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Figure 1: We introduce a dataset for 3D tracking and forecasting with rich maps for autonomous driving. Our dataset
contains sequences of LiDAR measurements, 360◦ RGB video, front-facing stereo (middle-right), and 6-dof localization.
All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height.
Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.

Abstract
We present Argoverse, a dataset designed to support au-

tonomous vehicle perception tasks including 3D tracking

and motion forecasting. Argoverse includes sensor data

collected by a fleet of autonomous vehicles in Pittsburgh

and Miami as well as 3D tracking annotations, 300k ex-

tracted interesting vehicle trajectories, and rich semantic

maps. The sensor data consists of 360◦ images from 7 cam-

eras with overlapping fields of view, forward-facing stereo

imagery, 3D point clouds from long range LiDAR, and 6-dof

pose. Our 290km of mapped lanes contain rich geometric

and semantic metadata which are not currently available

in any public dataset. All data is released under a Cre-

ative Commons license at Argoverse.org. In baseline ex-

periments, we use map information such as lane direction,

driveable area, and ground height to improve the accuracy

of 3D object tracking. We use 3D object tracking to “mine”

for more than 300k interesting vehicle trajectories to cre-

ate a trajectory forecasting benchmark. Motion forecast-

ing experiments ranging in complexity from classical meth-

ods (k-NN) to LSTMs demonstrate that using detailed “vec-

tor maps” with lane-level information substantially reduces

*Equal contribution

prediction error. Our tracking and forecasting experiments

represent only a superficial exploration of the potential of

rich maps in robotic perception. We hope that Argoverse

will enable the research community to explore these prob-

lems in greater depth.

1. Introduction

Datasets and benchmarks for a variety of perception
tasks in autonomous driving have been hugely influential
to the computer vision community over the last few years.
We are particularly inspired by the impact KITTI [10] has
had in opening new research directions. However, pub-
licly available datasets for autonomous driving rarely in-
clude map data, even though detailed maps are critical to
the development real world autonomous systems. Publicly
available maps, e.g. OpenStreetMap, can be useful, but
have limited detail and accuracy.

Intuitively, 3D scene understanding would be easier if
maps directly told us which 3D points belong to the road,
which belong to static buildings, what lane a tracked ob-
ject is in, what the speed limit for that lane is, how far it
is to the next intersection, etc. But since publicly available
datasets don’t contain such rich mapped attributes it is an
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open research question of how to represent and utilize these
features. Argoverse is the first large autonomous driving
dataset with such detailed maps. We examine the potential
utility of these new map features on two tasks – 3D tracking
and motion forecasting, and we offer a significant amount
of real-world, annotated data to enable new benchmarks for
these problems.

Our contributions in this paper include:

• We release a large scale dataset with synchronized data
from LiDAR, 360◦ and stereo cameras sampled across
two cities and varied conditions.

• We provide ground truth tracking annotation of objects
in 3D, with ten times more tracks than the KITTI [10]
tracking benchmark.

• We create a large scale forecasting benchmark of tra-
jectories capturing scenarios like turns at intersections,
driving with many vehicles nearby, and lane changes.

• We release map data and an API which can be used
to develop map-based perception algorithms. To our
knowledge, there is no publicly available equivalent
to our semantic vector map of road infrastructure and
traffic rules.

• We examine the influence of map context in 3D track-
ing and trajectory forecasting.

• We release the first large-scale dataset suitable for
training and benchmarking automatic map creation,
often known as map automation.

• We release the first fully panoramic, high-frame rate
large-scale dataset collected outdoors on a vehicle,
opening new possibilities for city-scale reconstruction
with photometric-based direct methods.

2. Related Work

Autonomous Driving Datasets with Map Information.
Until recently, it was rare to find datasets that provide
detailed map information associated with annotated data.
Works such as TorontoCity [36] and ApolloScape [18] fo-
cus on map construction tasks but without 3D annotation for
dynamic objects. The nuScenes dataset [5] contains maps in
the form of binary, rasterized, top-down indicators of region
of interest (where region of interest is the union of drive-
able area and sidewalk). This map information is provided
for 1000 annotated vehicle log segments (or “scenes”) in
Singapore and Boston. Like nuScenes, Argoverse includes
maps of driveable area, but we also include ground height
and a “vector map” of lane centerlines and their connectiv-
ity.
Autonomous Driving Datasets with 3D Tracking Anno-

tations. Many existing datasets for object tracking focus on
pedestrian tracking from image/video sequences [32, 28, 2].
Several datasets provide raw data from self driving car sen-
sors, but without any object annotations [27, 30, 33]. The

ApolloCar3D dataset [34] is oriented toward 3D semantic
object keypoint detection instead of tracking. KITTI [10]
and H3D [31] offers 3D bounding box and track annotations
but does not provide a map and the camera field of view is
frontal, rather than 360◦. nuScenes [5] currently provides
360◦ data and a benchmark for 3D object detection, with
tracking annotation also available. The Argoverse-Tracking
dataset contains 360◦ track annotations in 3D space aligned
with detailed map information. See Table 1 for a compari-
son between 3D autonomous vehicle datasets.
Autonomous Driving Datasets with Mined Trajectory

Data. TrafficPredict [26] also uses sensor-equipped vehi-
cles to observe driving trajectories in the wild and build a
forecasting benchmark. The TrafficPredict dataset consists
of 155 minutes of observations compared to 320 hours of
observations in Argoverse.
Using Maps for Self-driving Tasks. While high definition
(HD) maps are widely used by motion planning systems,
few works explore the use of this strong prior in percep-
tion systems [38] despite the fact that the three winning
entries of the 2007 DARPA Urban Challenge relied on a
DARPA-supplied map – the Route Network Definition File

(RNDF) [29, 35, 3]. Hecker et al. [13] show that end-to-
end route planning can be improved by processing raster-
ized maps from OpenStreetMap and TomTom. Liang et

al. [22] demonstrate that using road centerlines and inter-
section polygons from OpenStreetMap can help infer cross-
walk location and direction. Yang et al. [38] show that
incorporating ground height and road segment into LiDAR
points can improve 3D object detection. Suraj et al. [25] use
dashboard-mounted monocular cameras on a fleet of vehi-
cles to build a 3D map via city-scale structure-from-motion
for localization of ego-vehicles and trajectory extraction.
3D Object Tracking. In traditional approaches for point
cloud tracking, segments of points can be accumulated us-
ing clustering algorithms such as DBSCAN [9, 20] or con-
nected components of an occupancy grid [21, 17], and
then associated based on some distance function using
the Hungarian algorithm. Held et al. utilize probabilis-
tic approaches to point cloud segmentation and tracking
[14, 16, 15]. Recent work demonstrates how 3D instance
segmentation and 3D motion (in the form of 3D scene flow,
or per-point velocity vectors) can be estimated directly on
point cloud input with deep networks [37, 23]. Our dataset
enables 3D tracking with sensor fusion in a 360◦ frame.
Trajectory Forecasting: Spatial context and social inter-
actions can influence the future path of pedestrians and cars.
Social-LSTM[1] proposes a novel pooling layer to capture
social interaction of pedestrians. Social-GAN [11] attempts
to model the multimodal nature of the predictions. How-
ever, both have only been tested on pedestrian trajectories,
with no use of static context (e.g. a map). Deo et al. [8]
propose a convolutional social pooling approach wherein
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DATASET NAME MAP EXTENT OF DRIVEABLE CAMERA 360◦ INCLUDE # TRACKED

TYPE ANNOTATED AREA FRAME CAMERAS STEREO OBJECTS

LANES COVERAGE RATE

KITTI [10] None 0 km 0 m2 10 Hz no X 917
Oxford RobotCar [27] None 0 km 0 m2 11/16Hz no no 0

H3D [31] None 0 km 0 m2 30 Hz no no 13,763
nuScenes v1.0 [5] Raster 0 km 1,115,844 m2 12 Hz X no 64,386

Argoverse-Tracking-Beta Vector 204 km (MIA) 1,074,614 m2 30 Hz X X 10,572
(human annotated) +Raster +86 km (PIT)

Argoverse-Forecasting Vector 204 km (MIA) 1,074,614 m2 - no no 16.4M
(mined trajectories) +Raster +86 km (PIT)

Table 1: Public self-driving datasets. We compare recent, publicly available self-driving datasets with 3D object annotations
for tracking. Coverage area for nuScenes is based on its road and sidewalk raster map. Argoverse coverage area is based on
our driveable area raster map.

they first predict the maneuver and then the trajectory con-
ditioned on that maneuver. In the self-driving domain, the
use of spatial context is of utmost importance and it can
be efficiently leveraged from the maps. Chen et al. [7] use
a feature-driven approach for social and spatial context by
mapping the input image to a small number affordances of
a road/traffic state. However, they limit their experiments
to a simulation environment. IntentNet [6] extends the joint
detection and prediction approach of Luo et al. [24] by dis-
cretizing the prediction space and attempting to predict one
of eight common driving maneuvers. DESIRE [19] demon-
strates a forecasting model capturing both social interaction
and spatial context. The authors note that the benefits from
these two additional components are small on the KITTI
dataset, attributing this to the minimal inter-vehicle interac-
tions in the data.

3. The Argoverse Dataset

Our sensor data, maps, and annotations are the primary

contribution of this work. We also develop an API which
helps connect the map data with sensor information e.g.
ground point removal, nearest centerline queries, and lane
graph connectivity; see Supplemental Material for more de-
tails. Our data, annotations, and API are available under a
Creative Commons license at Argoverse.org.

We collect raw data from a fleet of autonomous vehi-
cles in Pittsburgh, Pennsylvania, USA and Miami, Florida,
USA. These cities have distinct climate, architecture, in-
frastructure, and behavior patterns. The captured data spans
different seasons, weather conditions, and times of day. The
data used for our dataset traverses nearly 300km of mapped
road lanes and comes from a subset of our fleet operating
area.
Sensors. Our cars are equipped with two roof-mounted
VLP-32 LiDAR sensors with an overlapping 40◦ vertical
field of view and a range of 200m, roughly twice that as the
sensors used in nuScenes and KITTI. On average, our Li-

Figure 2: 3D visualization of an Argoverse scene. Left:
we accumulate LiDAR points and project them to a virtual
image plane. Right: using our map, LiDAR points beyond
driveable area are dimmed and points near the ground are
highlighted in cyan. Cuboid object annotations and road
center lines are shown in pink and yellow.

DAR sensors produce a point cloud at each sweep with three
times the density of the LiDAR sweeps in the nuScenes [5]
dataset (ours ∼ 107, 000 points vs. nuScenes’ ∼ 35, 000
points). The vehicles have 7 high-resolution ring cameras
(1920 × 1200) recording at 30 Hz with overlapped field of
view providing 360◦ coverage. In addition there are 2 front-
facing stereo cameras (2056×2464) sampled at 5 Hz. Faces
and license plates are procedurally blurred in camera data
to maintain privacy. Finally, 6-DOF localization for each
timestamp comes from a combination of GPS-based and
sensor-based localization. Vehicle localization and maps
use a city-specific coordinate system described in more de-
tail in the Supplemental Material. Sensor measurements for
particular driving sessions are stored in “logs”, and we pro-
vide intrinsic and extrinsic calibration data for the LiDAR
sensors and all 9 cameras for each log. Figure 2 visualizes
our sensor data in 3D. Similar to [33], we place the origin
of the vehicle coordinate system at the center of the rear
axle. All sensors are roof-mounted, with a LiDAR sensor
surrounded by 7 “ring” cameras (clockwise: facing front
center, front right, side right, rear right, rear left, side left,
and front left) and 2 stereo cameras. Figure 3 visualizes the
geometric arrangement of our sensors.
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Figure 3: Car sensor schematic. Three reference coordi-
nate systems are displayed: (1) the vehicle frame, with Xv

forward, Yv left, and Zv up, (2) the camera frame, with Xc

across imager, Yc down imager, and Zc along optical axis.
(3) the LiDAR frame, with XL forward, YL left, and ZL up.
Positive rotations RX , RY , RZ are defined for each coordi-
nate system as rotation about the respective axis following
the right-hand rule.

3.1. Maps

Argoverse contains three distinct maps – (1) a vector
map of lane centerlines and their attributes, (2) a rasterized
map of ground height, and (3) a rasterized map of driveable
area and region of interest (ROI).
Vector Map of Lane Geometry. Our vector map consists
of semantic road data represented as a localized graph rather
than rasterized into discrete samples. The vector map we
release is a simplification of the map used in fleet opera-
tions. In our vector map, we offer lane centerlines, split into
lane segments. We observe that vehicle trajectories gener-
ally follow the center of a lane so this is a useful prior for
tracking and forecasting.

A lane segment is a segment of road where cars drive
in single-file fashion in a single direction. Multiple lane
segments may occupy the same physical space (e.g. in an
intersection). Turning lanes which allow traffic to flow in
either direction would be represented by two different lanes
that occupy the same physical space.

For each lane centerline, we provide a number of seman-
tic attributes. These lane attributes describe whether a lane
is located within an intersection or has an associated traffic
control measure (Boolean values that are not mutually in-
clusive). Other semantic attributes include the lane’s turn
direction (left, right, or none) and the unique identifiers for
the lane’s predecessors (lane segments that come before)
and successors (lane segments that come after) of which
there can be multiple (for merges and splits, respectively).
Centerlines are provided as “polylines”, i.e. a sequence of
straight segments. Each straight segment is defined by 2
vertices: (x, y, z) start and (x, y, z) end. Thus, curved lanes
are approximated with a set of straight lines.

We observe that in Miami, lane segments that could be
used for route planning are on average 3.84m ± 0.89 wide.

Figure 4: Map-based ground removal example. Some Ar-
goverse scenes contain uneven ground, which is challenging
to remove with simple heuristics (e.g. assuming ground is
planar). Above, the projected LiDAR points are colored by
surface normal. The ground surface normal color is non-
uniform in the birds-eye-view projection (left). The green
color on the slope (middle column) differs from other parts
of ground (right column). The lower row uses our map tools
to remove ground points and points beyond driveable area.

In Pittsburgh, the average width is 3.97m ± 1.04 in width.
Other types of lane segments that would not be suitable for
self-driving, e.g. bike lanes, can be as narrow as 0.97m in
Miami and as narrow as 1.06m in Pittsburgh.
Rasterized Driveable Area Map. Our maps include binary
driveable area labels at 1 meter grid resolution. A driveable
area is an area where it is possible for a vehicle to drive
(though not necessarily legal). Driveable areas can encom-
pass a road’s shoulder in addition to the normal driveable
area that is represented by a lane segment. Our track annota-
tions (Section 3.2) extend to 5 meters beyond the driveable
area. We call this larger area our region of interest (ROI).
Rasterized Ground Height Map. Finally, our maps in-
clude real-valued ground height at 1 meter resolution.
Knowledge of ground height can be used to remove LiDAR
returns on static ground surfaces and thus makes the 3D de-
tection of dynamic objects easier. Figure 4 demonstrates the
use of our ground height map to remove LiDAR points on
the road.

3.2. 3D Track Annotations

Argoverse-Tracking-Beta1 contains 100 vehicle log seg-
ments with human-annotated data 3D tracks. These 100
segments vary in length from 15 to 60 seconds and collec-
tively contain 10,572 tracked objects. We compare this to
other datasets in Table 1. For each log segment, we annotate
all objects of interest (both dynamic and static) with bound-
ing cuboids which follow the 3D LiDAR returns associated
with each object over time. We only annotate objects within
5 meters of the driveable area as defined by our map. For
objects that are not visible for the entire segment duration,
tracks are instantiated as soon as the object becomes vis-
ible in the LiDAR point cloud and tracks are terminated

1We refer to our tracking data as beta in anticipation of minor refine-
ments or expansion to this dataset before final benchmark release.
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Figure 5: Distribution of object classes. This plot shows,
in log scale, the number of objects annotated for each class
in the 100 log segments in Argoverse-Tracking-Beta.

when the object ceases to be visible. We mark objects as
“occluded” whenever they become invisible within the se-
quence. Each object is labeled with one of 17 categories, in-
cluding OTHER_STATIC and OTHER_MOVER for static
and dynamic objects that do not fit into other predefined cat-
egories. More than 70% of tracked objects are vehicles, but
we also observe pedestrians, bicycles, mopeds, and more.
Figure 5 show the distribution of classes for annotated ob-
jects. All track labels pass through a manual quality as-
surance review process. Figures 1 and 2 show qualitative
examples of our human annotated labels. We divide our an-
notated tracking data into 60 training, 20 validation, and 20
testing sequences.

3.3. Mined Trajectories for Motion Forecasting

We are also interested in studying the task of motion fore-

casting in which we predict the location of a tracked object
some time in the future. Motion forecasts can be critical
to safe autonomous vehicle motion planning. While our
human-annotated 3D tracks are suitable training and test
data for motion forecasting, the motion of many of vehicles
is relatively uninteresting – in a given frame, most cars are
either parked or traveling at nearly constant velocity. Such
tracks are hardly a representation of real forecasting chal-
lenges. We would like a benchmark with more diverse sce-
narios e.g. managing an intersection, slowing for a merg-
ing vehicle, accelerating after a turn, stopping for a pedes-
trian on the road, etc. To sample enough of these inter-

esting scenarios we track objects from 1006 driving hours
across both Miami and Pittsburgh and find vehicles with in-
teresting behavior in 320 of those hours. In particular, we
look for vehicles that are either (1) at intersections (2) tak-
ing left or right turns (3) changing to adjacent lanes or (4)
in dense traffic. In total, we collect 333,441 five second se-
quences and use them in the forecasting benchmark. Each
sequence contains the 2D, birds-eye-view centroid of each
tracked object sampled at 10hz. Figure 6 shows the geo-
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Figure 6: Distribution of mined trajectories. The colors
indicate the number of mined trajectories across the maps
of Miami (left) and Pittsburgh (right). The heuristics to find
interesting vehicle behavior lead to higher concentrations
in intersections and on busy roads such as Liberty and Penn
Ave (southeast roads in bottom right inset).

graphic distribution of these sequences. In Section 5, we
do not evaluate motion forecasts for pedestrians and sta-
tionary vehicles, but still retain their trajectories for context
in “social” forecasting models. The 333,441 sequences are
split into 211,691 train, 41,146 validation, and 80,604 test
sequences. Each sequence has one challenging trajectory
which is the focus of our forecasting benchmark. The train,
val, and test sequences are taken from disjoint parts of our
cities, i.e. roughly one eighth and one quarter of each city
is set aside as validation and test data, respectively. This
dataset is far larger than what could be mined from publicly
available autonomous driving datasets and we have the ad-
vantage of using our maps to make it easier to track objects.
While data of this scale is appealing because it allows us to
see rare behaviors and train complex models, it is too large
to exhaustively verify the accuracy of the mined trajectories
and thus there is some noise and error inherent in the data.

4. 3D Object Tracking

In this section, we examine how various baseline track-
ing methods perform on the Argoverse 3D tracking bench-
mark. Our baseline methods are LiDAR-centric and operate
directly in 3D. In addition to measuring the baseline diffi-
culty of our benchmark, we measure how some simple map-
based heuristics can influence tracking accuracy. For these
baselines, our tracking and evaluation is limited to vehicles

only.
Given a sequence of F frames, each frame contains set

of 3D points from LiDAR {Pi | i = 1, ..., N}, where Pi

∈ R3 of x, y, z coordinates, we want to determine a set
of track hypothesis {Tj | j = 1, ..., n} where n is the
number of unique objects in the whole sequence, and Tj

contains the set of object center locations at frames f for
f = {fstart, ..., fend}, the range of frames where the ob-
ject is visible. We usually have a dynamic observer as our
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car is in motion more often than not. The tracked vehicles
in the scene around us can be static or moving.

Our baseline tracking pipeline clusters LiDAR returns to
detect potential objects, uses Mask R-CNN [12] to prune
non-vehicle LiDAR returns, associates clusters over time
using the Hungarian algorithm, estimating transformations
between clusters with ICP, and estimates vehicle pose with
a Kalman Filter. More details are provided in the Supple-
mental Material.

The tracker uses the following map attributes:
Driveable area. Since our baseline is focused on vehicle
tracking, we constrain our tracker to the driveable area as
specified by the map. This covers any region where it is
possible for vehicle to drive (see Section 3.1). This reduces
the opportunities for false positives.
Ground removal. We use map information to perform
ground-removal. In contrast to local ground-plane estima-
tion methods, the map-based approach is effective in slop-
ing and uneven environments.
Lane Direction. Determining the vehicle orientation from
LiDAR alone is a challenging task even for humans due to
LiDAR sparsity and partial views. We observe that vehicle
orientation rarely violates lane direction, especially so out-
side of intersections. Fortunately, such information is avail-
able in our dataset, so we adjust vehicle orientation based on
lane direction whenever the vehicle is not at the intersection
and contains too few LiDAR points.

4.1. Evaluation

We use standard evaluation metrics commonly used for
multiple object trackers (MOT) [28, 4]. The MOT metric re-
lies on a distance/similarity function between ground truth
and predicted objects to determine an optimal assignment.
Instead of IoU (Intersection-over-Union) which is more
commonly used in tracking literature, we use Euclidean dis-
tance between object centroids (threshold for missed track
at 2.25 meters, which is half of an average family car length
in US). We follow the original definition in CLEAR MOT
[4] for MOTP (the lower the better). The tracking metrics
are explained in the Supplementary Material in detail.

In the experiments, we run our tracker over the 20 logs
in the Argoverse-Tracking-Beta test set. We are also inter-
ested in the relationship between tracking performance and
distance. We apply a threshold (30,50,100 m) to the dis-
tance between vehicles and our ego vehicle and only eval-
uate annotations and tracker output within that range. The
results in Table 2 show that our tracker performs quite well
at short range where the LiDAR sampling density is higher,
but struggles for objects beyond 50 meters.

We compare our baseline tracker with three ablations
that exclude: 1) Mask R-CNN as pre-filtering for LiDAR
2) lane direction information from the map and 3) map-
based ground removal. The results in Table 2 show that
Mask-RCNN dramatically improves our detection perfor-

(a) without lane information (b) with lane information

Figure 7: Tracking with orientation snapping. Using lane
direction information helps to determine the vehicle orien-
tation for detection and tracking. Ground truth cuboids are
green.

mance by reducing false positives. Map-based ground re-
moval leads to slightly better detection performance (higher
MOTA) than a plane-fitting approach at longer ranges. On
the other hand, lane direction from the map doesn’t affect
our metrics (based on centroid distance), but it helps initial-
ize vehicle direction, as shown in Figure 7.

We have used relatively simple baselines to track objects
in 3D. We believe that our data opens possibilities in map-
based and multimodal tracking research.

5. Forecasting

In this section, we describe our pipeline for trajectory
forecasting baselines.

1. Preprocessing: As described in Section 3.3, we first
mine for “interesting” sequences and then filter out station-
ary cars from those. Each sequence contains the centroids
of tracked objects over 5 seconds.

Forecasting Coordinate System and Normalization.
The coordinate system we use for trajectory forecasting is a
top-down, bird eye view (BEV). There are three reference
coordinate frames of interest to forecasting: (1) The raw
trajectory data is stored and evaluated in the city coordinate
system (See Section 1.1. of the Supp. Material). (2) For
models using lane centerlines as a reference path, we de-
fine a 2-d curvilinear coordinate system with axes tangen-
tial and perpendicular to the lane centerline. (3) For models
without the reference path (without a map), we align every-
thing such that the observed portion of the trajectory starts
at the origin and ends somewhere on the positive x axis. If
(xt

i, y
t
i) represent coordinates of trajectory Vi at timestep t,

then this makes sure yTobs

i = 0, where Tobs is last observed
timestep of the trajectory (Section 5.1). We find this nor-
malization works better than leaving trajectories in absolute
map coordinates or absolute orientations.

2. Feature Engineering: We define additional features
to capture social and/or spatial context. For social context,
we use minimum distance to the objects in front, in back,
and the number of neighbors. Such heuristics are meant to
capture the social interaction between vehicles. For spatial
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RANGE USE USE GROUND MOTA MOTP IDF1 MT(%) ML(%) # FP #FN IDSW #FRAG

THRESHOLD MASK-RCNN MAP LANE REMOVAL

Y Y map 37.98 0.52 0.46 0.10 0.51 105.40 2455.30 32.55 22.35
100 m N Y map 16.42 0.54 0.46 0.16 0.41 1339.95 1972.95 43.30 29.65

Y N map 37.95 0.52 0.46 0.10 0.51 105.30 2454.85 32.35 22.45
Y Y plane-fitting 37.36 0.53 0.46 0.10 0.53 105.20 2484.00 31.10 21.25

Y Y map 52.74 0.52 0.58 0.22 0.29 99.70 1308.25 31.60 21.65
50 m N Y map 21.53 0.54 0.55 0.38 0.18 1197.30 897.90 37.85 24.60

Y N map 52.70 0.52 0.58 0.22 0.29 99.50 1307.75 31.40 21.75
Y Y plane-fitting 52.05 0.53 0.58 0.20 0.31 98.10 1335.65 30.15 20.45

Y Y map 73.02 0.53 0.73 0.66 0.08 92.80 350.50 19.75 12.80
30 m N Y map 23.28 0.56 0.63 0.78 0.04 837.45 238.80 19.10 11.25

Y N map 72.99 0.53 0.73 0.66 0.09 92.80 349.90 19.65 12.95
Y Y plane-fitting 72.82 0.53 0.74 0.66 0.09 92.00 363.35 19.75 12.85

Table 2: Tracking accuracy at different ranges. From top to bottom, accuracy for objects within 100m, 50m, and 30m.

context, we compute everything in the lane segment coordi-
nate system. We compute the lane centerline corresponding
to each trajectory and then map (xt

i, y
t
i) coordinates to dis-

tance along the centerline (ati) and offset from the centerline
(oti). In the subsequent sections, we denote social features
and map features for trajectory Vi at timestep t by sti and
mt

i, respectively.
3. Prediction Algorithm: We implement weighted

Nearest Neighbors and LSTM Encoder-Deconder models
using different combinations of features. The results are
analyzed in Section 5.3.

5.1. Problem Description

The forecasting task is framed as: given the past input

coordinates of a vehicle trajectory Vi as Xi = (xt
i, y

t
i) for

time steps t = {1, . . . , Tobs}, predict the future coordinates

Yi = (xt
i, y

t
i) for time steps {t = Tobs+1, . . . , Tpred}. For

a car, 5 seconds is sufficient to capture the required part of
trajectory, e.g. crossing an intersection. Furthermore, it is
unlikely for a typical driving maneuver to last more than
5 seconds. In this paper, we define the forecasting task as
observing 20 past frames (2 seconds) and then predicting
10-30 frames (1-3 seconds) into the future. Each trajectory
can leverage the trajectories of other vehicles in the same
sequence to capture the social context and map information
for spatial context.

5.2. Multimodal Evaluation

Predicting the future is difficult. Often, there are sev-
eral plausible future actions for a given observation. In the
case of autonomous vehicles, it is important to predict many

plausible outcomes and not simply the most likely outcome.
While some prior works have evaluated forecasting in a de-
terministic, unimodal way, we believe a better approach is
to follow the evaluation methods of DESIRE [19] and So-
cial GAN [11] and encourage algorithms to output multiple
predictions.

Our vector map is a semantic graph. The first step in
prediction with a vector map is to localize oneself on the
semantic graph. We define two subsequent phases: (1) a
hypothesis phase and (2) a generation phase. The seman-
tic graph makes the generation phase trivial because we

can quickly generate hypothesized trajectories via Breadth-
First-Search on the semantic graph. However, the hypothe-
sis phase is still challenging due to the multimodal nature of
the problem, e.g. it’s difficult to know which lane segment
a vehicle will follow in an intersection.

Among the variety of metrics evaluated in DESIRE was
the oracle error over top K number of samples metric,
where K = 50. We follow the same approach and use top-

K Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) as our metrics. The map-based baselines
that we report have access to a semantic vector map. As
such, they can generate K different hypotheses based on the
branching of the road network along a particular observed
trajectory. On average, our heuristics generate K = 5.9
hypotheses. We generate more than 25 hypotheses for less
than 2% of the scenarios. Our map gives us an easy way
to produce a compact yet diverse set of forecasts. Other
baselines don’t have such an option and are restricted to
a single prediction. We also provide an oracle version of
the map-based baselines wherein the model produces the
best possible hypothesis by having access to (xt

i, y
t
i) for

t = {Tobs+1, . . . , Tpred}, along with the observed trajec-
tory. Note that an oracle-based hypothesis can still generate
an imperfect trajectory, e.g. if a car wasn’t following any
lane.

5.3. Results

In this section, we evaluate the effect of adding social
context and spatial context (from the vector map) to im-
prove trajectory forecasting over horizons of 1 and 3 sec-
onds into the future. We evaluate teh following models:
• Constant Velocity: Compute the mean velocity
(vxi, vyi) from t = {1, . . . , Tobs} and then forecast
(xt

i, y
t
i) for t = {Tobs+1, . . . , Tpred} using (vxi, vyi)

as the constant velocity.
• NN: Weighted Nearest Neighbor regression where tra-

jectories are queried by (xt
i, y

t
i) for t = {1, . . . , Tobs}.

• NN+map(oracle): Weighted Nearest Neighbor regres-
sion where trajectories are queried by (ati, o

t
i) for t =

{1, . . . , Tobs} obtained from oracle centerline.
• NN+map: Similar to NN+map(oracle) but uses top-K

78754



1 SECOND 3 SECONDS

BASELINE ADE FDE ADE FDE

Constant Velocity 1.04 1.89 3.55 7.89
NN 0.75 1.28 2.46 5.60
NN+map(oracle) 0.82 1.39 2.39 5.05
NN+map 0.72 1.33 2.28 4.80
LSTM ED 0.68 1.78 2.27 5.19
LSTM ED+social 0.69 1.20 2.29 5.22
LSTM ED+map(oracle) 0.82 1.38 2.32 4.82
LSTM ED+map 0.80 1.35 2.25 4.67

LSTM ED+social+map(oracle) 0.89 1.48 2.46 5.09

Table 3: Forecasting Errors for different prediction horizons

hypothesized centerlines.
• LSTM ED: LSTM Encoder-Decoder model where the

input is (xt
i, y

t
i) for t = {1, . . . , Tobs} and output is

(xt
i, y

t
i) for t = {Tobs+1, . . . , Tpred}

• LSTM ED+social: Similar to LSTM ED but with input
as (xt

i, y
t
i , s

t
i), where sti denotes social features

• LSTM ED+map(oracle): Similar to LSTM ED but with
input as (ati, o

t
i,m

t
i) and output as (ati, o

t
i), where mt

i

denotes the map features obtained from oracle center-
line. Distances (ati, o

t
i) are then mapped to (xt

i, y
t
i) for

evaluation.
• LSTM ED+map: Similar to LSTM ED+map(oracle)

but uses top-K hypothesized centerlines.
• LSTM ED+social+map (oracle): Similar to LSTM

ED+map(oracle) but with input features being
(ati, o

t
i, s

t
i,m

t
i) .

The results of these baselines are reported in Table 3.
Below, we focus on the ADE and FDE for a prediction
horizon of 3 seconds to understand which baselines are less
impacted by accumulating errors. Constant Velocity is out-
performed by all the other baselines because it cannot cap-
ture typical driving behaviors like acceleration, decelera-
tion, turns etc. NN+map has lower ADE and FDE than NN

because it is leveraging useful cues from the vector map.
NN+map has lower error than NN+map(oracle) as well,
emphasizing the multimodal nature of predictions. LSTM

ED does better than NN. LSTM ED+social performs simi-
lar to LSTM ED, implying that the social context does not
add significant value to forecasting. A similar observation
was made on KITTI [10] in DESIRE [19], wherein their
model with social interaction couldn’t outperform the one
without it. We observe that LSTM ED+map outperforms all
the other baselines for a prediction horizon of 3 sec. This
proves the importance of having a vector map for distant fu-
ture prediction and making multimodal predictions. More-
over, NN+map has a lower FDE than LSTM ED+social and
LSTM ED for higher prediction horizon (3 secs). This sug-
gests that even a shallow model working on top of a vector
map works better than a deep model with social features
and no vector map. Figure 8 shows qualitative forecasting
results from our best performing model.

Figure 8: Qualitative results from LSTM ED+map fore-

casting baseline. Top left: the model correctly predicts that
the car will go straight at the intersection. Top right: the
model correctly predicts a smooth right turn never going out
of the lane, which might have been difficult if there were no
map. Bottom left: demonstration of the multimodal nature
of predictions, where the model considers all top-K possi-
bilities. Bottom right: the predictions are on a non-typical
lane which takes a slight left and then a slight right. Again,
this is hard to predict without a map.

6. Discussion

Argoverse is a large dataset for autonomous driving
research. Unique among such datasets, Argoverse con-
tains rich map information such as lane centerlines, ground
height, and driveable area. We examine baseline methods
for 3D tracking with map-derived context. We also mine
one thousand hours of fleet logs to find diverse, real-world
object trajectories which constitute our motion forecasting
benchmark. We examine baseline forecasting methods and
see that map data significantly improves accuracy. We will
maintain a public leaderboard for 3D object tracking and
motion forecasting. The sensor data, map data, annota-
tions, and code which make up Argoverse are available at
Argoverse.org.
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