
Camera Lens Super-Resolution

Chang Chen Zhiwei Xiong∗ Xinmei Tian Zheng-Jun Zha Feng Wu

University of Science and Technology of China

Abstract

Existing methods for single image super-resolution (SR)

are typically evaluated with synthetic degradation models

such as bicubic or Gaussian downsampling. In this paper,

we investigate SR from the perspective of camera lenses,

named as CameraSR, which aims to alleviate the intrinsic

tradeoff between resolution (R) and field-of-view (V) in real-

istic imaging systems. Specifically, we view the R-V degra-

dation as a latent model in the SR process and learn to re-

verse it with realistic low- and high-resolution image pairs.

To obtain the paired images, we propose two novel data ac-

quisition strategies for two representative imaging systems

(i.e., DSLR and smartphone cameras), respectively. Based

on the obtained City100 dataset, we quantitatively analyze

the performance of commonly-used synthetic degradation

models, and demonstrate the superiority of CameraSR as

a practical solution to boost the performance of existing

SR methods. Moreover, CameraSR can be readily gener-

alized to different content and devices, which serves as an

advanced digital zoom tool in realistic imaging systems.

1. Introduction

Single image super-resolution (SR) is a typical inverse

problem in computer vision. Generally, SR methods as-

sume bicubic or Gaussian downsampling as the degradation

model [33]. Based on this assumption, continuous progress

has been achieved to restore a better high-resolution (HR)

image from its low-resolution (LR) version, in terms of re-

construction accuracy [9,13,15,17,23,25,27,31,32,35,36]

or perceptual quality [2, 3, 5, 12, 16, 22, 28]. However, these

synthetic degradation models may deviate from the ones in

realistic imaging systems, which results in a significant de-

terioration on the SR performance [20]. To better simulate

the challenging real-world conditions, additional factors in-

cluding noise, motion blur, and compression artifacts are in-

tegrated to characterize the LR images in either a synthetic

[26] or a data-driven [4] manner. These modified degrada-

tion models promote the SR performance of learning-based
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(a) (b)

Figure 1. (a) Resolution-FoV (R-V) degradation. Zooming out the

optical lens in a DSLR camera, the FoV is enlarged at the cost

of resolution loss. (b) Aligned realistic LR-HR image pair after

rectification. LR image is displayed after interpolation for a side-

by-side comparison. (Bicubic interpolation is used throughout this

paper unless noted otherwise.)

methods when the LR images indeed have corresponding

degradations.

In this paper, we investigate SR from the perspective of

camera lenses, named as CameraSR, which aims to alleviate

the intrinsic tradeoff between resolution (R) and field-of-

view (FoV, V for short hereafter) in realistic imaging sys-

tems. An instance of the R-V tradoff is shown in Fig. 1(a).

When zooming out the optical lens in a DSLR camera, the

obtained image has a larger FoV but loses details on sub-

jects; when zooming in the lens, the details of subjects show

up at the cost of a reduced FoV. This R-V tradeoff also ap-

plies to cameras with fixed focal lenses such as those on

smartphones when the shooting distance changes. Inspired

by learning-based single image SR, we view the R-V degra-

dation (i.e., resolution loss due to enlarged FoV) as a latent

model in the SR process and learn to reverse it with a num-

ber of LR-HR image pairs. Specifically, we define a subject

captured at a long focal length or a short distance as the

HR ground truth, and the same one captured at a short focal

length or a long distance as its paired LR observation.

To obtain such paired images, we first use a DSLR cam-

era mounted on a tripod with a zoom lens. To avoid the out-

of-focus blur, we adopt a small aperture size and capture
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(a) HR Ground Truth

PSNR

(b) Bicubic Downsampling

28.56 dB

(c) R-V Degradation

27.22 dB

Figure 2. Visual comparison between the LR image with bicubic

downsampling and the realistic LR image with R-V degradation

(both are displayed after interpolation). The latter loses more in-

formation than the former in visual compared with the HR ground

truth, which is also quantitatively verified by PSNR.

100 city scenes printed on postcards as the subjects which

can be well focused at different focal lengths. In practice,

however, several issues due to the mechanical zoom pro-

hibit the direct use of the captured raw data, including spa-

tial misalignment, intensity variation, and color mismatch-

ing. After addressing these issues through an elaborate

data rectification pipeline, we build a dataset consisting of

100 aligned image pairs named “City100”. An example is

shown in Fig. 1(b). Following the same pipeline, we then

obtain a variant of City100 by using a smartphone camera

mounted on a translation stage with a fixed focal lens. The

City100 dataset, together with its smartphone version, char-

acterizes the R-V degradation in two representative realistic

imaging systems.

Based on City100, we conduct a quantitative analysis on

the commonly-used synthetic degradation models, in terms

of both LR observations and SR results. Take the bicubic

downsampling as an example, due to the underestimation

of R-V degradation (as shown in Fig. 2), it results in a sig-

nificant deterioration on the SR performance (as shown in

Fig. 3). This analysis validates the importance of degra-

dation modeling for the resolution enhancement in realistic

imaging systems. Observing the disadvantage of synthetic

degradation models, we propose CameraSR as a practical

solution to boost the performance of existing SR methods,

by learning the R-V degradation from City100. Compre-

hensive experiments demonstrate that CameraSR achieves a

significant improvement of SR results compared with those

using synthetic degradation models.

More importantly, we demonstrate that CamereSR has a

favorable capability of generalization in terms of both con-

tent and device. Specifically, an SR network trained on

City100 can be readily generalized to other scene content,

as well as to other type of devices belonging to the same cat-

egory of imaging systems (e.g., from Nikon to other DSLRs

and from iPhone to other smartphones). By effectively alle-

viating the R-V tradeoff or even breaking the physical zoom

(a) (b) (c) (d)

Figure 3. An example to show the performance deterioration due to

improper degradation modeling (bicubic downsampling here). (a)

An image captured by a DSLR camera. (b) Interpolated result. (c)

SR result using VDSR [13] trained under bicubic downsampling.

(d) SR result using VDSR trained under R-V degradation.

ratio of an optical lens in realistic imaging systems, Cam-

eraSR could find a wide application in practice as an ad-

vanced digital zoom tool.

Contributions of this paper are summarized as follows:

• A new perspective, i.e., R-V degradation of camera

lenses, for SR modeling in realistic imaging systems.

• Two novel strategies for acquiring LR-HR image pairs

as in City100 to characterize the R-V degradation un-

der DSLR and smartphone cameras, respectively.

• Quantitative analysis on the commonly-used synthetic

degradation models using realistic data.

• An effective solution, i.e., CameraSR, to promote ex-

isting learning-based SR methods in realistic imaging

systems.

2. Related Work

Recent years have seen a remarkable improvement in

single image SR. To promote the reconstruction accuracy,

increasingly more learning-based methods adopt the con-

volutional neural network (CNN) following the seminal

work of SRCNN [6]. For instance, Kim et al. proposed

VDSR [13] which deepens the network for accuracy with

the residual learning. Lai et al. proposed LapSRN [15]

which improves the SR results at large scale factors with the

Laplacian pyramid structure. Furthermore, various mecha-

nisms have been integrated into the network design to ad-

vance the SR performance, such as sparsity [30], contigu-

ous memory [36], deep supervision [27], recursion [14,25],

back-projection [9], information distillation [10], and atten-

tion [35]. Different from the above methods, Ledig et al.

proposed SRGAN [16] which is optimized for perceptual

quality instead of reconstruction accuracy. Along this line,

Sajjadi et al. proposed EnhanceNet [22] which promotes the

quality of texture synthesis with a perceptual loss. Wang et
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al. proposed SFTGAN [28] which integrates a spatial fea-

ture transform layer into GAN [8] to further enhance the SR

performance. However, most existing learning-based meth-

ods adopt a synthetic degradation model (e.g., bicubic or

Gaussian downsampling) when formulating the SR prob-

lem, which hinders their performance in realistic imaging

systems with much more complicated degradation.

There are a few works that involve realistic degrada-

tion modeling for single image SR. For instance, Timofte et

al. introduced more degradation operators into the bicubic-

downsampled LR images, including motion blur and Pois-

son noise [26]. Bulat et al. defined the LR face images with

the low-quality assumptions (e.g., noise, blur, and compres-

sion artifacts) and trained a GAN [8] to learn the degra-

dation process [4]. On the other hand, as a self-similarity

based method, Michaeli and Irani adaptively estimated the

degradation model relying on the inherent recurrence of the

input image [20]. Shocher et al. further optimized an image-

specific CNN with examples solely extracted from the input

image [23].

Different from the above approaches, our proposed Cam-

eraSR models the R-V degradation from the perspective of

camera lenses. The estimation of R-V degradation neither

relies on the low-quality assumptions nor the inherent re-

currence of LR images. Instead, it is characterized by the

samples captured with realistic imaging systems. Such a

degradation modeling is inspired by the prior work for re-

alistic image denoising [21], where a subject captured at a

high ISO value is defined noisy and the same one captured

at a low ISO value is defined clean. We extend this defini-

tion to the SR scenario, which addresses the key challenge

of obtaining realistic LR-HR image pairs. Note that the fo-

cus of this paper is not the network design. For the com-

parison purpose, we adopt VDSR [13] and SRGAN [16] as

two representative embodiments to demonstrate the effec-

tiveness and generalizability of CameraSR, which can be

replaced with any CNN-based methods.

3. Problem Formulation

Consider again taking photos using a DSLR camera with

an optical zoom lens. Zooming out the lens derives a larger

FoV at the cost of resolution loss on the subject. Denote this

R-V degradation as DRV (·), our goal is to obtain a function

S(·) that reverses DRV (·) for realistic image SR. This prob-

lem can be formulated as

X̂ = S(DRV (X)), (1)

where X denotes the original image and X̂ denotes the

super-resolved one. Compared with previous SR formula-

tions, the only difference lies in the modeling for the degra-

dation process. For instance, the bicubic downsampling

DBic(·) formulates the SR problem as X̂ = S(DBic(X))

and the Gaussian downsampling as X̂ = S(DGau(X)). For

the more complicated degradation model imposed in [26], it

is X̂ = S(DBlur(DBic(X)) + v), where DBlur(·) denotes

a blurring operator and v denotes a certain kind of noise.

Unlike the synthetic degradation models as mentioned

above, it is difficult to derive an analytic expression for

DRV (·). Inspired by learning-based SR, we view the R-

V degradation as a latent model D̂RV (·) in the SR pro-

cess and directly learn the parametric SR function SΘ(·)
with N pairs of realistic LR (Y = {Y1, Y2, ..., YN}) and

HR (X = {X1, X2, ..., XN}) samples, which can be repre-

sented as

X̂ = SΘ(D̂RV (X)), (2)

where D̂RV (·) is subject to Y = D̂RV (X). With the in-

crease of the number of samples N , we have D̂RV (·) →
DRV (·). Then, SΘ(·) can be optimized with a loss function

L(·) as

min
Θ

1

n

n∑

i=1

L(Xi − SΘ(Yi)), (3)

where Θ denotes a set of trainable parameters and n denotes

the size of mini-batch when optimizing Θ with the stochas-

tic gradient descent algorithm.

This is the main idea of CameraSR, which will be de-

tailed in Sec. 5.2. While the problem formulation is quite

intuitive, the key challenge is, how to obtain the LR-HR im-

age pairs in realistic imaging systems?

4. Data Acquisition

4.1. DSLR imaging system

To capture the realistic LR-HR image pairs, we use a

Nikon D5500 camera mounted on a tripod with a Zoom-

Nikkor lens, whose focal length ranges from 18mm to

55mm. We define an image captured at 55mm focal length

as the HR ground truth and the one captured at 18mm focal

length as the LR observation. To alleviate the influence of

noise, the ISO value is set to the lowest level. The other

settings such as white balance and aperture size are fixed

for each capture. In practice, however, we observe sev-

eral issues for prohibiting the direct use of the captured

raw data, including spatial misalignment, intensity varia-

tion, and color mismatching. It is probably due to the

fact that the change of focal length is a mechanical pro-

cess which cannot be ideally controlled. It thus results in

slight dithering of the camera body as well as the exposure

configuration. To address these issues, we elaborate a data

rectification pipeline.

First, we model the spatial misalignment as a global 2D

translation inspired by [11]. Specifically, we compute and

match SIFT key-points [18] between the HR images and

the interpolated LR ones. Then, the matched coordinates

are used to estimate a homography using RANSAC [7].
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Figure 4. Color calibration. The mean values obtained from each

color blocks are adopted to fit three polynomial curves (c) for color

calibration, from the LR observation (a) to its HR ground truth (b).

Having the translation parameters, we shift the LR images

through interpolation to obtain the aligned results. Note that

the interpolation will introduce some smoothing effects, but

not critical for the already interpolated LR images which

contain relatively fewer high frequencies. We avoid shift-

ing the HR images since they contain a lot of desired de-

tails. Second, we model the intensity variation as a bias

in the DC component of an image and estimate it by aver-

aging the pixel intensities in the whole image. Then, we

use the estimated bias to compensate this variation. Third,

we model the color mismatching as a parametric non-linear

mapping and fit it with polynomial parameters for calibra-

tion by leveraging a color checkerboard, as shown in Fig. 4.

Specifically, we collect and average pixel values in each

block from the color checkerboard to obtain paired samples

from the LR observation to its HR ground truth. Then, we

fit three polynomial curves for R, G, and B channels using

the collected samples, respectively. Finally, we map pixels

in LR observations using the obtained polynomial curves.

After the above data rectification, we build a City100

dataset using the DSLR camera, in which 100 city scenes

printed on high-quality postcards are adopted as the sub-

jects. The plane shape of postcards guarantees that the

whole image can be well focused under a small aperture size

at both long and short focal lengths, which avoids the out-

of-focus blur. The resolution of final HR images in City100

is 1218 × 870, which is 2.9 times of the LR ones. Images

from City100 have diverse colors and contents, which facil-

itate leaning-based SR. An overview of the City100 dataset

is shown in the supplementary document.

4.2. Smartphone imaging system

Different from the zoom lenses in professional DSLR

cameras, commodity smartphone cameras are generally

equipped with prime lenses whose focal length cannot

change. In this sense, the realistic degradation modeling

is even more meaningful to smartphones, where CameraSR

can serve as a powerful digital zoom tool. However, lim-

ited by the fixed focal lens, LR-HR image pairs for smart-

phone cameras cannot be captured with the same strategy

as for DSLR cameras. Alternatively, we develop another

strategy for obtaining the smartphone version of City100,

A B

Figure 5. Acquisition strategy for the smartphone version of City

100. Translating the smartphone away from a subject (from A to

B), the effective resolution is decreased due to the enlarged FoV

(R-V degradation).

as shown in Fig. 5. An iPhone X mounted on a transla-

tion stage is used for data acquisition, and the position of

iPhone relative to the translation stage can be precisely ad-

justed. We define an image captured at a short distance as

the HR ground truth, and the one captured at a long distance

as the LR observation. To avoid the “intelligent” exposure

configuration by the smartphone itself, we use the ProCam1

software to manually control the settings such as ISO, white

balance, exposure time and so on. The data rectification

pipeline for smartphone is similar to that for DSLR as de-

tailed in Sec. 4.1. In addition, considering that smartphone

images have notably heavier noise than DSLR images due

to the much smaller sensor size, we repeat the capture of

each scene 20 times and average the resulting images to al-

leviate the influence of noise. The resolution of final HR

images is 2.4 times of the LR ones.

It is worth mentioning that, the City100 dataset and its

smartphone version are obtained by two representative re-

alistic imaging systems, i.e., DSLR and smartphone. Al-

though two specific devices, i.e., Nikon D5500 and iPhone

X are used here, the trained CameraSR network has a favor-

able capability of generalization and can be readily applied

to different devices belonging to the same category of imag-

ing systems (as detailed in Sec. 6.2).

5. Analysis on Degradation Models

In this section, our goal is to quantitatively analyze the

performance of commonly used synthetic degradation mod-

els DBic(·) and DGau(·), in comparison with the realistic

R-V degradation DRV (·) based on the paired samples from

our developed City100 dataset. Since DRV (·) has not an

analytic expression, it is difficult to conduct direct compar-

isons between them. Thus, we turn to the corresponding LR

observations and SR results for quantitative comparisons.

5.1. LR observation

Given an HR image X from City100, the LR observa-

tions are obtained by DBic(X), DGau(X), and DRV (X)
(i.e., the paired Y from City100), respectively. As demon-

strated in Fig. 2, DBic(·) underestimates the degradation

1https://www.procamapp.com
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Test image
Interpolated LR BicubicSR GaussianSR CameraSR

PSNR / SSIM / Ma’s / VGG PSNR / SSIM / Ma’s / VGG PSNR / SSIM / Ma’s / VGG PSNR / SSIM / Ma’s / VGG

St. Petersb. 28.74 / 0.8630 / 3.58 / 0.8543 29.69 / 0.8874 / 5.05 / 0.7756 29.61 / 0.8934 / 6.16 / 0.7019 31.00 / 0.9116 / 6.58 / 0.4791

Dubai 30.21 / 0.8443 / 3.37 / 0.5650 30.91 / 0.8599 / 4.73 / 0.4193 30.71 / 0.8603 / 5.86 / 0.3856 31.94 / 0.8788 / 6.74 / 0.3390

Venice 26.52 / 0.7317 / 3.58 / 0.9654 27.25 / 0.7686 / 4.43 / 0.8254 27.21 / 0.7813 / 5.93 / 0.7798 28.19 / 0.8062 / 6.71 / 0.6167

Rome 30.65 / 0.8654 / 3.60 / 0.3825 31.45 / 0.8806 / 4.77 / 0.3625 30.99 / 0.8768 / 6.17 / 0.3525 33.04 / 0.9039 / 6.68 / 0.2891

New York 24.62 / 0.7520 / 3.83 / 1.1808 25.55 / 0.7921 / 4.85 / 1.1528 26.06 / 0.8113 / 5.85 / 1.1345 27.14 / 0.8416 / 6.76 / 0.8381

Average 28.15 / 0.8113 / 3.59 / 0.7896 28.97 / 0.8377 / 4.77 / 0.7071 28.92 / 0.8446 / 5.99 / 0.6709 30.26 / 0.8684 / 6.69 / 0.5124

Table 1. Quantitative results of SR on the five test images from City100 (as shown in Fig. 7). PSNR and SSIM [29] (the higher, the better)

are adopted for the evaluation of reconstruction accuracy (VDSR [13] network). Ma’s metric [19] (the higher, the better) and the VGG

metric (the lower, the better) are adopted for the evaluation of perceptual quality (SRGAN [16] network). We denote the Euclidean distance

between SR results and ground truth in the feature space of a trained VGG-19 [24] network as the VGG metric (×10e4) [34].

(a) (b)

Figure 6. Analysis on the synthetic degradation models. (a) In-

vestigation on the LR observations from City100. The PSNR is

calculated between an interpolated LR image and its HR ground

truth. (b) Investigation on the SR results from test set (as shown

in Fig. 7). VDSR [13] is adopted as a representative network for

BicubicSR, GaussianSR, and CameraSR. Although the Gaussian

downsampling matches the degradation level of the realistic LR

observation at the red points, the reconstruction accuracy of Gaus-

sianSR still has a gap compared with CameraSR. It reveals the

disadvantage of synthetic degradation models.

level of DRV (·), which results in a significant deterioration

on the SR performance as shown in Fig. 3.

Besides DBic(·), we further investigate DGau(·). In

practice, the Gaussian downsampling first blurs X with a

Gaussian filter and then conducts pixel decimation at des-

ignated scale factors. To match the scale factor of sam-

ples from City100, we adapt DGau(·) for ×2.9 downsam-

pling by first interpolating an image X 3/2.9 times fol-

lowed by a ×3 decimation. In contrast to the bicubic

downsampling, the Gaussian downsampling is more flexi-

ble as its kernel size k × k and standard deviation σ can

be manually controlled. Here, we consider an ideal con-

dition when the degradation level of DGau(X) matches

DRV (X) in terms of the LR observation. To this end, we

traverse k and σ as shown in Fig. 6(a). After interpolat-

ing DGau(X) and DRV (X) to the same resolution as X ,

we calculate the mean PSNR between them on City100 and

find two matched parameters at the red points (with k1 = 5,

σ1 = 2.65 and k2 = 7, σ2 = 1.55), which are adopted as

the representatives of DGau(·).

St. Petersburg Dubai Venice Rome New York

Figure 7. Thumbnails of the five test images from City100.

5.2. SR result

Obtained the LR observations, we then evaluate the

performance of different degradation models on the SR

results, by comparing S(DBic(X)), S(DGau(X)), and

S(DRV (X)) to the ground truth X . We name the cor-

responding SR processes as BicubicSR, GaussianSR, and

CameraSR for short, respectively. To train an SR network,

we split City100 into two parts: 5 selected pairs for test

(as shown in Fig. 7) and the other 95 pairs for training.

Among the training set, 5 images are used for validation.

For the baseline network, we adopt two representative CNN

architectures considering the perception-distortion tradeoff

reported in [1]. For reconstruction accuracy, we adopt the

VDSR network [13] with a mean square loss

LMSE = ||SΘ(D(x))− x||22, (4)

where x denotes an image patch cropped from X on

City100, D(·) denotes the a certain degradation model, and

SΘ(·) denotes the parametric SR network.

For perceptual quality, we adopt the SRGAN network

[16] with a combined loss

LComb = LMSE + LV GG + 10e−3LGen, (5)

where the VGG loss LV GG represents the pixel-wise dis-

tance in the feature space φ(·) of a VGG-19 network [24]

LV GG = ||φ(SΘ(D(x)))− φ(x)||22, (6)

and the generative loss LGen is defined based on the proba-

bility of a discriminator DΘ′(·) as

LGen = −logDΘ′(SΘ(D(x))), (7)
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Ground Truth HR

(PSNR / SSIM)

Interpolated LR

(24.62 / 0.7520)

BicubicSR

(25.55 / 0.7921)

GaussianSR

(26.06 / 0.8113)

CameraSR

(27.14 / 0.8416)

Ground Truth HR

(PSNR / SSIM)

Interpolated LR

(28.15 / 0.8113)

BicubicSR

(28.97 / 0.8377)

GaussianSR

(28.92 / 0.8446)

CameraSR

(30.26 / 0.8684)

Figure 8. Visual comparison of SR results under different degradation models in terms of reconstruction accuracy (VDSR [13] network).

PSNR and SSIM [29] (the higher, the better) are adopted for evaluation metrics.

Ground Truth HR

(VGG / Ma’s metric)

Interpolated LR

(0.8543 / 3.58)

BicubicSR

(0.7756 / 5.05)

GaussianSR

(0.7019 / 6.16)

CameraSR

(0.4791 / 6.58)

Ground Truth HR

(VGG / Ma’s metric)

Interpolated LR

(0.9654 / 3.58)

BicubicSR

(0.8254 / 4.43)

GaussianSR

(0.7798 / 5.93)

CameraSR

(0.6167 / 6.71)

Figure 9. Visual comparison of SR results under different degradation models in terms of perceptual quality (SRGAN [16] network). The

VGG metric [24] (the lower, the better) and the Ma’s metric [19] (the higher, the better) are adopted for evaluation.

where DΘ′(·) denotes the probability that a reconstructed

image SΘ(D(X)) is a natural one. The generative compo-

nent SΘ(·) and the discriminator DΘ′(·) are trained in an

adversarial manner [8].
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(a) Captured at 18mm focal length (b) Captured at 55mm focal length

(c) From top to bottom: Interp. LR, BicubicSR, GaussianSR, CameraSR

Figure 10. Visual comparison of SR results on images captured

by Nikon D5500. SR models are trained on City100 using the

VDSR [13] network.

Then, we train two sets of SR networks for DBic(·),
DGau(·), and DRV (·) based on City100, respectively. All

other hyper-parameters except the degradation model are

kept the same to eliminate the influence of them. The quan-

titative results evaluated on PSNR are shown in Fig. 6(b),

where both BicubicSR and GaussianSR have a notable per-

formance gap (i.e., about 1.3 dB in average on the test set)

compared with CameraSR. For GaussianSR, we evaluate

two settings at the red points in Fig. 6(a) and report the

better one. Detailed quantitative results are listed in Ta-

ble 1. The corresponding visual comparisons are conducted

in Figs. 8 and 9 for VDSR [13] and SRGAN [16] respec-

tively, which again validates the significantly improved SR

results achieved by CameraSR. More results for comparison

can be found in the supplementary document.

6. Experiments

While the above analysis clearly demonstrates the impor-

tance of degradation modeling for the resolution enhance-

ment of realistic imaging systems, it is not so surprising that

CameraSR outperforms BicubicSR and GaussianSR since

Digital Zoom BicubicSR CameraSR

Digital Zoom BicubicSR CameraSR

Figure 11. Visual comparison of SR results on images captured

by iPhone X. SR models are trained on the smartphone version of

City100 using the VDSR [13] network.

it directly learns the R-V degradation from City100. In this

section, we show extensive SR results to demonstrate the

generalizability of CameraSR (still trained on City100) to

real-world scenes that are drastically different from City100

in content and even captured with different devices. Still,

BicubicSR and GaussianSR are adopted for comparisons,

in terms of reconstruction accuracy and perceptual quality.

6.1. Advanced digital zoom

Recall that our main goal is to alleviate the R-V tradeoff

or even break the physical zoom ratio of an optical lens in

realistic imaging systems, we now demonstrate that Cam-

eraSR achieves this goal. As shown in Fig. 10(a), given

an image captured by a DSLR camera at the focal length

of 18mm, CameraSR effectively super-resolves its details,

which can be viewed as alleviating the R-V tradeoff of the

camera lens (i.e., resolution and FoV are now obtained at

the same time). Meanwhile, when the zoom lens of the

same DSLR camera reaches its maximum magnification at

the focal length of 55mm, CameraSR is capable of further

enhancing the resolution of the captured image, as shown in
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(a) Huawei P20. Top to bottom: Interp. LR, BicubicSR, and CameraSR. (b) Huawei P20 Interpolated LR BicubicSR CameraSR

(c) Samsung S9 Interpolated LR BicubicSR CameraSR Interpolated LR BicubicSR CameraSR

Figure 12. Visual comparison of SR results on images captured by Huawei P20 and Samsung S9 smartphone cameras. SR models are

trained on the iPhone X version of City100 using the VDSR [13] network for (a) and SRGAN [16] network for (b) and (c), respectively.

Fig. 10(b). Similarly in Fig. 11, for a smartphone camera

with a fixed focal lens, CameraSR serves as an advanced

digital zoom tool, which significantly enhances the imaging

quality compared with the built-in digital zoom function.

The examples in Fig. 10(b) and Fig. 11 can be viewed as

breaking the physical limit of zoom ratio.

6.2. Generalizability

Besides the significant improvement of SR performance,

our proposed CameraSR also has a favorable generaliza-

tion capability in terms of both content and device. For

the content generalization, recall that the City100 dataset

is captured under an indoor environment with a single cat-

egory of subjects (i.e., postcard), yet the CameraSR model

trained on City100 performs well in both indoor and out-

door environments with diverse subjects, as demonstrated

in Figs. 10, 11, 12. For the device generalization, as shown

in Fig. 12, the CameraSR model trained on the iPhone X

version of City100 can be readily applied to different smart-

phones such as Huawei P20 and Samsung S9. More results

for the generalization from Nikon to Canon DSLR cameras

are shown in the supplementary document.

7. Conclusion and Discussion

In this paper, we investigate SR from the perspective of

camera lenses, named as CameraSR, which models the R-

V degradation in realistic imaging systems. With the pro-

posed data acquisition strategies, we build a City100 dataset

to characterize the R-V degradation in representative DSLR

and smartphone cameras. Based on City100, we analyze

the disadvantage of the commonly used synthetic degrada-

tion models and validate CameraSR as a practical solution

to boost the performance of existing SR methods. Due to its

favorable generalization capability, CameraSR could find a

wide application as an advanced digital zoom tool in real-

istic imaging systems. Especially, besides the enhancement

of natural images, we believe CameraSR has a great value

for biomedical imaging with microscopes, where the reso-

lution enhancement is essential for scientific observation.

Despite the promising preliminary results, there are still

some real-world conditions that have not been considered

in this paper. In terms of the LR observation, we consider

a relatively ideal condition without noise. Yet the influence

of noise is inevitable, especially in the smartphone imaging

systems with small sensors. It is thus worth to jointly in-

vestigate the R-V degradation and noise to further promote

the robustness of CameraSR. Besides single image SR dis-

cussed in this paper, the R-V degradation can be general-

ized to burst image SR, where a sequence of LR images

are captured using the burst shooting mode to exploit the

underlying information from the sub-pixel motion for a bet-

ter HR reconstruction. Moreover, beyond the prior learned

from external examples, the proposed CameraSR can be

further extended for self-similarity based methods to utilize

the inherent recurrence, by numerically estimating the R-V

degradation kernel based on City100. The above extensions

are considered as our future work.
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