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Abstract

Domain adaptation is critical for learning in new and un-

seen environments. With domain adversarial training, deep

networks can learn disentangled and transferable features

that effectively diminish the dataset shift between the source

and target domains for knowledge transfer. In the era of

Big Data, large-scale labeled datasets are readily available,

stimulating the interest in partial domain adaptation (PDA),

which transfers a recognizer from a large labeled domain

to a small unlabeled domain. It extends standard domain

adaptation to the scenario where target labels are only a

subset of source labels. Under the condition that target la-

bels are unknown, the key challenges of PDA are how to

transfer relevant examples in the shared classes to promote

positive transfer and how to ignore irrelevant ones in the

source domain to mitigate negative transfer. In this work,

we propose a unified approach to PDA, Example Transfer

Network (ETN), which jointly learns domain-invariant rep-

resentations across domains and a progressive weighting

scheme to quantify the transferability of source examples. A

thorough evaluation on several benchmark datasets shows

that ETN consistently achieves state-of-the-art results for

various partial domain adaptation tasks.

1. Introduction

Deep neural networks have significantly advanced the

state-of-the-art performance for various machine learning

problems [13, 15] and applications [11, 20, 30]. A common

prerequisite of deep neural networks is the rich labeled data

to train a high-capacity model to have sufficient generaliza-

tion power. Such rich supervision is often prohibitive in

real-world applications due to the huge cost of data annota-

tion. Thus, to reduce the labeling cost, there is a strong need

to develop versatile algorithms that can leverage rich labeled

∗Equal contribution, in alphabetic order

+

+

+
+

+

+

+
+

+

+
++

+

+

++
+

++

+

+

+

+
+

+

+

+
+

+
+

+
+

+

+

++
+ +

+

ETN transfer

+

+

+
+

+

+

+
+

+

+
+

+

+
+

+

+

negative transfer

+ source target

Figure 1. Partial domain adaptation (PDA) is a generalized setting

of domain adaptation where the source label space subsumes the

target label space. The technical challenge of PDA lies in an intrin-

sic negative transfer caused by the outlier source classes (‘+’ in this

case), which cannot be forcefully transferred to the target domain.

The proposed Example Transfer Network (ETN) designs a weight-

ing scheme to quantify the transferability of source examples and

only transfer source examples relevant to the target domain (purple

circle and orange triangle), eliminating outlier source examples (in

green shadow). Source and target domains are denoted by red and

blue circles respectively. Best viewed in color.

data from a related source domain. However, this domain

adaptation paradigm is hindered by the dataset shift under-

lying different domains, which forms a major bottleneck to

adapting the category models to novel target tasks [29, 36].
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A major line of the existing domain adaptation meth-

ods bridge different domains by learning domain-invariant

feature representations in the absence of target labels, i.e.,

unsupervised domain adaptation. Existing methods assume

that the source and target domains share the same set of

class labels [32, 12], which is crucial for directly applying

the source-trained classifier to the target domain. Recent

studies in deep learning reveal that deep networks can dis-

entangle explanatory factors of variations behind domains

[8, 42], thus learning more transferable features to improve

domain adaptation significantly. These deep domain adapta-

tion methods typically embed distribution matching modules,

including moment matching [38, 21, 22, 23] and adversar-

ial training [10, 39, 37, 24, 17], into deep architectures for

end-to-end learning of transferable representations.

Although existing methods can reduce the feature-level

domain shift, they assume label spaces across domains are

identical. In real-world applications, it is often formidable to

find a relevant dataset with the label space identical to the tar-

get dataset of interest which is often unlabeled. A more prac-

tical scenario is Partial Domain Adaptation (PDA) [5, 43, 6],

which assumes that the source label space is a superspace

of the target label space, relaxing the constraint of identi-

cal label spaces. PDA enables knowledge transfer from a

big domain of many labels to a small domain of few labels.

With the emergence of Big Data, large-scale labeled datasets

such as ImageNet-1K [31] and Google Open Images [19]

are readily accessible to empower data-driven artificial intel-

ligence. These repositories are almost universal to subsume

categories of the target domain, making PDA feasible to

many applications. PDA can also work in the regime where

target data are in limited categories. For example, functions

of protein are limited. A large database of known protein

structures can be collected, which includes all functions. For

a new species, proteins have different structures, but their

functions are contained in the database. Predicting protein

functions for new species falls into the PDA problem.

As a generalization to standard domain adaptation, partial

domain adaptation is more challenging: the target labels

are unknown at training, and there must be many “outlier”

source classes that are useless for the target task. This tech-

nical challenge is intuitively illustrated in Figure 1, where

the target classes (like purple ‘◦’ and orange ‘▽’) will be

forcefully aligned to the outlier source classes (like ‘+’) by

existing domain adaptation methods. As a result, negative

transfer will happen because the learner migrates harmful

knowledge from the source domain to the target domain.

Negative transfer is the principal obstacle to the application

of domain adaptation techniques [29].

Thus, matching the whole source and target domains as

previous methods [21, 10] is not a safe solution to the PDA

problem. We need to develop algorithms versatile enough to

transfer useful examples from the many-class dataset (source

domain) to the few-class dataset (target domain) while robust

enough to irrelevant or outlier examples. Three approaches

to partial domain adaptation [5, 43, 6] address the PDA by

weighing each data point in the domain-adversarial networks,

where a domain discriminator is learned to distinguish the

source and target. While decreasing the impact of irrele-

vant examples on domain alignment, they do not undo the

negative effect of the outlier classes on the source classifier.

Moreover, they evaluate the transferability of source samples

without considering the underlying discriminative and multi-

modal structures. As a result, it is still vulnerable that they

may align the features of outlier source classes and target

classes, giving way to negative transfer.

Towards a safe approach to partial domain adaptation,

we present the Example Transfer Network (ETN), which

improves the previous work [5, 43, 6] by learning to transfer

useful examples. ETN automatically evaluates the transfer-

ability of source examples with a transferability quantifier

based on their similarities to the target domain, which is used

to weigh their contributions to both the source classifier and

the domain discriminator. In particular, ETN improves the

weight quality over previous work [43] by further revealing

the discriminative structure to the transferability quantifier.

By this means, irrelevant source examples can be better de-

tected and filtered out. Another key improvement of ETN

over the previous methods is the capability to simultaneously

confine the source classifier and the domain-adversarial net-

work within the auto-discovered shared label space, thus

promoting the positive transfer of relevant examples and

mitigating negative transfer of irrelevant examples. Compre-

hensive experiments demonstrate that our model achieves

state-of-the-art results on several benchmark datasets, includ-

ing Office-31, Office-Home, ImageNet-1K, and Caltech-256.

2. Related Work

Domain Adaptation Domain adaptation, a special sce-

nario of transfer learning [29], bridges domains of differ-

ent distributions to mitigate the burden of annotating target

data for machine learning [28, 9, 44, 41], computer vision

[32, 12, 16] and natural language processing [7]. The main

technical difficulty of domain adaptation is to formally re-

duce the distribution discrepancy across different domains.

Deep networks can learn representations that suppress ex-

planatory factors of variations behind data [3] and manifest

invariant factors across different populations. These invariant

factors enable knowledge transfer across relevant domains

[42]. Deep networks have been extensively explored for do-

main adaptation [27, 16], yielding significant performance

gains against shallow domain adaptation methods.

While deep representations can disentangle complex data

distributions, recent advances show that they can only reduce,

but not remove, the cross-domain discrepancy [38]. Thus

deep learning alone cannot bound the generalization risk for
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the target task [25, 1]. Recent works bridge deep learning

and domain adaptation [38, 21, 10, 39, 22]. They extend

deep networks to domain adaptation by adding adaptation

layers through which high-order statistics of distributions

are explicitly matched [38, 21, 22], or by adding a domain

discriminator to distinguish features of the source and tar-

get domains, while the features are learned adversarially to

deceive the discriminator in a minimax game [10, 39].

Partial Domain Adaptation While the standard domain

adaptation advances rapidly, it still needs the vanilla assump-

tion that the source and target domains share the same label

space. This assumption does not hold in partial domain

adaptation (PDA), which transfers models from many-class

domains to few-class domains. There are three valuable

efforts towards the PDA problem. Selective Adversarial

Network (SAN) [5] adopts multiple adversarial networks

with a weighting mechanism to select out source examples

in the outlier classes. Partial Adversarial Domain Adapta-

tion [6] improves SAN by employing only one adversarial

network and further adding the class-level weight to the

source classifier. Importance Weighted Adversarial Nets

(IWAN) [43] uses the Sigmoid output of an auxiliary domain

classifier (not involved in domain-adversarial training) to

derive the probability of a source example belonging to the

target domain, which is used to weigh source examples in the

domain-adversarial network. These pioneering approaches

achieve dramatical performance gains over standard methods

in partial domain adaptation tasks.

These efforts mitigate negative transfer caused by outlier

source classes and promote positive transfer among shared

classes. However, as outlier classes are only selected out for

the domain discriminators, the source classifier is still trained

with all classes [5], whose performance for shared classes

may be distracted by outlier classes. Further, the domain

discriminator of IWAN [43] for obtaining the importance

weights distinguishes the source and target domains only

based on the feature representations, without exploiting the

discriminative information in the source domain. This will re-

sult in non-discriminative importance weights to distinguish

shared classes from outlier classes. This paper proposes an

Example Transfer Network (ETN) that down-weights the

irrelevant examples of outlier classes further on the source

classifier and adopts a discriminative domain discriminator

to quantify the example transferability.

Open-Set Domain Adaptation On par with domain adap-

tation, research has been dedicated to open set recognition,

with the goal to reject outliers while correctly recognizing

inliers during testing. Open Set SVM [18] trains a proba-

bilistic SVM and rejects unknown samples by a threshold.

Open Set Neural Network [2] generalizes deep neural net-

works to open set recognition by introducing an OpenMax

layer, which estimates the probability of an input from an

unknown class and rejects the unknown point by a threshold.

Open Set Domain Adaptation (OSDA) [4, 33] tackles the

setting when the training and testing data are from different

distributions and label spaces. OSDA methods often assume

which classes are shared by the source and target domains

are known at training. Unlike OSDA, in our scenario, target

classes are entirely unknown at training. It is interesting to

extend our work to the open set scenario under the generic

assumption that all target classes are unknown.

3. Example Transfer Network

The scenario of partial domain adaptation (PDA) [5] con-

stitutes a source domain Ds = {(x
s
i ,y

s
i )}

ns

i=1 of ns labeled

examples associated with |Cs| classes and a target domain

Dt = {xt
j}

nt

j=1 of nt unlabeled examples drawn from |Ct|
classes. Note that in PDA the source domain label space

Cs is a superspace of the target domain label space Ct i.e.

Cs ⊃ Ct. The source and target domains are drawn from dif-

ferent probability distributions p and q respectively. Besides

p 6= q as in standard domain adaptation, we further have

pCt
6= q in partial domain adaptation, where pCt

denotes

the distribution of the source domain data in label space Ct.
The goal of PDA is to learn a deep network that enables

end-to-end training of a transferable feature extractor Gf

and an adaptive classifier Gy to sufficiently close the distri-

bution discrepancy across domains and bound the target risk

Pr(x,y)∼q [Gy (Gf (x)) 6= y].
We incur deteriorated performance when directly apply-

ing the source classifier Gy trained with standard domain

adaptation methods to the target domain. In partial domain

adaptation, it is difficult to identify which part of the source

label space Cs is shared with the target label space Ct be-

cause the target domain is fully unlabeled and Ct is unknown

at the training stage. Under this condition, most of existing

deep domain adaptation methods [21, 10, 39, 22] are prone

to negative transfer, a degenerated case where the classi-

fier with adaptation performs even worse than the classifier

without adaptation. The negative transfer happens since they

assume that the source and target domains have identical la-

bel space and match whole distributions p and q even though

pCs\Ct
and q are non-overlapping and cannot be matched in

principle. Thus, decreasing the negative effect of the source

examples in outlier label space Cs\Ct is the key to mitigating

negative transfer in partial domain adaptation. Besides, we

also need to reduce the distribution shift across pCt
and q

to enhance positive transfer in the shared label space Ct as

before. Note that the irrelevant source examples may come

from both outlier classes and shared classes, thus requiring a

versatile algorithm to identify them.

3.1. Transferability Weighting Framework

The key technical problem of domain adaptation is to

reduce the distribution shift between the source and target

domains. Domain adversarial networks [10, 39] tackle this
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Figure 2. Example Transfer Network (ETN) for partial domain adaptation, where Gf is the feature extractor, Gy is the source classifier,

Gd is domain discriminator (involved in adversarial training) for domain alignment; G̃d is the auxiliary domain discriminator (uninvolved

in adversarial training) that quantifies the transferability w of each source example, and G̃y is the auxiliary label predictor encoding the

discriminative information to the auxiliary domain discriminator G̃d. Modules in blue are newly designed in this paper. Best viewed in color.

problem by learning transferable features in a two-player

minimax game: the first player is a domain discriminator

Gd trained to distinguish the feature representations of the

source domain from the target domain, and the second player

is a feature extractor Gf trained simultaneously to deceive

the domain discriminator.

Specifically, the domain-invariant features f are learned

in a minimax optimization procedure: the parameters θf of

the feature extractor Gf are trained by maximizing the loss

of domain discriminator Gd, while the parameters θd of the

domain discriminator Gd are trained by minimizing the loss

of the domain discriminator Gd. Note that our goal is to

learn a source classifier that transfers to the target, hence the

loss of the source classifier Gy is also minimized. This leads

to the optimization problem proposed in [10]:

E (θf , θy, θd) =
1

ns

∑

xi∈Ds

Ly (Gy (Gf (xi)) ,yi)

−
1

na

∑

xi∈Da

Ld (Gd (Gf (xi)) ,di),
(1)

where Da = Ds ∪ Dt is the union of the source and target

domains and na = |Da|, di is the domain label, Ly and Ld

are the cross-entropy loss functions.

While domain adversarial networks yield reliable results

for standard domain adaptation, they will incur performance

degeneration on the partial domain adaptation where Cs ⊃ Ct.
This degeneration is caused by the outlier classes Cs\Ct in

the source domain, which are undesirably matched to the

target classes Ct. Due to the domain gap, even the source

examples in the shared label space Dt may not transfer well

to the target domain. As a consequence, we need to design a

new framework for partial domain adaptation.

This paper presents a new transferability weighting frame-

work to address the technical difficulties of partial domain

adaptation. Denote by w(xs
i ) the weight of each source

example xs
i , which quantifies the example’s transferability.

Then for a source example with a larger weight, we should

increase its contribution to the final model to enhance posi-

tive transfer; otherwise, we should decrease its contribution

to mitigating negative transfer. IWAN [43], a previous work

for partial domain adaptation, reweighs the source examples

in the loss of the domain discriminator Gd. We further put

the weights in the loss of the source classifier Gy. This

significantly enhances our ability to diminish the irrelevant

source examples that deteriorate our final model.

Furthermore, the unknownness of target labels can make

the identification of shared classes difficult, making partial

domain adaptation more difficult. We thus believe that the ex-

ploitation of unlabeled target examples by semi-supervised

learning is also indispensable. We make use of the entropy

minimization principle [14]. Let ŷt
j = Gy(Gf (x

t
j)) ∈

R
|Cs|, the entropy loss to quantify the uncertainty of a

target example’s predicted label is H
(

Gy

(

Gf

(

xt
j

)))

=

−
∑|Cs|

c=1 ŷ
t
j,c log ŷ

t
j,c.

The transferability weighting framework is shown in Fig-

ure 2. By weighting the losses of the source classifier Gy

and the domain discriminator Gd using the transferability

w(xs
i ) of each source example, and combining the entropy

minimization criterion, we achieve the following objective:

EGy =
1

ns

ns
∑

i=1

w (xs
i )L (Gy (Gf (x

s
i ),y

s
i ))

+
γ

nt

nt
∑

j=1

H
(

Gy

(

Gf

(

x
t
j

)))

,

(2)

EGd
= −

1

ns

ns
∑

i=1

w (xs
i ) log (Gd (Gf (x

s
i )))

−
1

nt

nt
∑

j=1

log
(

1−Gd

(

Gf

(

x
t
j

)))

,

(3)

where γ is a hyper-parameter to trade-off the labeled source

examples and unlabeled target examples.

The transferability weighting framework can be trained

end-to-end by a minimax optimization procedure as follows,
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yielding a saddle point solution (θ̂f , θ̂y, θ̂d):

(θ̂f , θ̂y) = argmin
θf ,θy

EGy − EGd
,

(θ̂d) = argmin
θd

EGd
.

(4)

3.2. Example Transferability Quantification

With the proposed transferability weighting framework

in Equations (2) and (3), the key technical problem is how

to quantify the transferability of each source example w(xs
i ).

We introduce an auxiliary domain discriminator G̃d, which

is also trained to distinguish the representations of the source

domain from the target domain, using the similar loss as

Equation (3) but dropping w(xs
i ). It is not involved in the

adversarial training procedure, i.e., the features Gf are not

learned to confuse G̃d. Such an auxiliary domain discrimi-

nator can roughly quantify the transferability of the source

examples, through the Sigmoid probability of classifying

each source example xs
i to the target domain.

Such an auxiliary domain discriminator G̃d discriminates

source and target domains based on the assumption that

source examples of shared classes Ct are closer to the target

domain than to those source examples in the outlier classes

Cs\Ct, thus having higher probability to be predicted as from

the target domain. However, the auxiliary domain discrimina-

tor only distinguishes the source and target examples based

on domain information. There is potential small gap between

G̃d’s outputs for transferable and irrelevant source examples

especially when G̃d is trained well. So the model is still

exposed to the risk of mixing up the transferable and irrele-

vant source examples, yielding unsatisfactory transferability

measures w(xs
i ). In partial domain adaptation, the source

examples in Ct differentiate from those in Cs\Ct mainly in

that Ct is shared with the target domain while Cs\Ct has no

overlap with the target domain. Thus, it is natural to integrate

discriminative information into our weight design to resolve

the ambiguity between shared and outlier classes.

Inspired by AC-GANs [26] that integrate the labeled in-

formation into the discriminator, we aim to integrate the

label information into the auxiliary domain discriminator

G̃d. However, we hope to develop a transferability measure

w(xs
i ) with both the discriminative information and domain

information to generate clearly separable weights for source

data in Ct and Cs\Ct respectively. Thus, we add an auxiliary

label predictor G̃y with leaky-softmax activation. Within G̃y ,

the feature from feature extractor Gf are transformed to |Cs|-
dimension z. Then z will be passed through a leaky-softmax

activation as follows,

σ̃ (z) =
exp (z)

|Cs|+
∑|Cs|

c=1 exp (zc)
, (5)

where zc is the c-th dimension of z. The leaky-softmax has

the property that the element-sum of its outputs is smaller

than 1; when the logit zc of class c is very large, the probabil-

ity to classify an example as class c is high. As the auxiliary

label predictor G̃y is trained on source examples and labels,

the source examples will have higher probability to be clas-

sified as a specific source class c, while the target examples

will have smaller logits and uncertain predictions. Therefore,

the element-sum of the leaky-softmax outputs are closer to 1
for source examples and closer to 0 for target examples. If

we define G̃d as

G̃d (Gf (xi)) =
∑|Cs|

c=1
G̃c

y (Gf (xi)), (6)

where G̃c
y (Gf (xi)) is the probability of each example xi

belonging to class c, then G̃d (Gf (xi)) can be seen as com-

puting the probability of each example belonging to the

source domain. For a source example, the smaller the value

of G̃d (Gf (xi)) is, the more probable that it comes from the

target domain, meaning that it is closer to the target domain

and more likely to be in the shared label space Ct. Thus, the

output of G̃d is suitable for transferability quantification.

We train the auxiliary label predictor G̃y with the leaky-

softmax by a multitask loss over |Cs| one-vs-rest binary

classification tasks for the |Cs|-class classification problem:

EG̃y
=−

λ

ns

ns
∑

i=1

|Cs|
∑

c=1

[

ysi,c log G̃
c
y (Gf (x

s
i ))

+
(

1− ysi,c
)

log
(

1− G̃c
y (Gf (x

s
i ))

)]

,

(7)

where ysi,c denotes whether class c is the ground-truth label

for source example xs
i , and λ is a hyper-parameter. We also

train the auxiliary domain discriminator G̃d to distinguish

the features of the source domain and the target domain as

EG̃d
= −

1

ns

ns
∑

i=1

log
(

G̃d (Gf (x
s
i ))

)

−
1

nt

nt
∑

j=1

log
(

1− G̃d

(

Gf

(

xt
j

))

)

.

(8)

From Equations (6) to (8), we observe that the outputs of

the auxiliary domain discriminator G̃d depend on the outputs

of the auxiliary label predictor G̃y . This guarantees that G̃d

is trained with both label and domain information, resolving

the ambiguity between shared and outlier classes to better

quantify the example transferability.

Finally, with the help of the auxiliary label predictor G̃y

and the auxiliary domain discriminator G̃d, we can derive

more accurate and discriminative weights to quantify the

transferability of each source example as

w (xs
i ) = 1− G̃d (Gf (x

s
i )) . (9)

Since the outputs of G̃d for source examples are closer to 1,

implying very small weights, we normalize the weights in

each mini-batch of batch size B as w (x)← w(x)
1

B

∑
B
i=1

w(xi)
.
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3.3. Minimax Optimization Problem

With the aforementioned derivation, we now formulate

our final model, Example Transfer Network (ETN). We unify

the transferability weighting framework in Equations (2)–

(3) and the example transferability quantification in Equa-

tions (6)–(9). Denoting by θỹ the parameters of the auxiliary

label predictor G̃y, the proposed ETN model can be solved

by a minimax optimization problem that finds saddle-point

solutions θ̂f , θ̂y , θ̂d and θ̂ỹ to model parameters as follows,

(θ̂f , θ̂y) = argmin
θf ,θy

EGy − EGd
,

(θ̂d) = argmin
θd

EGd
,

(θ̂ỹ) = argmin
θỹ

EG̃y
+ EG̃d

.

(10)

ETN enhances partial domain adaptation by learning to

transfer relevant examples and diminish outlier examples for

both source classifier Gy and domain discriminator Gd. It

exploits progressive weighting schemes w(xs
i ) from the aux-

iliary domain discriminator G̃d and auxiliary label predictor

G̃y , well quantifying the transferability of source examples.

4. Experiments

We conduct experiments to evaluate our approach with

state-of-the-art (partial) domain adaptation methods. Codes

and datasets will be available at github.com/thuml.

4.1. Setup

Office-31 [32] is de facto for domain adaptation. It is rela-

tively small with 4,652 images in 31 classes. Three domains,

namely A, D, W, are collected by downloading from ama-

zon.com (A), taking from DSLR (D) and from web camera

(W). Following the protocol in [5], we select images from

the 10 categories shared by Office-31 and Caltech-256 to

build new target domain, creating six partial domain adapta-

tion tasks: A→W, D→W, W→D, A→D, D→A and W→A.

Note that there are 31 categories in the source domain and

10 categories in the target domain.

Office-Home [40] is a larger dataset, with 4 domains of dis-

tinct styles: Artistic, Clip Art, Product and Real-World.

Each domain contains images of 65 object categories. De-

noting them as Ar, Cl, Pr, Rw, we obtain twelve partial do-

main adaptation tasks: Ar→Cl, Ar→Pr, Ar→Rw, Cl→Ar,

Cl→Pr, Cl→Rw, Pr→Ar, Pr→Cl, Pr→Rw, Rw→Ar,

Rw→Cl, and Rw→Pr. For PDA, we use images from the

first 25 classes in alphabetical order as the target domain and

images from all 65 classes as the source domain.

ImageNet-Caltech is a large dataset built with ImageNet-

1K [31] and Caltech-256. They share 84 classes, and thus

we form two partial domain adaptation tasks: ImageNet

(1000)→Caltech (84) and Caltech (256)→ImageNet (84).

As most networks are trained on the training set of ImageNet,

we use images from ImageNet validation set as target domain

for Caltech (256)→ImageNet (84) task.

We compare the proposed ETN model with state-of-the-

art deep learning and (partial) domain adaptation methods:

ResNet-50 [15], Deep Adaptation Network (DAN) [21],

Domain-Adversarial Neural Networks (DANN) [10], Ad-

versarial Discriminative Domain Adaptation (ADDA) [37],

Residual Transfer Networks (RTN) [22], Selective Adver-

sarial Network (SAN) [5], Importance Weighted Adversar-

ial Network (IWAN) [43] and Partial Adversarial Domain

Adaptation (PADA) [6].

Besides ResNet-50 [15], we also evaluate ETN and some

methods based on VGG [34] on the Office-31 dataset. We

perform ablation study to justify the example transfer mech-

anism, by evaluating two ETN variants: 1) ETN w/o classi-

fier is the variant without weights on the source classifier; 2)

ETN w/o auxiliary is the variant without the auxiliary label

predictor on the auxiliary domain discriminator.

We implement all methods based on PyTorch, and fine-

tune ResNet-50 [15] and VGG [34] pre-trained on ImageNet.

New layers are trained from scratch, and their learning rates

are 10 times that of the fine-tuned layers. We use mini-

batch SGD with momentum of 0.9 and the learning rate

decay strategy implemented in DANN [10]: the learning

rate is adjusted during SGD using ηp = η0

(1+αp)β
, where p

is the training progress linearly changing from 0 to 1. The

flip-coefficient of the gradient reversal layer is increased

gradually from 0 to 1 as DANN [10]. Hyper-parameters are

optimized with importance weighted cross-validation [35].

4.2. Results

The classification results based on ResNet-50 on the the

twelve tasks of Office-Home, six tasks of Office-31 and the

two large-scale tasks of ImageNet-Caltech are shown in

Tables 1 and 2. We also compare all methods on Office-31

with VGG backbone in Table 3. ETN outperforms all other

methods w.r.t average accuracy, showing that ETN performs

well with different base networks on different datasets.

Specifically, we have several observations. 1) ADDA,

DANN, and DAN outperform ResNet only on some tasks,

implying that they suffer from the negative transfer issue. 2)

RTN exploits the entropy minimization criterion to amend

itself with semi-supervised learning. Thus, it has some im-

provement over ResNet but still suffers from negative trans-

fer for some tasks. 3) Partial domain adaptation methods

(SAN [5] and IWAN [43]) perform better than ResNet and

other domain adaptation methods on most tasks, due to their

weighting mechanism to mitigate negative transfer caused by

outlier classes and promote positive transfer among shared

classes. 4) ETN outperforms SAN and IWAN on most tasks,

showing its power to discriminate the outlier classes from the

shared classes accurately and to transfer relevant examples.
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Table 1. Classification Accuracy (%) for Partial Domain Adaptation on Office-Home Dataset (ResNet-50)

Method
Office-Home

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet [15] 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35

DANN [10] 43.76 67.90 77.47 63.73 58.99 67.59 56.84 37.07 76.37 69.15 44.30 77.48 61.72

ADDA [37] 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82

RTN [22] 49.31 57.70 80.07 63.54 63.47 73.38 65.11 41.73 75.32 63.18 43.57 80.50 63.07

IWAN [43] 53.94 54.45 78.12 61.31 47.95 63.32 54.17 52.02 81.28 76.46 56.75 82.90 63.56

SAN [5] 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30

PADA [6] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06

ETN 59.24 77.03 79.54 62.92 65.73 75.01 68.29 55.37 84.37 75.72 57.66 84.54 70.45

Table 2. Classification Accuracy (%) for Partial Domain Adaptation on Office-31 and ImageNet-Caltech Datasets (ResNet-50)

Method
Office-31 ImageNet-Caltech

Avg
A→W D→W W→D A→D D→A W→A Avg I→ C C→ I

ResNet [15] 75.59±1.09 96.27±0.85 98.09±0.74 83.44±1.12 83.92±0.95 84.97±0.86 87.05±0.94 69.69±0.78 71.29±0.74 70.49±0.76

DAN [21] 59.32±0.49 73.90±0.38 90.45±0.36 61.78±0.56 74.95±0.67 67.64±0.29 71.34±0.46 71.30±0.46 60.13±0.50 65.72±0.48

DANN [10] 73.56±0.15 96.27±0.26 98.73±0.20 81.53±0.23 82.78±0.18 86.12±0.15 86.50±0.20 70.80±0.66 67.71±0.76 69.23±0.71

ADDA [37] 75.67± 0.17 95.38±0.23 99.85±0.12 83.41± 0.17 83.62±0.14 84.25±0.13 87.03±0.16 71.82±0.45 69.32±0.41 70.57±0.43

RTN [22] 78.98±0.55 93.22±0.52 85.35±0.47 77.07±0.49 89.25±0.39 89.46±0.37 85.56±0.47 75.50±0.29 66.21±0.31 70.85±0.30

IWAN [43] 89.15±0.37 99.32±0.32 99.36±0.24 90.45±0.36 95.62±0.29 94.26±0.25 94.69±0.31 78.06±0.40 73.33±0.46 75.70±0.43

SAN [5] 93.90±0.45 99.32±0.52 99.36±0.12 94.27±0.28 94.15±0.36 88.73±0.44 94.96±0.36 77.75±0.36 75.26±0.42 76.51±0.39

PADA [6] 86.54±0.31 99.32±0.45 100.00±.00 82.17±0.37 92.69±0.29 95.41±0.33 92.69±0.29 75.03±0.36 70.48±0.44 72.76±0.40

ETN 94.52±0.20 100.00±.00 100.00±.00 95.03±0.22 96.21±0.27 94.64±0.24 96.73±0.16 83.23±0.24 74.93±0.28 79.08±0.26

Table 3. Classification Accuracy (%) for Partial Domain Adaptation on Office-31 Dataset (VGG)

Method
Office-31

A→W D→W W→D A→D D→A W→A Avg

VGG [34] 60.34±0.84 97.97±0.63 99.36±0.36 76.43±0.48 72.96±0.56 79.12±0.54 81.03± 0.57

DAN [21] 58.78±0.43 85.86±0.32 92.78±0.28 54.76±0.44 55.42±0.56 67.29±0.20 69.15±0.37

DANN [10] 50.85±0.12 95.23±0.24 94.27±0.16 57.96±0.20 51.77±0.14 62.32±0.12 68.73±0.16

ADDA [37] 53.28±0.15 94.33±0.18 95.36±0.08 58.78±0.12 50.24±0.10 63.34±0.08 69.22±0.12

RTN [22] 69.35±0.42 98.42±0.48 99.59±0.32 75.43±0.38 81.45±0.32 82.98±0.36 84.54±0.38

IWAN [43] 82.90±0.31 79.75±0.26 88.53±0.16 90.95±0.33 89.57±0.24 93.36±0.22 87.51±0.25

SAN [5] 83.39±0.36 99.32±0.45 100.00±.00 90.70±0.20 87.16±0.23 91.85±0.35 92.07±0.27

PADA [6] 86.05±0.36 99.42±0.24 100.00±.00 81.73±0.34 93.00±0.24 95.26±0.27 92.54±0.24

ETN 85.66±0.16 100.00±.00 100.00±.00 89.43±0.17 95.93±0.23 92.28±0.20 96.74±0.13

Table 4. Classification Accuracy (%) of ETN and Its Variants for Partial Domain Adaptation on Office-Home Dataset (ResNet-50)

Method
Office-Home

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ETN w/o classifier 56.18 71.93 79.32 65.11 65.57 73.66 65.47 52.90 82.88 72.93 56.93 82.91 68.93

ETN w/o auxiliary 48.36 50.42 79.13 56.57 45.88 65.49 56.38 49.07 77.53 75.57 58.81 78.32 61.79

ETN 59.24 77.03 79.54 62.92 65.73 75.01 68.29 55.37 84.37 75.72 57.66 84.54 70.45

In particular, ETN outperforms SAN and IWAN by much

larger margin on the large-scale ImageNet-Caltech dataset,

indicating that ETN is robuster to outlier classes and per-

forms better even on dataset with large number of outlier

classes (916 in ImageNet→Caltech) relative to the shared

classes (84 in ImageNet→Caltech). ETN has two advan-

tages: learning discriminative weights and filtering outlier

classes out from both source classifier and domain discrimi-

nator, which boost partial domain adaptation performance.

We inspect the efficacy of different modules by comparing

in Tables 4 the results of ETN variants. 1) ETN outperforms

ETN w/o classifier, proving that the weighting mechanism

on the source classifier can reduce the negative influence of

outlier-classes examples and focus the source classifier on

the examples belonging to the target label space. 2) ETN also

outperforms ETN w/o auxiliary by a larger margin, proving

that the auxiliary classifier can inject label information into

the domain discriminator to yield discriminative weights,

which in turn enables ETN to filter out irrelevant examples.

4.3. Analysis

Feature Visualization: We plot in Figures 3 the t-SNE em-

beddings [8] of the features learned by DANN, SAN, IWAN

and ETN on A (31 classes)→W (10 classes) with class in-
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