce the mix-

ture generation time. The mixture scale parameters λp and

λf [34, 53] were automatically selected to yield approxi-

mately 10 components per semantic class, 60–100 compo-

nents in total. For GOPAC, the inlier threshold θ was set to
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Table 2. Camera pose results for GOSMA (GS), GOSMA with-

out class labels during optimization (GS-Λ), GOPAC (GP) and

RANSAC (RS) for area 3 of the Stanford 2D-3D-S panoramic im-

age dataset. Translation error, rotation error and runtime quartiles

(Q2 Q1

Q3 ) and the success rate are reported.

Method GS GS-Λ GP RS

Translation error (m) 0.080.05
0.15 0.140.09

0.23 0.150.10
0.27 0.560.39

2.06

Rotation error (◦) 1.130.91
2.18 2.381.25

4.61 3.782.47
5.10 18.38.94

108

Runtime (s) 1.81.4
4.4 19.112.8

43.7 902448
902 120120

120

Success rate 1.00 0.85 0.82 0.09

2.5◦ and the angular tolerance η was set to 0.25◦.

Qualitative and quantitative results are given in Figure 7

and Table 2. Note that GOPAC and RANSAC were termi-

nated at 900s and 120s respectively. GOSMA outperforms

the other methods considerably, finding the correct pose

in all cases with a small median runtime. We also tested

GOSMA without semantic labels during optimization, only

during pre-processing (GS-Λ), the same as for GOPAC and

RANSAC. While this is more accurate and much faster than

GOPAC, optimizing across the semantic classes provides

another large accuracy and runtime gain. We would like

to emphasize the difficulty of this problem setup: the al-

gorithm is given an image, a point-set and semantic class

labels, and is required to estimate the camera pose. Com-

pared to the synthetic data experiments, the sheer number

of points and pixels, many of which are outliers, precludes

the use of traditional methods.

8. Discussion and Conclusion

In this paper, we have proposed a novel mixture align-

ment formulation for the camera pose estimation problem

using the robust L2 density distance on the sphere. Further-

more, we have developed a novel algorithm to minimize this

distance using branch-and-bound, guaranteeing optimality

regardless of initialisation. To accelerate convergence, a lo-

cal optimization algorithm was developed and integrated,

GPU bound computations were implemented, and a princi-

pled way to incorporating side information such as seman-

tic labels was devised. The algorithm outperformed other

local and global methods on challenging synthetic and real

datasets, finding the global optimum reliably.

This approach has several limitations, however. Firstly,

it scales quadratically with the number of mixture compo-

nents, which scales with surface complexity. Secondly, it

is unable to resolve certain degenerate poses, such as when

a wall fills the field-of-view of the camera. In this case,

many camera poses satisfy the 2D information. Thirdly, it

does not use a geometric objective function, which reduces

its interpretability. A robust objective function in the image

space such as intersection-over-union would be preferred,

(a) 3D point-set and ground-truth (gray), GOSMA (black), GOPAC (red)

and RANSAC (blue) camera poses. Object points are highlighted in green.

(b) 3D points projected onto the image using the GOSMA (top), GOPAC

(middle), and RANSAC (bottom) camera poses. For clarity, only object

points are plotted.

Figure 7. Qualitative camera pose results for office 3 of the Stan-

ford 2D-3D-S dataset, showing the pose of the camera when cap-

turing the image and the projection of 3D object points onto it.

Only GOSMA found the correct pose as defined in this section.

Best viewed in color.

although it is not tractable for mixtures on the sphere. Fi-

nally, the quality of its pose estimate depends on how well

the mixtures represent the physical and projected surfaces

in the real scene and image. While they can represent these

surfaces arbitrarily accurately, the number of components

is limited by practical considerations. Anisotropic densities

would be preferred for this reason, however only isotropic

densities, which model surfaces as points with a symmet-

ric field of influence, have a tractable closed form on the

sphere. Hence, further investigation is warranted into align-

ing representations that model surfaces with fewer parame-

ters, such as wireframes or meshes.

11803



References

[1] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-

3D-semantic data for indoor scene understanding. ArXiv e-

prints, Feb. 2017. 7

[2] E. Ask, O. Enqvist, and F. Kahl. Optimal geometric fitting

under the truncated L2-norm. In Proceedings of the 2013

Conference on Computer Vision and Pattern Recognition,

pages 1722–1729. IEEE, June 2013. 2

[3] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and

J. Sivic. Seeing 3D chairs: exemplar part-based 2D-3D

alignment using a large dataset of CAD models. In Proceed-

ings of the 2014 Conference on Computer Vision and Pattern

Recognition, pages 3762–3769. IEEE, June 2014. 1

[4] N. Baka, C. Metz, C. J. Schultz, R.-J. van Geuns, W. J.

Niessen, and T. van Walsum. Oriented Gaussian mix-

ture models for nonrigid 2D/3D coronary artery registration.

IEEE Transactions on Medical Imaging, 33(5):1023–1034,

2014. 1, 2

[5] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel,

S. Gumhold, and C. Rother. DSAC – Differentiable

RANSAC for camera localization. In Proceedings of the

2017 Conference on Computer Vision and Pattern Recogni-

tion, pages 2492–2500, July 2017. 2

[6] T. M. Breuel. Implementation techniques for geometric

branch-and-bound matching methods. Computer Vision and

Image Understanding, 90(3):258–294, June 2003. 2

[7] M. Brown, D. Windridge, and J.-Y. Guillemaut. Globally op-

timal 2D-3D registration from points or lines without corre-

spondences. In Proceedings of the 2015 International Con-

ference on Computer Vision, pages 2111–2119, Dec. 2015.

1, 2

[8] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory

algorithm for bound constrained optimization. SIAM Journal

on Scientific Computing, 16(5):1190–1208, 1995. 6

[9] D. Campbell and L. Petersson. An adaptive data represen-

tation for robust point-set registration and merging. In Pro-

ceedings of the 2015 International Conference on Computer

Vision, pages 4292–4300. IEEE, Dec. 2015. 4

[10] D. Campbell and L. Petersson. GOGMA: Globally-Optimal

Gaussian Mixture Alignment. In Proceedings of the 2016

Conference on Computer Vision and Pattern Recognition,

pages 5685–5694. IEEE, June 2016. 2, 3

[11] D. Campbell, L. Petersson, L. Kneip, and H. Li. Globally-

optimal inlier set maximisation for simultaneous camera

pose and feature correspondence. In Proceedings of the 2017

International Conference on Computer Vision, pages 1–10.

IEEE, Oct. 2017. 2

[12] D. Campbell, L. Petersson, L. Kneip, and H. Li. Globally-

optimal inlier set maximisation for camera pose and corre-

spondence estimation. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, preprint, June 2018. 1, 2, 5, 6,

7

[13] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In Proceedings of the 2018 Eu-

ropean Conference on Computer Vision, Sept. 2018. 4

[14] G. K. Cheung, S. Baker, and T. Kanade. Visual hull align-

ment and refinement across time: A 3D reconstruction algo-

rithm combining shape-from-silhouette with stereo. In Pro-

ceedings of the 2003 Conference on Computer Vision and

Pattern Recognition, volume 2, pages II–375. IEEE, June

2003. 1

[15] H. Chui and A. Rangarajan. A feature registration frame-

work using mixture models. In Proceedings of the 2000

Workshop on Mathematical Methods in Biomedical Image

Analysis, pages 190–197. IEEE, June 2000. 3

[16] P. David, D. Dementhon, R. Duraiswami, and H. Samet.

SoftPOSIT: simultaneous pose and correspondence de-

termination. International Journal of Computer Vision,

59(3):259–284, 2004. 1, 2, 6

[17] L. Devroye. A course in density estimation. Progress in Prob-

ability and Statistics. Birkhäuser Boston Inc., 1987. 2, 4
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