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Abstract

We address weakly supervised action alignment and seg-

mentation in videos, where only the order of occurring ac-

tions is available during training. We propose Discrimina-

tive Differentiable Dynamic Time Warping (D3TW), the first

discriminative model using weak ordering supervision. The

key technical challenge for discriminative modeling with

weak supervision is that the loss function of the ordering

supervision is usually formulated using dynamic program-

ming and is thus not differentiable. We address this chal-

lenge with a continuous relaxation of the min-operator in

dynamic programming and extend the alignment loss to be

differentiable. The proposed D3TW innovatively solves se-

quence alignment with discriminative modeling and end-to-

end training, which substantially improves the performance

in weakly supervised action alignment and segmentation

tasks. We show that our model is able to bypass the de-

generated sequence problem usually encountered in previ-

ous work and outperform the current state-of-the-art across

three evaluation metrics in two challenging datasets.

1. Introduction

Video action understanding has gained increasing inter-

est over recent years because of the large amount of video

data. In contrast to fully annotated approaches [20, 31, 39]

which require annotations of the exact start and end time of

each action, weakly supervised approaches [7, 15, 29, 3, 21]

significantly reduce the required annotation effort and im-

prove the applicability to real-world data. In particular, we

focus on one type of weak label commonly referred to as

action order or transcript, which uses an ordered list of ac-

tions occurring in the video as supervision.

The major challenge of using only the action order as

supervision is that the ground truth target, frame-wise ac-

tion label is not available at training time. Previous work

resorts to using a variety of surrogate loss functions that

maximize the posterior probability of the weak labels or

the action ordering given the video. However, as shown

in [15] , using surrogate loss functions can easily lead to
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Figure 1. We use only the ordered list of actions or the transcript

as weak supervision for training. This setting is challenging as the

desired output is not available at training. We address this chal-

lenge by proposing the first discriminative model for this task. The

cost  �(`
+, X) of aligning the video X (middle) to the ground

truth or positive transcript `+ (top) should be smaller than that of

the negative transcript `� (bottom) that are randomly sampled.

degenerated results that align some occurring actions to a

single frame in the video. Such degenerated results are far

from the ground truth we desire because each action usu-

ally spans many frames during its execution. While previ-

ous works have attempted to address this challenge using

frame-to-frame similarity [15], fine-to-coarse strategy [28],

and segment length modeling [29], these approaches still

consider the degenerated results that align to single frames

as valid solutions subject to the surrogate loss functions.

The main contribution of this paper is to address the

challenge by proposing the first discriminative model us-

ing order supervision. As illustrated in Figure 1, the idea

is that the probability of having the correct alignment with

the positive or ground truth transcript should be higher than

that of negative transcripts. In contrast to previous works

that only maximize the posterior probability of the weak la-

bels [15, 28, 29], our discriminative formulation does not

suffer from the degenerated alignment as it is no longer an

obvious and trivial solution to the newly proposed discrim-

inative loss. Further, minimizing the discriminative loss

directly contributes to the improvement of our target in con-

trast to previous work. Similar ideas have been studied in
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other research areas, such as multiple-instance learning for

image tagging, and have been shown to be successful [37].

While the idea of applying discriminative modeling to

weakly supervised action labeling problem is seemingly

intuitive, the key technical challenge is that the compu-

tation of loss functions in previous methods usually in-

volves non-differentiable structural prediction algorithms

such as dynamic programming (DP). We address this chal-

lenge by proposing Discriminative Differentiable Dynamic

Time Warping (D3TW), where we directly optimize for bet-

ter outputs by minimizing a discriminative loss function ob-

tained by continuous relaxation of the minimum operator in

DP [26]. The use of D3TW allows us to incorporate the ad-

vantage of discriminative modeling with structural predic-

tion model, which was not possible in previous approaches.

We evaluate D3TW on two weakly supervised tasks in

two popular benchmark datasets, the Breakfast Action [20]

and the Hollywood Extended [3]. The first task is action

segmentation, which refers to predicting frame-wise action

labels, where the test video is given without any further an-

notation. The second task is action alignment, as proposed

in [3], which refers to aligning a test video sequence to a

given action order sequence. We show that our D3TW sig-

nificantly improves the performance on both tasks.

In summary, our key contributions are: (i) We intro-

duce the first discriminative model for ordering supervision

to address the degenerate sequence problem. (ii) We pro-

pose D3TW, a novel framework that incorporates the advan-

tage of discriminative modeling and end-to-end training for

structural sequence prediction with weak supervision. (iii)

We apply our method in two challenging real-world video

datasets and show that it achieves state-of-the-art for both

weakly supervised action segmentation and alignment.

2. Related Works

Action Recognition and Segmentation. Action recog-

nition has been an important task for video understand-

ing [13, 27, 33, 36]. As performances on trimmed video

datasets advance [13, 4], recent focus of video understand-

ing has shifted towards longer and untrimmed video data,

such as VLOG [10], Charades [35], and EPIC-Kitchens [6].

This has led to the development of action segmentation ap-

proaches [23, 34, 39] that aim to label every frame in the

video and not just to classify trimmed video clips. Our goal

is also to densely label each frame of the video, but without

the dense supervision for training.

Weakly Supervised Learning in Vision. For images,

weakly supervised learning has been studied in classifica-

tion [37, 24], semantic segmentation [40], object detec-

tion [22], and visual grounding [17, 38]. The ordering

constraint has been used widely as weak supervision in

videos [3, 2, 7, 15, 28, 29]. The closest to our work is

the NN-Viterbi [29], where the it combines a neural net-

work and a non-differentiable Viterbi process to learn from

ordering supervision iteratively. In contrast, the proposed

D3TW is end-to-end differentiable and uses discriminative

modeling to directly optimize for the best alignment under

ordering supervision.

Using Language as Supervision for Videos. As the or-

dering supervision can be automatically extracted from lan-

guage, our work is related to using language as super-

vision for videos. The supervision usually comes from

movie scripts [8, 2, 41] or transcription of instructional

videos [1, 33, 25, 14]. Unlike these approaches, we assume

the discrete action labels are already extracted and focus on

leveraging the ordering information as supervision.

Continuous Relaxation. Our D3TW is related to recent

progress on continuous relaxation of discrete operations, in-

cluding theorem proving [30], softmax function [16], logic

programming [9], and dynamic programming [26, 5]. We

use the same principle and further enable discriminative

modeling of dynamic programming based alignment.

3. Method

Our goal is to learn to temporally align and segment

video frames using only weak supervision, where only the

order of occurring actions is available at training. The ma-

jor challenge for weakly supervised problem is that the

ground truth target, i.e., frame-wise action labels are not

available at training. We address this challenge by propos-

ing Discriminative Differentiable Dynamic Time Warping

(D3TW), which is to our best knowledge, the first dis-

criminative modeling framework with ordering supervision.

The use of discriminative modeling and differentiable dy-

namic programming sets our approach apart from previous

work that involves non-differentiable forward-backward al-

gorithms [11, 15, 29] and dramatically alleviates the prob-

lem of degenerated alignments that aligns each action label

to a single frame. Figure 2 shows the outline of our model.

In the following, we describe our framework in detail,

starting with the problem statement. We then define our

model and show how it can be used at test time.

3.1. Weakly Supervised Action Learning

We start with the definition of the weakly supervised ac-

tion alignment and segmentation. Here the weak supervi-

sion means that only the transcript, or an ordered list of

the actions is provided at training time. A video of frying

eggs, for example, might consist of taking eggs, breaking

eggs, and frying eggs. While the full supervision would pro-

vide the fine-grained temporal boundary of each action, in

our weakly supervised setup, only the action order sequence

[take_egg, break_egg, fry_egg] is given.

We address two tasks in this paper: action segmentation
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Figure 2. (a) During training, only the transcript `+ is given. The

input video is first forwarded through a GRU to generate the pos-

terior probabilities p(k|X) of each action for each frame. D3TW

is a discriminative model with a fully differentiable loss function,

which allows us to learn p(k|X) via backpropagation and sets our

approach apart from previous work. (b) For alignment, at test time

our D3TW loss can directly be used to align the given transcript

`+ with the video sequence. (c) For segmentation, at test time no

transcript is given. We reduce segmentation to alignment by align-

ing the video to a set of candidate transcripts � and output the best

candidate as the segmentation result.

and action alignment. We aim to learn both with weak su-

pervision. As shown in Figure 2(b) and (c), the difference

between the two tasks is that at test time, action alignment

uses both transcript and test video frames as input, while ac-

tion segmentation only requires test video frames as inputs.

We observe that action segmentation can be formulated as

an action alignment task given a set of possible transcripts

at test time. We will first explain how to tackle action align-

ment using weak supervision, and explain how action seg-

mentation can be reduced to the action alignment problem.

Formally, given an input sequence of video frames X =
[x1, · · · , xT ] 2 R

d⇥T , the goal of action alignment is to

predict an output alignment sequence of frame-wise ac-

tion labels â = [â1, · · · , âT ] 2 A1⇥T , under the con-

straint that ai follows the action order in the transcript

`+ = [`+1 , · · · , `
+
L ] 2 A1⇥L. Here, A is the set of pos-

sible actions. In other words, we want to learn a model

f(X, `+) = â. The key challenge of weak supervision

is that we only have the inputs (X, `+) as supervision for

training f(·) without access to the ground truth action la-

bels a+1:T .

For action segmentation, we observe that segmentation

can be formulated as alignment given a set of possible tran-

scripts. Formally, given a set of possible transcripts L, let

Ψ(a,X) 2 R be a score function that measures the good-

ness of predicted action labels a given input video X , action

segmentation task can be solved by exhaustive search

â = argmax
a=f(`,X),`⇠L

Ψ (a,X) . (1)

This finds the candidate transcript ` that gives the best align-

ment measured by Ψ(·, X) for transcripts in L.

3.2. Discriminative Differentiable DTW (D3TW)

We have discussed what is weakly supervised action

alignment and how we can solve action segmentation based

on alignment. Now we discuss how we use discriminative

modeling to learn a model that aligns the transcript `+ and

the video frames X using just `+ and X at training.

We pose action alignment as a Dynamic Time Warping

(DTW) [32] problem, which has been widely applied to se-

quence alignment in speech recognition. Given a distance

function d(`+i , xj) that measures the cost of aligning the

frame xj to a label in the transcript `+i , DTW uses dynamic

programming to efficiently find the best alignment that min-

imizes the overall cost. The key challenge of weakly super-

vised learning is that there is no frame-to-frame alignment

label to train this distance function d(`+i , xj). We address

this challenge by proposing Discriminative Differentiable

Dynamic Time Warping (D3TW), which allows us to learn

d(`+i , xj) using only weak supervision. In the following,

we will first discuss how we formulate video alignment as

DTW and next how we learn the distance function d(`+i , xj)
using D3TW.

3.2.1 Video Alignment as Dynamic Time Warping

Given two sequences ` and X of lengths L and T corre-

sponding to the transcript and the video, we define Y ⇢

{0, 1}L⇥T to be the set of possible binary alignment matri-

ces. Here 8Y 2 Y , Yij = 1 if video frame xj is labeled as

`i and Yij = 0 otherwise. We impose rigid constraints on

eligible warping paths based on the observation that each

video frame can only be aligned to a single action label,

such that the alignment from X to ` is strictly one-to-one.

In other words, Y ⇢ {0, 1}L⇥T is the set of binary matrices

with exactly T nonzero elements and column pivots. Given

an alignment matrix Y , we can derive its corresponding ac-

tion label a1:T as: aj = `i, if Yij = 1.
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Figure 3. Dynamic Time Warping formulation for video align-

ment. The 5⇥ 8 colored grid represents distance matrix ∆(`, X).
Here we use a trellis diagram to show the computational graph of

the optimal transcript-video alignment Y ⇤ as defined in Eq. (2).

Bellman recursion guarantees that hY ⇤,∆i  hY 0,∆i, 8Y 0 2 Y
and the action order in the transcript is strictly preserved.

Given the constraints on the eligible alignments, the goal

of DTW is to find the best alignment Y ⇤ 2 Y

Y
⇤ = argmin

Y 2Y
hY,∆(`, X)i, (2)

that minimizes the inner product between the alignment ma-

trix Y and the distance matrix ∆(`, X) between transcript `

and video X , where ∆(`, X) := [d(`i, xj)]ij 2 R
L⇥T .

Given the distance function d(`i, xj), we can solve Eq.

(2) using dynamic programming. A simplified example of

such process is illustrated in Figure 3. Of all paths that con-

nect the upper left entry ∆11 to the lower right entry ∆LT

using only �!, & moves, Y ⇤ is the optimal alignment that

minimizes the alignment cost between transcript sequence

and video frames. In this case, we can efficiently obtain the

best alignment between video X and transcript `.

3.2.2 Discriminative Modeling with Weak Supervision

We have discussed how we obtain the best alignment Y ⇤

given the distance function d(`i, xj) using DTW. However,

the problem remains that how can we learn this distance

function without access to the ground truth alignment.

An approach used in prior work [15, 28, 29] maximizes

the probability of the video X given the transcript `:

p(X|`) =
X

a

Y

t

p(xt|at)p(at|`), (3)

where at 2 A is the action label for frame t. By op-

timizing the objective in Eq. (3), we can learn p(xt|k),
the probability of observing xt given action k 2 A. In

order to maximize the probability, we define the distance

d(`i, xj) = � log p(xj |`i) as the negative log-likelihood.
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Figure 4. We introduce discriminative modeling to weakly su-

pervised action alignment. The loss  �(`
+, X) of aligning the

video X to the correct transcript `+ should be lower than that of

any other randomly sample negative transcript `�, which prevents

degenerated alignments issue commonly seen in previous work.

One should notice that the alignment at in Eq. (3) is la-

tent and the number of possible alignments grows exponen-

tially with the length of the video. Therefore, previous work

either uses dynamic programming [15], or uses a hard EM

approach [28, 29] to infer at and iteratively maximize the

objective in Eq. (3). The key drawback of such approaches

is that they can easily lead to a degenerate or trivial solu-

tion as the space of alignments is too large. While one can

impose constraints by enforcing heuristic priors on the pos-

sible alignments p(at|`), this does not directly address the

drawback that maximizing this objective does not necessar-

ily lead to the correct alignment.

Our key insight here is to introduce discriminative mod-

eling to the weak ordering supervision problem. We enforce

a discriminative constraint that should hold for any input tu-

ple (`+, X), that

p(X|`+) > p(X|`�), 8`� 2 L \ `+, (4)

where the probability of observing the video based on the

ground truth or positive transcript `+ should always be

higher than the probability observing the video from the

negative transcript `�, as illustrated in Figure 4. This dis-

criminative constraint was not explicitly used in previous

work. Using the hinge loss with margin � � 0, the loss

function can be written as:
X

`−⇠L\`+

max(p(X|`+)� p(X|`�),�). (5)

3.2.3 Differentiable Loss with Continuous Relaxation

While the above discriminative modeling is intuitive, the

technical challenge is that p(X|`+) and p(X|`�) in Eq. (5)

are generally not differentiable with respect to the distance
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function d(`i, xj) = � log p(xj |`i) we aim to learn. One

way of optimizing it is to use hard EM [28, 29] and itera-

tively optimize this loss given the current distance function

d(`i, xj). However, hard EM is numerically unstable be-

cause it uses a hard maximum operator in its interactions to

update model parameters [26]. The key technical contribu-

tion of our approach is proposing a continuous relaxation of

the DTW-based video alignment loss function.

Instead of iteratively updating the model parameters by

solving Eq. (2) to find the best alignment given the current

d(`i, xj) with hard EM, we can solve the following contin-

uous relaxation:

 �(`, X) = min �{hY,∆(`, X)i, Y 2 Y}. (6)

Here min�{} is the continuous relaxation of regular min-

imum operator regularized by negative entropy H(q) =
�
P

q log(q) with a smoothing parameter � � 0, such that

min �{a1, · · · , an} =

(

minin ai, � = 0

�� log
Pn

i=1 e
�ai/� , � > 0

. (7)

This transforms the dynamic programming based DTW loss

function into a differentiable one with respect to d(`i, xj)
when � > 0. The smoothing parameter � empirically helps

the optimization although it does not explicitly convexify

the objective function. The gradient of Eq. (6) can be de-

rived using the chain rule:

rX �(`, X) =

✓

@∆(`, X)

@X

◆T
P

Y 2Y e�hY,∆(`,X)i/�Y
P

Y 2Y e�hY,∆(`,X)i/�
, (8)

where the second term on the right can be interpreted as

the average alignment matrix under the Gibbs distribution

p� / e�hY,∆(`,X)i/� , 8Y 2 Y . Algorithm 1 summarizes

the procedure for computing  �(`, X) and its gradient.

We can interpret �(`, X) as the expectation cost over all

possible alignments between transcript ` and video X . Its

gradient rX � can be seen as a relaxed version of the hard

alignment Y ⇤ in Eq. (2). With the continuous relaxation in

Eq. (6), we can directly compute the gradient and optimize

for Eq. (5). This addresses the challenge of getting degen-

erated alignments due to numerically unstable operations in

hard EM. By substituting p(X|`) in Eq. (5) with our relaxed

alignment cost  �(`, X), we obtain the discriminative and

differentiable loss function LD3TW:

LD3TW(`+, X) =
X

`−⇠L\`+

max( �(`
+
, X)�  �(`

�
, X),�).

(9)
Directly minimizing Eq. (9) enables our model to simul-

taneously optimize for finding the best alignment and dis-

criminating the most accurate transcript given the observed

video sequence. The differentiablity of Eq. (9) allows gra-

dients to backpropogate through the entire model and fine-

tune the distance function d(`i, xj) for the distance matrix

∆(`, X) in the alignment task with end-to-end training.

Algorithm 1 Compute alignment cost  �(`, X) and its gra-

dient rX �(`, X)

1: Inputs: `, X , smoothing parameter � � 0, distance function

d

2: procedure FORWARD PASS

3: v[0,0]  0
4: v[:,0], v[0,:]  inf
5: for i = [1, · · · , L]; j = [1, · · · , T ] do

6: v[i,j]  d[i,j] +min�(v[i,j�1], v[i�1,j�1])
7: q[i,j,:]  rmin�(v[i,j�1], v[i�1,j�1])

8: procedure BACKWARD PASS

9: q[:,T+1,:], q[L+1,:,:]  0
10: r[:,T+1], r[L+1,:]  0
11: q[L+1,T+1,:], r[L+1,T+1]  1
12: for j = [T, · · · , 1]; i = [L, · · · , 1] do

13: r[i,j]  q[i,j+1,1]r[i,j+1] + q[i+1,j+1,2]r[i+1,j+1]

14: Returns:  � = v[L,T ],rX � = r[1:L,1:T ]

3.2.4 Learning and Inference

Distance Function Parameterization. In this paper, we

use a Recurrent Neural Network (RNN) with a softmax

output layer to parameterize our distance function d(`i, xj)
given video frames as input. Let Z = [z1, · · · , zT ] 2 R

A⇥T

be the RNN output at each frame, where A = |A| is the

number of possible actions. p(k|xt) = zkt can be in-

terpreted as the posterior probability of action k at time

t. We follow [29] and approximate emission probability

p(xt|k) /
p(k|xt)
p(k) , where p(k) is the action class prior. Ac-

tion class priors are uniformly initialized to 1
A and updated

after every batch of iterations by counting and normalizing

the number of occurrences of each action class that have

been processed so far during the training process.

Inference for Action Segmentation. At test time we want

our model to predict the best action labels a = [a1, · · · , aT ]
given only an unseen test video Xtest = [x1, · · · , xT ].
We disentangle the action segmentation task into two com-

ponents: First, we generate a set of candidate transcripts

� = {`1, · · · , `m} ⇢ L following [29], where L represents

the set of all possible transcripts. Then we align each of the

candidate transcripts to the unseen test video Xtest to find

the transcript ˆ̀ that minimizes the alignment cost  � :

ˆ̀= argmin
`2�

 �(`, Xtest). (10)

The predicted alignment Ŷ and associated frame-level ac-

tion labels â is given by r �(ˆ̀, X).

4. Experiments

The key contribution of D3TW is to apply discrimina-

tive, differentiable, and dynamic alignment between weak

labels and video frames. In this section, we evaluate
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the proposed model on two challenging weakly supervised

tasks, action segmentation and alignment in two real-world

datasets. In addition, we study how our model’s segmen-

tation performance varies with more supervision. Through

ablation study, we further investigate the effectiveness of

the proposed D3TW and compare our approach to current

state-of-the-art methods.

Datasets and Features. Breakfast Action [20] consists

of 1,712 untrimmed videos of 52 participants cooking 10

dishes, such as fried eggs, in 18 different kitchens. Over-

all, there are around 3.6M frames labeled with 48 possible

actions. The dataset has been used widely for weakly super-

vised action labeling [7, 15, 28, 29]. For a fair comparison,

we use the pre-computed features and data split provided

by [20]. Hollywood Extended [3] consists of 937 videos

containing 2 to 11 actions in each video. Overall, there are

about 0.8M frames labeled with 16 possible actions, such as

open_door. We use the feature and follow the data split

in [3] for a fair comparison.

Network Architecture. We use single layer GRU [12]

with 512 hidden units. We optimize with Adam [18] and

cross-validate the hyperparameters such as learning rate and

batch size.

Frame Sub-sampling. For faster training and inference, we

temporally sub-sample feature vectors in Breakfast Action.

Following [15], we cluster visually similar and temporally

adjacent frames using k-means, where T
M centers are tem-

porally uniformly distributed as initialization. We empiri-

cally pick M = 20, which is much shorter than the average

length of action (⇠400 frames in the Breakfast dataset). No

further pre-processing is required for Hollywood Extended

dataset as the feature vectors are already sub-sampled.

Baselines. We compare to the following six baselines:

- ECTC [15] does not rely on hard-EM. However, it uses

non-differentiable DP based algorithm to compute its gra-

dients. In addition, it does include explicit models for the

Breakfast Hollywood

Facc. Uacc. Facc. Uacc.

ECTC[15] 27.7 35.6 - -

GRU reest.[28] 33.3 - - -

TCFPN[7] 38.4 - 28.7 -

NN-Viterbi[29] 43.0 - - -

Ours w/o D3TW 34.9 36.1 25.9 24.3

Ours w/o Discriminative 38.0 38.4 30.0 28.3

Ours (D3TW) 45.7 47.4 33.6 30.5

Table 1. Weakly supervised action segmentation results in the

Breakfast and Hollywood datasets. The use of both differentiable

relaxation and discriminative modeling leads to the success of our

D3TW and set our approach apart from previous approaches using

ordering supervision.

context between classes.

- GRU reest. [28] uses hidden Markov models and train

their systems iteratively to reestimate the output.

- TCFPN [7] is also based on action alignment. However, it

uses an iterative framework that is neither differentiable nor

discriminative like D3TW.

- NN-Viterbi [29] is the most similar to ours, and can be seen

as an ablation without discriminative modeling and with-

out differentiable loss. However, our RNN takes the whole

video as input instead of segments of the videos.

- Ours w/o D3TW is our model without using D3TW but in-

stead uses an iterative strategy similar to NN-Viterbi [29].

This ablation shows our model’s performance without dis-

criminative and differentiable modeling.

- Ours w/o Discriminative is compared to show the im-

portance of discriminative modeling for weakly supervised

learning. Compared to Ours w/o D3TW, this model use a

differentiable relaxation of Eq. (3) as the objective.

4.1. Weakly Supervised Action Segmentation

In the segmentation task, the goal is to predict frame-

wise action labels for unseen test videos without any an-
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Recipe ∆Facc. Correct Predictions False Positives False Negatives

Sandwich +24.7%

Cereals +19.9%

Pancake +0.2%

Scrambled

Egg

−0.8%

Figure 6. Qualitative results show the importance of discriminative modeling. We calculate ∆Facc., the absolute difference in frame

accuracy between Ours D3TW and Ours w/o Discriminative. Discriminative modeling is able to improve the performances on almost all

recipes or activities in the Breakfast dataset. In Pancake (row 3) and Scrambled Egg (row 4) where D3TW does not achieve a significant

improvement, we see the challenge of cooking steps that are extremely similar from a further viewpoint. When cooking steps are distinct

such as Sandwich (row 1) and Cereals (row 2), our D3TW is able to substantially improve the performance of frame accuracy by over 20%.

notation. Weakly supervised action segmentation is chal-

lenging as the target output is never used in training. As

discussed in Section 3.2.4, we reduce the segmentation task

to the alignment task by first finding the predicted transcript
ˆ̀ that maximizes the likelihood in Eq. (10) given a set of

candidate transcripts �, and then deriving the frame-wise

labels from the alignment between ˆ̀ and video X . For a

fair comparison, we follow [29] and set � to be the set of all

transcripts seen in training time.

Metrics. We follow the metrics used in the previous

work [20] to evaluate predicted frame-wise action labels.

The first is frame accuracy, the percentage of frames that

are correctly labeled. The second is unit accuracy, which

is metric similar to the word error rate in speech recogni-

tion [19]. The output action label sequence is first aligned

to the ground truth label sequence by vanilla dynamic time

warping (DTW) before the error rate is computed.

Results. The results of weakly supervised action segmen-

tation are shown in Table 1. First, by explicitly modeling

for the context between classes and their temporal progres-

sion, both GRU reest [28] and NN-Viterbi [29] are able

to outperform ECTC by a large margin [15]. In addition,

we can see that using alignment is an effective strategy

based on TCFPN [7]. Ours w/o D3TW is able to combine

these strengths and perform reasonably well compared to

the state-of-the-art approaches. Ours w/o Discriminative

further improves on all metrics by using the differentiable

relaxed loss function with better numerical stability. Most

importantly, our full model using D3TW is able to combine

the benefits of differentiable loss with discriminative mod-

eling and significantly outperforms all the baselines and

achieve state-of-the-art results on all metrics. This shows

the importance of both components of our proposed D3TW

model. Fig. 5 shows a qualitative comparison of models

on a video making sandwich. Colors indicate different ac-

tions, and the horizontal axis is time. Ours D3TW is the only

model that correctly captures all the occurring actions with

discriminative modeling. In addition, this also leads to more

accurate boundaries of actions. Comparing NN-Viterbi and

Ours w/o Discriminative shows the benefit of the differen-

tiable model that leads to better action boundaries. In addi-

tion, we further illustrate the importance of discriminative

modeling in Fig. 6 by comparing our full model with Ours

w/o Discriminative and show the Correct Prediction, False

Positives, and False Negatives of our model. As shown in

the figure, discriminative modeling almost improves all 10

dishes in the Breakfast dataset, with the only exception of

Scrambled Egg that the D3TW is lower by a neglectable

0.2% for the frame accuracy. We can see that for the dishes

or activities of Pancake and Scrambled Egg that our D3TW

does not improve much, the false positives are visually very

similar to the correct prediction and lead to challenges of

aligning the video with the transcript. On the other hand,

for activities such as Sandwich and Cereals that involves

distinct steps, our D3TW significantly improves the perfor-

mance of the model by over 20% of frame accuracy. In ad-

dition, if we look at the False Positives of Cereals, it is only

fails because it is inherently difficult to distinguish visually

similar actions of pouring cereals versus pouring flour from

an obstructed viewing angle.

4.2. Semi-Supervised Action Segmentation

In contrast to most baselines, our formulation of weakly

supervised action alignment based on DTW can easily in-

corporate any additional frame supervision by imposing

path constraints in the calculation of  � . This is also

called the frame-level semi-supervised setting, as proposed

in [15]. In semi-supervised setting, only a few frames in the

video are sparsely annotated with the ground truth action,

which is much easier for the annotator to annotate.

In this setting, we only compare to ECTC as it is the only

baseline that allows this experiment. We further compare to
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Figure 7. Frame and unit accuracy are plotted against a fraction of

labeled data in the frame-level semi-supervised setting for Break-

fast dataset. Our DTW based formulation allows the frame-level

supervision to be easily incorporated as the path constraints in dy-

namic programming. Our differentiable and discriminative mod-

eling is able to lead to better performances on both metrics even in

the semi-supervised setting.

the “Uniform” baseline that was discussed in [15], where

the model uses pseudo labels generated by uniformly dis-

tributing the transcript following the order. The results for

frame-level semi-supervised action segmentation is shown

in Fig. 7. We can see that the proposed D3TW is also able to

significantly improve performances in the semi-supervised

setting. This again shows the importance of both the differ-

entiable loss function and the discriminative modeling.

4.3. Weakly Supervised Action Alignment

In this task, the goal is to align the given transcript to its

proper temporal location in the test video. Our D3TW for-

mulation is designed to directly optimize for action align-

ment with only weak supervision. In this case, we always

have the ground truth transcript `+ and does not have to

search using Eq. (10). It is noteworthy that the result from

alignment can be interpreted as an empirical upper bound

for our model’s performance in action segmentation.

Metrics. The primary goal of this experiment is to evalu-

ate our model on aligning ground truth transcript to input

video frames. We use metrics such as frame accuracy that

measures the exact temporal boundaries in predictions. We

drop unit accuracy as its use of DTW inevitably obfuscates

the exact temporal boundaries. In addition to frame accu-

racy, we also measure the alignment quality with intersec-

tion over detection (IoD) following [3]. Given a ground-

truth action interval I⇤ and a prediction interval I , IoD is

defined as
|I\I∗|
|I| . Readers should note that IoD is some-

Breakfast Hollywood

Facc. IoD Facc. IoD

ECTC[15] (from [7]) ⇠35 ⇠45 - ⇠41

GRU reest.[28] - 47.3 - 46.3

TCFPN[7] 53.5 52.3 57.4 39.6

NN-Viterbi[29] - - - 48.7

Ours w/o D3TW 42.8 49.5 51.2 47.2

Ours w/o Discriminative 52.3 47.6 51.8 46.9

Ours (D3TW) 57.0 56.3 59.4 50.9

Table 2. Weakly supervised action alignment results. Compared

to segmentation, the ground-truth transcript is given for the align-

ment, and thus the performances are higher. Nevertheless, both

the differentiable relaxation and discriminative modeling are still

beneficial for this task and lead to state-of-the-art results.

times referred as Jaccard measure [3, 29]. The value of IoD

is between 0 to 1 and the higher the better. We report the

IoD averaged across all ground-truth intervals in the test set.

Results. The results for weakly supervised action align-

ment are shown in Table 2. We can see that the performance

of all the baselines improves in terms of frame accuracy, this

is because we have more information about the video in ac-

tion alignment at test time. This also implies that the gap

between different methods might be smaller. However, we

observe the same trend as seen in action segmentation that

the proposed D3TW is able to significantly outperform all

the baselines on the metrics and achieve state-of-the-art re-

sult. This experiment once again validates that the use of

both differentiable loss and discriminative modeling is im-

portant for our model’s success.

5. Conclusion

We propose D3TW, the first discriminative framework

for weakly supervised action alignment and segmentation.

The key observation of our work is to use discriminative

modeling between the positive and negative transcripts and

bypass the problem of the degenerated sequence. The ma-

jor challenge is that the dynamic programming based loss

is often non-differentiable. We address this by proposing

a continuous relaxation that allows D3TW to directly opti-

mize for the discriminative objective with end-to-end train-

ing. Our results and ablation studies show that both the dis-

criminative modeling and the differentiable relaxation are

crucial for the success of D3TW, which achieves state-of-

the-art results in both segmentation and alignment on two

challenging real-world datasets. Our D3TW framework is

general and can be extended to other tasks that require prior

structures in the output and end-to-end differentiability.
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