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Abstract

We present a system for learning motion maps of inde-

pendently moving objects from stereo videos. The only an-

notations used in our system are 2D object bounding boxes

which introduce the notion of objects in our system. Un-

like prior learning based approaches which have focused

on predicting dense optical flow fields and/or depth maps

for images, we propose to predict instance specific 3D scene

flow maps and instance masks from which we derive a fac-

tored 3D motion map for each object instance. Our network

takes the 3D geometry of the problem into account which al-

lows it to correlate the input images and distinguish moving

objects from static ones. We present experiments evaluating

the accuracy of our 3D flow vectors, as well as depth maps

and projected 2D optical flow where our jointly learned sys-

tem outperforms earlier approaches trained for each task

independently.

1. Introduction

Consider the crowded road scene in Figure 1, what in-

formation do we as humans use to navigate effectively in

this environment? We need to have an understanding of the

structure of the environment, i.e. how far other elements

in the scene (cars, bikes, people, trees) are from us. More-

over, we also require knowledge of the speed and direction

in which other agents in the environment are moving rela-

tive to us. Such a representation, in conjunction with our

ego-motion, enables us to produce a hypothesis of the envi-

ronment state in the near future and ultimately allows us to

plan our next actions.

In order to gather this information, humans use stereo-

motion, i.e. a stream of images captured with our two eyes

as we move through the environment. In this work, we de-

velop a computational system that aims to produce such a

factored scene representation of 3D structure and motion

from a binocular video stream. Specifically, we propose to

predict the 3D object motion of each moving object (repre-

sented by 3D scene flow) in addition to a detailed depth map

of the scene from a stereo image sequence. This task and

Figure 1. Object motion predicted by our system. Trained with raw

stereo motion sequences in a self-supervised manner, our model

learns to predict object motion together with the scene depth us-

ing sequence of stereo images and object proposals as input. The

speed and moving direction of each moving object is derived from

our scene flow prediction.

its variants have been tackled in supervised settings which

require labels such as dense depth maps and motion anno-

tations that are prohibitively expensive to collect or alter-

natively obtained from synthetic datasets [4, 5, 17, 21, 27].

We present a system that learns to predict these quantities

using only unlabelled stereo videos, thus making it applica-

ble at scale. In addition to producing pixel-wise depth and

scene flow maps, our network is aware of the notion of inde-

pendent objects. This allows us to produce a rich factored

3D representation of the environment where we can mea-

sure velocities of independent objects in addition to their

3D positions and extents in the scene. The only labels used

by our system are those introduced by off-the-shelf object

detectors which are very cheap to acquire at scale.

Prior work in this domain has focused on certain sub-

problems such as learning depth or optical flow prediction

without explicit labels [49, 12, 8]. In Section 5, we demon-

strate that by jointly learning the full problem of depth and

scene flow prediction, we outperform these methods for

each of these sub-problems as well. The key contributions

of our work are as follows: (1) formulating a learning ob-

jective which works with the limited amount of supervi-

sion that can be gathered in a real world scenario (object

bounding box annotations), (2) factoring the scene repre-
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sentation into independently moving objects for predicting

dense depth and 3D scene flow and (3) designing a network

architecture that encodes the underlying 3D structure of the

problem by operating on plane sweep volumes.

The sections in this paper are organized as follows. Sec-

tion 2 discusses prior work on inferring scene structure and

motion. Section 3 presents our technical approach for infer-

ring scene flow from stereo motion - loss functions, object-

centric prediction and priors. In Section 4, we describe our

network architecture designed for geometric matching and

3D reasoning in plane sweep volumes. Section 5 details our

experiments on the KITTI dataset [29] with extensive eval-

uation of our depth and scene flow prediction.

2. Related work

In our work we recover scene geometry and object mo-

tion jointly while traditionally these problems have been

solved independently. The geometry of a scene is recon-

structed by first recovering the relative camera pose be-

tween two or more images taken from different viewpoints

using Structure-from-Motion (SfM) techniques [25, 14].

Subsequently, with dense matching and triangulation a

dense 3D model of the scene is recovered [31]. The under-

lying assumption within the aforementioned methods is that

the scene is static, i.e. does not contain moving objects. The

case for independently moving objects has been studied in a

purely geometric setting [3]. The key difficulties are degen-

erate configurations and outliers in point correspondences

[30]. Therefore additional priors are used - a common ex-

ample is objects moving on a ground plane [50]. Simi-

larly, estimating the shape of non-rigid objects is ambiguous

and hence using additional constraints such as maximizing

the rigidity of the shape [41] or representing the non rigid

shape as linear combination of base shapes [2] have been

proposed. When reconstructing videos captured in uncon-

strained environments additional difficulties such as incom-

plete feature tracks and bleeding into the background have

to be handled [6]. Our proposed approach is trained on real

world data which makes it robust to appearance variations

and suitable priors are directly learned from data.

Vedula et al. [42] introduced the problem of 3D scene

flow estimation, where for each point a 3D motion vector

between time t and t+1 is computed. Different variants are

considered depending on the amount of 3D structure that is

given as input. A common variant is to consider a stream of

binocular image pairs of a moving camera as input [16, 46,

44, 29, 38], and give a depth and 3D scene flow as output.

This is often referred to as the stereo scene flow estimation

problem. Similarly RGBD scene flow considers a stream of

RGBD (color and depth) images as input [18].

Recently learning-based approaches, especially convo-

lutional neural networks have been applied for single view

depth prediction [23, 4], optical flow [5], stereo matching

and scene flow [27]. These learning systems are trained us-

ing ground truth geometry and/or flow data. In practice such

data is only available for synthetic data in a large scale. A

natural way to complement the limited amount of ground

truth data is using weaker supervision. For the aforemen-

tioned problems, loss functions which are purely based on

images and rely on photometric consistency as learning ob-

jective have been proposed [8, 51, 12, 39, 43]. They essen-

tially utilize a classical non-learned system [7] within the

loss function. A few recent works [49, 52, 47, 26, 33] use

such a self-supervised approach to predict optical flow and

depth. To our knowledge our work is the first network that

learns to directly predict object specific 3D scene flow with-

out relying on pixel-wise flow or depth annotations.

Another key difference of our work from prior works

that predict depth and optical flow is that they predict depth

based on a single image. This limits their performance as

demonstrated in our results. Geometric reasoning can be

included into the network architecture as demonstrated in

[21, 20, 19, 48]. We extend these ideas to full 3D scene

flow estimation while also operating at the level of object

instances allowing us to produce rich factored geometry and

motion representation of the scene.

3. Scene Flow from Stereo Motion

Figure 2 illustrates our system. A stream of calibrated

binocular stereo image pairs I = {I l1, I
r
1 , . . . I

l
n, I

r
n} cap-

tured from times 1 to n is given as input. The most common

case we are investigating is n = 2, i.e. two binocular frames

at time t and t + 1. The intrinsic camera calibration K is

assumed to be known. The camera poses of the left camera

at each time instant are denoted by T = {T1, . . . , Tn} and

are precomputed using visual SLAM [10]. For any time

instant t, we also have a set of j 2D bounding box detec-

tions B = {B1, . . . , Bj} on the left image I lt predicted by

an off-the-shelf object detector. The task is to compute the

following quantities for the reference frame - a dense depth

map D, a set of dense 3D flow fields F = {F 1, . . . , F j}
that describe the motion between t and t+1 and a set of in-

stance masks M = {M1, . . . ,M j} for each moving object.

From these instance-level predictions, we can compose the

full scene flow map F by assigning a 3D scene flow vector

to each image pixel in the full image.

We design our system as a convolutional neural network

(CNN) which learns to predict all quantities jointly and train

the network in a self-supervised manner. The supervision

comes from the consistency between synthesized images

and input images at different time instants and from dif-

ferent camera viewpoints. The basic principle is that given

the predictions of the scene flow F and depth D in a frame

Iref , we can use the precomputed ego-motion to warp an-

other image I into the reference view. This process gener-

ates a synthesized image which we call Î . We then define
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Figure 2. Our pipeline for learning depth and object motion. Using a stereo motion sequence as input, our system predicts a depth map (c),

instance mask (d) and 3D scene flow (e) for each independent moving object in a single forward pass. Using the instance mask and scene

flow, we compose a full scene flow map (g). For each region of interest (RoI), we synthesize a patch (h) based on the RoI camera intrinsics,

RoI depth (f), 3D scene flow (e) and instance mask (d) as explained in Section 3.2. We use the synthesized patch (h) and original patch

(i) from the input image to enforce consistency losses to supervise the RoI prediction. We use stereo reprojection to supervise the depth

prediction. Finally, we use the full map scene flow and depth to synthesize a image (j) for computing the consistency loss.

our learning objective as the similarity between the captured

images Iref and the synthesized images Î . The above princi-

ple is then applied to each region of interest (RoI) indepen-

dently followed by an assembly procedure for full image

scene flow. This allows us to produce a factored representa-

tion of the environment into static and dynamic objects with

high-quality estimates of instance masks, depth and motion.

3.1. Disentangling Camera and Object Motion

The motion in a dynamic scene captured by a moving

camera can be decomposed into two elements - the motion

of static background resulting from the camera motion and

the motion of independently moving objects in the scene.

A common way to represent the scene motion is 2D optical

flow. However, this representation confounds the camera

and object motion. We model the motion of the static back-

ground using the 3D structure represented as a depth map

and the camera motion. Dynamic objects are modelled with

full 3D scene flow. To this end, we utilize 2D object detec-

tions in the form of bounding boxes and reason about the

3D motion of each object independently.

3.2. Supervising Scene Flow by View Synthesis

The key supervision for the scene flow prediction comes

from the photometric consistency of multiple views of the

same scene. The process is illustrated in Figure 3. Our

network predicts a depth map D and a scene flow map F

for the reference view Iref . Using a different image I we

can use the predictions to warp I into the reference view

and generate a synthesized image Î . We then minimize the

photometric difference between Iref and Î given as

Lphoto = α
1− SSIM(Iref , Î)

2
+ (1−α)‖Iref − Î‖1 (1)

where SSIM denotes the structural similarity index [45] and

α denotes a weighting parameter.

We denote the homogeneous coordinates of pixel p as

h(p). A pixel p from the reference frame is transformed to

a pixel p̂ within a frame I

h(p̂) = KTrel(D(p)K−1h(p) + F (p)) (2)

with Trel the relative transformation from reference frame

to I . This allows us to do a reverse warp using bilinear

interpolation, keeping the formulation differentiable.

Using the photometric consistency alone is insufficient

for supervising the 3D flow prediction. The reason is that

along a viewing ray multiple photo consistent solutions are

possible, as shown in Figure 3. Therefore we use an ad-

ditional geometric loss leveraging depth consistency which

further constrains the flow. The idea is that the flow in z-

direction, sometimes also called disparity difference has to
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Figure 3. Illustration of our image reprojection process. A pixel p

from image It is unprojected using its predicted depth and subse-

quently transformed to the frame of It+1 using the predicted flow

F and the camera transform Trel. The photometric consistency

loss is derived from the photometric difference between It and

Ît+1→t where Ît+1→t is created by warping It+1 into It. The ge-

ometric consistency loss is computed by comparing the difference

between depth maps warped in the above manner and having them

consistent with the z-dimension of the predicted flow F . Note that

using only photometric consistency would not resolve the ambigu-

ity in the z direction of the flow.

agree with the depth maps predicted for the two time in-

stants t and t + 1. In order to utilize this loss function a

depth map for both time instants needs to be predicted and

the warping is applied to the depth map.

Analogous to the photometric consistency, the geomet-

ric consistency is defined by comparing the predicted depth

values of the warped image and reference image,

Lgeo =
∥

∥

∥
Dref − D̂ + Fz

∥

∥

∥

1
(3)

where Dref refers to the predicted depth at time t and D̂ is

the predicted depth at time t+ 1 warped back to time t, Fz

is the z-dimension of the predicted sceneflow.

3.3. Object­centric Scene Flow Prediction

Image based consistency losses are typically applied by

warping the whole image and then computing the consis-

tency over the whole image - examples for optical flow pre-

diction can be found in [49, 52]. For 3D scene flow this is

not an ideal choice due to the sparsity of non-zero flow vec-

tors. Compared to the static background, moving objects

constitute only a small fraction of the image pixels. This

unbalanced moving/static pixel distribution makes naively

learning full image flow hard and ends up in zero flow pre-

dictions even on moving objects. To make the network fo-

cus on predicting the correct flow on moving objects and

provide a more balanced supervision, we therefore use ob-

ject bounding box detections obtained from a state-of-the-

art 2D object detection system [24]. It is important to note

that the object detection does not actually tell us if the ob-

ject is moving or not. This information is learned by our

network using our view synthesis based loss functions.

Full-image Camera RoI Camera

Figure 4. Illustration of image rescale and crop process and the

change in the camera intrinsics.

Formally each flow prediction happens in a region of in-

terest (RoI) within the original image, with size and loca-

tion B =
[

x, y, w, h
]

. In our system the per-object flow

map is predicted at a fixed size wr × hr using a RCNN

based architecture as detailed in Section 4. For our view

synthesis based loss functions we need to transform the im-

age intrinsics K =

[

fx 0 cx
0 fy cy
0 0 1

]

into RoI specific versions.

The change only affects the intrinsic camera parameters and

hence we need to compute a new intrinsic matrix Kj for

each RoI j. The transformation ends up to be a displace-

ment of the principal point and scaling of the focal length -

Kj =

[

fxwr/w 0 (cx−x)wr/w
0 fyhr/h (cy−y)hr/h
0 0 1

]

.

Note that we do not need bounding box associations be-

tween different viewpoints or time instants. We only com-

pute detections for frame I lt and use a slightly expanded area

as our RoI in frames that we warp to our reference frame for

computing consistency losses in Eq. 1 and 3.

3.4. RoI Assembly for Full Frame Scene Flow

We assemble a complete scene flow from the object spe-

cific maps F j . However, overlapping RoIs and certain RoIs

may even contain multiple moving objects. Therefore we

predict an object mask M j for each RoI j in addition to F j .

The full 3D scene flow map F is computed as:

F =
∑

j M
j ⊙ F j (4)

We then use the full image flow map F with Eq. 1 and Eq. 3

for full image photometric and geometric losses. Note that

the assembly procedure is fully differentiable and we are

able to train instance masks M = {M1, . . . ,M j} without

any explicit mask supervision. We later use these instance

masks (with flow) to identify moving objects (cf.Figure 6).

3.5. Full Learning Objective

We first state our full image synthesis based loss and then

explain further priors we impose in our training loss. Our

image synthesis loss function is based on four images I lt ,

Irt , I lt+1 and Irt+1 and can be split into three parts

Ltot = Llr + LRoI + Lt (5)
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Figure 5. Network architecture. Our system predicts depth and

instance-level 3D scene flow in a single forward pass. With ex-

tracted image features, we unproject features into a discretized

view frustum grid, and then use a 3D CNN Φ3D and finally per-

form prediction using depth ΦD and scene flow ΦSF decoders.

Where Llr is the loss for left-right consistency, LRoI is the

RoI based loss function and Lt is the full image based loss

function on flow and depth over time. To state how the three

parts are defined we introduce the notation s → t to indicate

the warping from source s to target t.

Llr = Lphoto(I
l
t , Î

r→l
t ) + Lphoto(I

l
t+1, Î

r→l
t+1 ) (6)

LRoI =
∑

j

Lphoto(I
l,j
t , Î

l,j
t+1→t)+Lgeo(D

l,j
t , D̂

l,j
t+1→t, F

lj
t )

Lt = Lphoto(I
l
t , Î

l
t+1→t) + Lgeo(D

l
t, D̂

l
t+1→t, F

l
t )

Beside the loss detailed above, we use additional priors

such as smoothness for depth and flow while respecting dis-

continuties at boundaries [12]. Optionally, we use the clas-

sical stereo system ELAS [9] to compute an incomplete dis-

parity map and use it for weak supervision with an L1 loss.

4. Network Architecture

Figure 5 illustrates our network for scene flow, mask and

depth prediction. We first talk about the 3D grid represen-

tation used to integrate the information from all images and

then describe each component of the network.

4.1. 3D Grid Representation

In order to enable the network to reason about the

scene geometry in 3D, we unproject the 2D features into

a 3D grid [20]. A common discretization is to split a 3D

 
 

 

cuboid volume of interest into

equally sized voxels. This represen-

tation is used for 3D object shape re-

construction [40, 20]. However, it is

not suitable for outdoor scenes with

a large depth range, where we want

to be more certain about foreground objects’ geometry and

motion, and allow increasing uncertainty with increasing

depth in the 3D world. This lends to using the well known

frustum shaped grid called matching cost volume or plane

sweep volume in classical (multi-view) stereo. In learning

based stereo it has recently been used in [48]. The grid is

discretized in image space plus an additional inverse depth

(”nearness”) coordinate, as shown in above image.

4.2. Network Components

Image Encoder. In the first stage the images are pro-

cessed using a 2D CNN ΦI , which outputs for each image

a 2D feature map with c feature channels. The weights for

this CNN are shared for all input frames - typically stereo

frames at two time instants {I lt , I
r
t } and {I lt+1, I

r
t+1}.

Unprojection. Using the 3D grid defined in Section 4.1,

we lift the 2D information into the 3D space. We use the two

left camera images as references images {I lt , I
l
t+1} and gen-

erate these 3D grids in both their camera coordinates. Each

grid is populated with image features from all 4 images by

projecting the grid cell centers into the respective images

using the corresponding projection matrices [20]. We use

the left images as reference frames as we predict disparity

maps and scene flow from I lt to I lt+1.

Grid Pooling. The grids from the previous stage contain

image features from all 4 frames. In order to combine

the information from multiple frames we use two strate-

gies. We use element-wise max pooling for features from

left and right pairs and concatenate the features for differ-

ent time instants in each grid cell. The motivation is that

for stereo frames, there is no object motion and hence the

feature should align well after unprojection. Thus a simple

strategy of max pooling works well. Whereas for frames at

different time instants, we expect motion in the scene and

thus there would be misalignment where objects move. The

output from this stage are two grids Gl
t and Gl

t+1.

3D Grid Reasoning. The next module Φ3D processes the

above two grids independently and generates output grids

of the same resolution G̃l
t and G̃l

t+1. This module is im-

plemented as a 3D encoder-decoder CNN module with skip

connections following the U-Net architecture [35].

Output Modules. The final output is based on two CNN

modules - one producing full frame depth for each reference

image and one producing scene flow for each RoI in frame

It. For each image I li , with i ∈ {t, t + 1} we first collapse

G̃l
i (a 4D tensor) into a 3D tensor Cl

i by concatenating fea-

tures in the depth dimension. As the grid is aligned with the

reference image’s camera, this corresponds to accumulat-

ing the features from various disparity planes at every pixel

into a single feature. This tensor is further processed using

φD to produce the full frame disparity map. The 3D flow

prediction follows an RCNN [11] based architecture where

given RoIs, we crop out corresponding regions Cl
t using an

RoI align layer [15] and pass them to φSF which predict

the scene flow and instance mask for each RoI. We also use

skip connections from the image encoder in φD and φSF to
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(a) Ground-truth (b) Prediction

Figure 6. Qualitative results on our instance-level moving object

mask prediction. Instances are color-encoded.

produce sharper predictions. The full frame scene flow map

is created from the RoIs by pasting back as described in

Section 3.4. The final outputs from our system are disparity

maps Dl
t and Dl

t+1 and a forward scene flow map F l
t .

5. Experiments

We evaluate our instance-level 3d object motion and

mask prediction on the KITTI 2015 sceneflow dataset [29].

This is the only available dataset that contains real images

together with ground-truth scene flow annotations. Follow-

ing existing work [28, 49, 52, 12], we adopt the official 200

training images as test set. The official testing set is adopted

for the final finetuning process. This is possible as we do not

require the ground truth for training. All the related images

in the 28 scenes covered by test data are excluded for train-

ing. Figure 6 and Figure 7 show some qualitative results.

Training details Our system is implemented using Ten-

sorFlow [1]. All models are optimized end-to-end using

Adam [22] with a learning rate of 1 × 10−4, decay rate of

0.5 and decay steps of 100000. During training, we ran-

domly crop the input images in the horizontal direction to

obtain patches with the size of 384×640 as input to the net-

work. We set the output size of each RoI as 128 × 128, we

set the number of channels in the 3D grid to 64. The batch

size is set as 1 to deal with flexible RoI number for training

patch. For the image encoder, we finetune the first 4 con-

volutional layers from Inception ResNet V2 [37] pretrained

on ImageNet. The rest of network is trained from scratch.

We first train the depth prediction for 80K iterations on the

KITTI raw dataset and then jointly train the depth and scene

flow prediction for another 100k iterations. We finetune the

model on the official testing set for another 120k iterations

and use official 200 training images for comparison with

other methods. The whole training process takes about 30

hours using a single NVIDIA Titan-X GPU.

5.1. Moving Object Speed and Direction Evaluation

Our method predicts 3D sceneflow for each indepen-

dently moving object. For each test image pair, ground-

truth annotation of the disparity image at time t, the dispar-

ity image at time t+ 1 warped into the first image’s coordi-

nate frame and the 2D optical flow from time t to time t+1
are provided. Using these GT annotations together with the

estimated camera egomotion obtained from Libviso2 [10],

we compute the 3D scene flow in the format of (x, y, z) for

each image. To provide an instance-level analysis, we use

the bbox detections [24], and find the dominant 3d flow for

each object. As a result, we represent the motion direction

and speed for each instance using a single 3d flow vector in

the ground truth and all algorithms. We evaluate with the

following metrics: the mean average error of the euclidean

length of the 3d flow (speed), the mean average error of the

angle of the 3d flow (motion direction) from the moving

object pixels. For robustness to outliers we report the per-

centage of the mean average error below different thresh-

olds. For comparison with other self-supervised flow and

depth learning methods we need to reconstruct scene flow

from depth and optical flow prediction. Geonet provides

depthmaps with unknown scale factor and unflow does not

estimate depth, we therefore use the depth results from Go-

dard et al. [12]. As shown in Table 1, the average instance-

level motion direction error of our method is less than 23◦,

about 15% smaller than the result obtained from the best

self-supervised optical flow combined with the best self-

supervised depth algorithm. In our prediction, about 75%
of moving instances have an angular error below 15◦.

5.2. Moving Object Instance Mask Evaluation

Our method can produce instance-level moving ob-

ject segmentation from object bounding boxes and stereo

videos. This is achieved without any instance mask ground

truth supervision. We evaluate our predictions on the KITTI

sceneflow 2015 training split. The dataset provides an “Ob-

ject map” which contains the foreground moving cars in

each image. We use this motion mask as ground truth in

our segmentation evaluation. Figure 6 shows some qualita-

tive result of our moving object mask prediction. As shown

in Table 2, we evaluate our mask prediction using the In-

tersection Over Union (IoU) metric. Specifically, We com-

pute the mean image-level IoU which considers both mov-

ing object and static background and the mean instance-

level IoU for only moving objects. Our method achieves

highest IoU for mask prediction. As a baseline comparison,

we use mask generated from SSD [24] 2D bounding box

detections. Those masks contain both moving and static

cars, thus it can only achieve an mean IoU of 0.34 for the

full image mask. Even with the GT object movement in-

formation, it does not have tight object boundary and thus

can only achieve a mean IoU of 0.655. This illustrates how
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Method AMAD↓ AMAE↓ AE≤15◦↑ AE≤30◦↑ SMAD↓ SMAE↓ SE≤0.15↑ SE≤0.3↑

GeoNet [49] + Godard [12] 6.98◦ 28.82◦ 62.93 77.16 0.256 0.503 0.351 0.554

UnflowC [28] + Godard [12] 5.96◦ 26.94◦ 64.87 77.58 0.240 0.471 36.21 58.62

Ours (no RoI consistency loss) 6.03◦ 29.34◦ 67.59 75.94 0.207 0.358 37.46 58.93

Our 3D scene flow 5.19◦ 22.92◦ 74.78 78.87 0.193 0.334 40.95 62.72

Table 1. Comparison of instance-level object motion in terms of motion direction(A) and speed (S). MAE denotes the mean average error,

MAD denotes the median absolute deviation. The lower the better. We also report the percentage of the angle/speed error below different

thresholds, where AE denotes the absolute angular error, SE denotes the absolute speed error. The higher the better.

Figure 7. Qualitative results of our method. From left to right, reference image, depth, optical flow and instance-level moving object mask.

Method Image IoU Instance IoU

Zhou et al. [51] 0.380 -

Bounding box detections [24] 0.365 0.655

Our mask prediction 0.624 0.842

Table 2. Moving object mask evaluation. We report IoU number

in both the full image and the moving instance bounding box.

our method effectively learns to determine which object is

moving and identify an accurate instance segmentation for

moving cars. We improve the result on both image-level and

instance-level IoU. We also compare with Zhou et al. [51]

which generates the foreground mask for all moving objects

and occlusion region in the image. Their methods do not

provide instance-level information, hence we cannot obtain

the instance-level IoU numbers.

5.3. Optical Flow Evaluation

An additional evaluation is to project our 3D flow pre-

dictions back to 2D to obtain the optical flow. As shown

in Table 5, our method achieves the lowest EPE in both

non-occluded regions and overall regions compared to other

self-supervised methods. As a baseline comparison, we

train a model without RoI consistency loss, which shows

a decrease in performance. Optionally, we add an optical

flow refinement sub-network, to further improve our opti-

cal flow result. The subnetwork is a unet which takes the

warped image and the raw optical flow, together with orig-
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Method D1 D2 FL ALL

bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

EPC [47] 23.62 27.38 26.81 18.75 70.89 60.97 25.34 28.00 25.74

EPC++ [26] (mono) 30.67 34.38 32.73 18.36 84.64 65.63 17.57 27.30 19.78 >30.67 >84.64 >65.63

EPC++ [26] (stereo) 22.76 26.63 23.84 16.37 70.39 60.32 17.58 26.89 19.64 >22.76 >70.39 >60.32

Godard et al. [12] 9.43 18.74 10.86 - - - - - - - - -

GeoNet [49] - - - - - - 43.54 48.24 44.26 - - -

Godard [12] + GeoNet flow 9.43 18.74 10.86 9.10 25.95 25.42 43.54 48.24 44.26 48.22 55.75 49.38

Ours 6.27 15.95 7.76 8.46 23.60 10.92 14.36 51.25 20.16 16.58 53.20 22.64

Table 3. Results on KITTI 2015 scene flow training split. All number shows the percentage of correctly predicted pixels. D1 denotes the

disparity image at time t, D2 denotes the disparity image at time t+1 warped into the first frame, FL denotes the 2D optical flow between

the two time instances, fg denotes the foreground, and bg denotes the background.

Method Binocular Abs Rel Sq Rel RMSE

Godard et al. [12] no 0.124 1.388 6.125

LIBELAS [9] yes 0.186 2.192 6.307

Godard et al. [12] yes 0.068 0.835 4.392

Ours yes 0.065 0.699 3.896

Table 4. Results on the KITTI 2015 stereo training set of 200 dis-

parity images. All learning-based methods are trained on KITTI

raw dataset excluding the testing image sequences. The top half

shows method which uses monocular image as input, the bottom

half shows methods which use binocular images as input.

Method Dataset Non-occluded All Regions

EpicFlow [34] - 4.45 9.57

FlowNetS [5] C+ST 8.12 14.19

FlowNet2 [17] C+T 4.93 10.06

GeoNet [49] K 8.05 10.81

DF-Net [52] K+SY - 8.98

UnFlowC [28] K+SY - 8.80

Ranjan et al. [33] K - 7.76

Ours K 4.97 5.39

Ours (refined) K 4.19 5.13

Table 5. Results on KITTI 2015 flow training set over non-

occluded regions and overall regions. We use the average end-

point error (EPE) metric to do the comparison. The classical

method EpicFlow takes 16s per frame at runtime; The FlowNetS

and FlowNet2 are learned with GT flow supervision. SY denotes

SYNTHIA dataset [36], ST denotes Sintel dataset, C denotes Fly-

ingChairs dataset, T denotes FlyingThings3D dataset. Numbers

from other methods are directly taken from the paper.

inal image frames as input. This enables the network to

further improve the optical flow prediction in a similar way

as the architecture proposed in [32].

5.4. Depth Evaluation

To evaluate our depth prediction we use the KITTI 2015

stereo training set of 200 disparity images as test data and

compare to other self-supervised learning and classical al-

gorithms in Table. 4. We compare to algorithms that take

binocular stereo as input at test time. Our method achieves

a higher accuracy as we input two consecutive binocular

frames and our network also manages to match over time.

5.5. Scene Flow Evaluation

We compare other unsupervised method in the sceneflow

subset by directly using their released results or running

their released code. For this benchmark, a pixel is consid-

ered to be correctly estimated if the disparity or flow end-

point error is ≤ 3 pixels or ≤ 5%. For scene flow this

criterion needs to be fulfilled for two disparity maps and the

flow map. As shown in Table 3, our method has an overall

better accuracy than earlier self-supervised methods. Com-

pared to classical approaches which optimize at test time

our accuracy is still lower. However, test time optimization

is in general prohibitively slow for real-time systems.

6. Conclusion

We presented a system to predict depth and object scene

flow. Our network is trained using raw stereo sequences

with off-the-shelf object detectors using image consistency

as key learning objective. Our formulation is general and

can be applied in any setting where a dynamic scene is

imaged by multiple cameras - e.g. a multi-view capture

system [13]. In future work, we would like to extend our

system to integrate longer range temporal information. An

emergent notion of objects to remove the dependence on

pretrained object detectors is a further research direction.

We also intend to explore general scenarios such as ca-

sual video captures using dual camera consumer devices

and leverage large scale training for a truly general purpose

depth and scene flow prediction system.
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