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Abstract

Current neural networks for 3D object recognition are

vulnerable to 3D rotation. Existing works mostly rely on

massive amounts of rotation-augmented data to alleviate

the problem, which lacks solid guarantee of the 3D rotation

invariance. In this paper, we address the issue by introduc-

ing a novel point cloud representation that can be mathe-

matically proved rigorously rotation-invariant, i.e., identi-

cal point clouds in different orientations are unified as a

unique and consistent representation. Moreover, the pro-

posed representation is conditional information-lossless,

because it retains all necessary information of point cloud

except for orientation information. In addition, the pro-

posed representation is complementary with existing net-

work architectures for point cloud and fundamentally im-

proves their robustness against rotation transformation. Fi-

nally, we propose a deep hierarchical cluster network called

ClusterNet to better adapt to the proposed representation.

We employ hierarchical clustering to explore and exploit

the geometric structure of point cloud, which is embed-

ded in a hierarchical structure tree. Extensive experimen-

tal results have shown that our proposed method greatly

outperforms the state-of-the-arts in rotation robustness on

rotation-augmented 3D object classification benchmarks.

1. Introduction

Rotation transformation is natural and common in 3D

world, however, it gives rise to an intractable challenge for

3D recognization. Theoretically, since SO(3)1 is an infinite
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13D rotation group, denoted as SO(3), contains all rotation transforma-

tions in R
3 under the operation of composition.

group, a 3D object possesses rotated clones in infinite atti-

tudes, thus a machine learning model is obliged to extract

features from an extremely huge input space. For exam-

ple, in 3D object classification task, the category label of

an object is invariant against arbitrary rotation transforma-

tion in majority situations. However, from the perspective

of a classification model, an object and its rotated clone are

distinct in input metric space, hence the model, such as neu-

ral network based methods, should have enough capacity to

learn rotation invariance from data and then approximate a

complex function that maps identical objects in infinite atti-

tudes to similar features in feature metric space.

To alleviate the curse of rotation, a straightforward

method is to design a model with high capacity, such as a

deep neural network with considerable layers, and feed the

model with great amounts of rotation-augmented data [1]

based on a well-designed augmentation pipeline. Although

data augmentation is effective to some extent, it is computa-

tionally expensive in training phase and lacks solid guaran-

tee of rotation robustness. [11, 18] apply spatial transformer

network [5] to canonicalize the input data before feature ex-

traction, which improves the rotation-robustness of model

but still inherits all the defects of the data augmentation.

[16] proposes a rotation-equivariant network for 3D point

clouds using a special convolutional operation with local

rotation invariance as a basic block. The method attempts

to equip the neural network with rotation-symmetry. How-

ever, it is hard to guarantee the capacity of such network to

satisfy all rotation-equivariant constraints in each layer.

We address the issue by introducing a novel Rigorous

Rotation-Invariant (RRI) representation of point cloud.

Identical objects in different orientations are unified as a

consistent representation, which implies that the input space

is heavily reduced and the 3D recognization tasks become

much easier. It can be mathematically proved that the pro-

posed representation is rigorously rotation-invariant, and

information-lossless under a mild condition. Given any

data point in point cloud and a non-collinear neighbor ar-

4994



bitrarily, the whole point cloud can be restored intactly with

the RRI representation, even if the point cloud is under an

unknown orientation. In other words, the RRI representa-

tion maintains all necessary information of point cloud ex-

cept for the volatile orientation information which is associ-

ated with specific rotation transformation. Furthermore, the

RRI representation is flexible to be plugged into the cur-

rent neural architectures and endows them with rigorous ro-

tation invariance. The major difference between rotation-

equivariant network and our proposed method is that the

former embeds the invariance property as a priori into neu-

ral network, but the latter separates the rotation invariance

from neural network and directly cut down the orientation-

redundancy of input space.

Moreover, we propose a deep hierarchical network

called ClusterNet to better adapt to our new representation.

Specifically, we employ unsupervised hierarchical cluster-

ing to learn the underlying geometric structure of point

cloud. As a result, we can obtain a hierarchical structure

tree and then employ it to guide hierarchical features learn-

ing. Similar to CNNs, ClusterNet extracts features corre-

sponding with small clusters, which learns fine-grained pat-

terns of point cloud; the smaller cluster features are then

aggregated as larger cluster features capturing higher-level

information. The process of embedding is repeated along

the hierarchical structure tree from bottom to top until we

achieve the global features of the whole point cloud.

We summarize our major contributions as follows:

1. We propose a new point cloud representation that sat-

isfies, both theoretically and empirically, rotation in-

variance and information preservation;

2. The proposed representation is complementary with

the existing neural network frameworks and funda-

mentally improves their robustness against rotation

transformation;

3. We further introduce a novel deep hierarchical network

called ClusterNet to better adapt to our new repre-

sentation. Combing the novel point cloud representa-

tion and the elaborate ClusterNet, our method achieves

state-of-the-art robustness in standard 3D classification

benchmarks.

2. Related Work

Deep Learning for 3D Objects. In general, the develop-

ment of deep learning for 3D object is closely related to the

progress of representation form of 3D object from geomet-

ric regular data to irregular one. For the conventional CNNs,

it is intractable to handle the geometric irregular data, such

as meshes and point clouds. Thus, previous literatures strive

to transform such data into voxel representations [9, 12, 20]

or multi-images (views) [15, 20]. However, it is inevitable
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Figure 1: The left figure is a dendrogram of a point cloud

learned by hierarchical clustering. The right figure shows

partition of the point cloud of plane in a merge-level re-

maining 8 clusters.

to suffer from loss of resolution and high computational

expense during transformation and subsequent processing.

In order to escape from the limit of volumetric grid, some

methods partition the R3 space by the traditional data struc-

tures, such as k-d trees [6] and octrees [14, 17], to allevi-

ate the issues. PointNet [11] is the most pioneering work

that takes point cloud as input and applies MLPs and max

pooling to construct a universal approximator with permu-

tation invariance. Since the lack of sensing capability for

local information, a variety of hierarchical neural networks

for point cloud, such as PointNet++ [13] and DGCNN [18],

are proposed to progressively abstract features along a hi-

erarchical structure designed in a heuristic way. Recently,

Chen et al. [?] proposed to leverages nonlinear Radial Basis

6 Function (RBF) convolution as basis feature extractor for

robust point cloud representation. As far as we known, the

existing methods merely design the hierarchical structure

by priori knowledge and none of them have made effort to

explore the geometric structure underlying the point cloud,

which is prone to cause lower capacity of the hierarchical

neural network.

Hierarchical Clustering. In the area of unsupervised

learning, hierarchical clustering [10] is a classical method

to build a hierarchy (also called dendrogram) of clusters. It

generally consists of agglomerative type and divisive type.

The first one considers all data points as the smallest cluster

and merges the two closest ones with respect to a particular

distance metric and a linkage criteria from bottom to top,

and the latter performs in an opposite direction. A typical

linkage criteria is ward linkage minimizing the total within-

cluster variance, which can remedy the degeneration case

of uneven cluster sizes. Furthermore, the point cloud in low

dimensional space, such as R
3, is quite suitable for hier-

archical clustering. A dendrogram and a partition of point

cloud is shown in Figure 1.

Rotation-Equivariant Network for 3D Objects. Point-

Net [11] solves the permutation invariance problem of point

cloud by a symmetric pooling operator, which remarkably

reduces the N ! cases (given a point cloud with N points) of

permutation into merely one case. However, rotation invari-
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ance is a more challenging problem needed to be solved,

since SO(3) is infinite. Previous works have attempted to

upgrade the existing neural networks with the property of

rotation-equivariance [7, 19]. For example, [16] designs

a special convolutional operation with local rotation in-

variance and applies it as basic block to build a rotation-

equivariant network. Besides, [2] proposes a method that

transforms the 3D voxel data into spherical representation

and then employs a spherical convolution operator to extract

rotation-equivariant features. However, it is unavoidable to

suffer from loss of information as there is no bijection be-

tween R
3 and S2. 2

3. Approach

3.1. Rotation­Invariant Representation in R
3

A point cloud with N data points is often expressed as a

point set S = {(xi, yi, zi) | xi, yi, zi ∈ R}N−1
i=0 in Cartesian

coordinate system. In another experssion, it can be repre-

sented as S ∈ R
N×3 in a matrix form. In terms of the point

cloud in R
N×3, rotation transformation is a linear mapping

in correspondence with a 3× 3 real orthogonal matrix.

In order to precisely describe the rigorous rotation invari-

ance, we conduct a definition as below.

Definition 1 (RRI Mapping). If N,D ∈ N
+, a rigor-

ously rotation-invariant (RRI) mapping is a set mapping

F : RN×3 7→ R
N×D such that

F(S) = F(R(S))

holds for all point set S ∈ R
N×3 and all rotation mapping

R ∈ SO(3). Then F(S) is called as a rigorously rotation-

invariant representation of S.

The definition introduces an RRI mapping that not only

maintains rotation invariance but also rigorously preserves

the cardinality of output point set as same as the cardinality

of the input one, i.e., the input set with N points should be

mapped to output set with N features.

For example, given a point set S = {pi | pi ∈ R
3}N−1

i=0 ,

it is obvious that ‖pi‖2 is rotation-invariant since the rota-

tion invariance of 2-norm:

‖Rx‖
2
2 = ‖x‖

2
2 , ∀x ∈ R

3. (1)

Hence the row-wise vector norm ‖·‖2 can be defined as an

RRI mapping from R
N×3 to R

N×1.

Since rotation transformation has the property of pre-

serving the relative positional relationships among several

points, a definition is conducted to describe the rotation-

invariance of k-ary operator as follow.

2Two-dimensional sphere, denoted as S2, is the surface of a completely

round ball in R
3.

Definition 2 (RRI k-ary Operator). A rigorously rotation-

invariant (RRI) k-ary operator is an operator G :
R

3 × R
3 × · · · × R

3

︸ ︷︷ ︸
k

7→ R
n such that

G(Rx1, Rx2, . . . , Rxk) = G(x1,x2, . . . ,xk) ,

holds for all x1,x2, . . . ,xk ∈ R
3 and all rotation mapping

R ∈ SO(3).

Apparently, the vector norm ‖·‖2 is a unary RRI operator

from R
3 to R. At the same time, it can be shown that the in-

ner product of two arbitrary points in S is rotation-invariant,

because rotation transformation is orthonormal:

〈Rx, Ry〉 = (Rx)T(Ry) = xTy = 〈x,y〉 , (2)

holds for ∀x,y ∈ R
3. Thus inner product is an RRI bi-

nary operator from R
3 × R

3 to R. Note that 〈x,y〉 =
‖x‖2‖y‖2 cos θxy holds when x,y ∈ R

3, the formulas

(1,2) imply that the relative angle θxy between any two

points x,y ∈ S is a rotation-invariant quantity.

Similarly, it can be proved that for any point p ∈ S\{0},

if Tp is an orthogonal projection operator of R
3 onto a

plane L past the origin and p is orthogonal to L, then the

inner product of two arbitrary points in Tp(S) is rotation-

invariant. The proof is given as below:

〈TRp(Rx), TRp(Ry)〉

=
(
Rx− ((Rx)

T
Rn) ·Rn

)T(
Ry − ((Ry)TRn) ·Rn

)

=
(
x−

(
xTn

)
· n

)T (
y −

(
yTn

)
· n

)

= 〈Tp(x), Tp(y)〉 ,
(3)

where x,y ∈ R
3, R ∈ SO(3) and n = p

‖p‖ . Hence

the composite operator G1(x,y,p) = 〈Tp(x), Tp(y)〉 is an

RRI ternary operator.

Furthermore, according to the property of cross product,

it can be shown that the composite operator G2(x,y,p) =
〈Tp(x) × Tp(y),p〉 is also an RRI ternary operator. The

proof is as below.

〈TRp(Rx)× TRp(Ry), Rp〉

= 〈RTp(x)×RTp(y), Rp〉

= 〈(detR)(R−1)T
(
Tp(x)× Tp(y)

)
, Rp〉

= 〈R
(
Tp(x)× Tp(y)

)
, Rp〉

= 〈Tp(x)× Tp(y),p〉.

(4)

Consequently, four rotation-invariant operators have

been found in the previous discussion, and we can make

use of them to construct a rotation-invariant representation

and the construction method is just an RRI mapping.

In order to introduce the proposed representation, we

need to construct aK-nearest neighbor (K-NN) graph G =

4996



!"#

$"
$"#

%"# $"&!"&

'"&

'"#

%"

%"&

Figure 2: The diagram illustrates each elements in RRI rep-

resentation (cf. formula (5)) by a trivial case in which we

builds 2-NN graph on three points.

(S, E) on point set S, where E = {(x,y) ∈ S × S | y is

one of the K-NN of x}.

According to the K-NN graph, we can employ the RRI

operators to capture the relative positional patterns underly-

ing the K-NN neighborhood of each point in S, and benefit

from the property of rotation invariance at the same time.

Specifically, given a K-NN graph G on point set S, the

proposed representation of each point pi ∈ S is

(ri, (ri1, θi1, φi1), (ri2, θi2, φi2), ..., (riK , θiK , φiK)) ,
(5)

where

ri = ‖pi‖2 ,

rik = ‖pik‖2 (pik is one of the K-NN of pi with id k) ,

θik = arccos
(
〈
pi

ri
,
pik

rik
〉
)
,

φik = ψj∗ , min{ψj | 1 ≤ j ≤ K, j 6= k, ψj ≥ 0} ,

ψj = atan2(sinψj , cosψj) ,

sinψj = 〈
Tpi

(pik)

‖Tpi
(pik)‖2

×
Tpi

(pij)

‖Tpi
(pij)‖2

,
pi

ri
〉 ,

cosψj = 〈
Tpi

(pik)

‖Tpi
(pik)‖2

,
Tpi

(pij)

‖Tpi
(pij)‖2

〉 .

(6)

Note that for a given point pi and one of its k-nearest

neighbor pik, if we apply pi as normal vector, then ψj rep-

resents the relative angle between Tpi
(pik) and Tpi

(pij)
according to the right-hand rule, thereupon φik is the rel-

ative angle between Tpi
(pik) and its rotation-nearest point

Tpi
(pij∗) in anti-clockwise direction. The representation

(5) has intuitive geometric meaning which is illustrated in

Figure 2. The function atan2(·, ·) in formula (6) is a special

arctan(·) choosing the quadrant correctly.

On the foundation of the four RRI operators, the pro-

posed representation in formula (5) is rigorously rotation-

invariant as the claim of the following theorem.

Theorem 1. The mapping defined by (6) is a rigorously

rotation-invariant mapping and the representation (5) is

rigorously rotation-invariant.

Proof. Firstly, the computation method in (6) exactly de-

fines a set of mappings F : RN×3 7→ R
N×(3K+1).

Note that the K-NN neighborhood of arbitrary point

x ∈ S is uniquely determined by ‖x− y‖2 with respect to

all point y ∈ S, which is proved rotation-invariant by (1), so

searching K-NN of point x ∈ S is a rotation-invariant op-

eration. Besides, since rotation transformation has no influ-

ence to the permutation of point cloud, we can obtain con-

sistent order of K-NN by stable sort algorithm that main-

tains the relative order of points with equal distance.

As the result of (1,2), it is obvious that ri, rik and θik
are rotation-invariant. On the basis of formulas (3,4), sinψj

and cosψj are both of rotation-invariance, hence ψj and φik
are also rotation-invariant.

Therefore formulas (6) define an RRI mapping and the

representation defined by (5) is an RRI representation.

However, RRI mapping probably loses some essential

information from the original data because the pursuit of

rigorous rotation invariance may result in lower capacity of

the RRI representation. For example, the 2-norm ‖·‖2 is

indeed an RRI mapping as the discussion of formula (1),

whereas it only captures the distance information of the

points in S and totally discards the relative positional pat-

tern of them.

It is remarkable to point out that the proposed represen-

tation not only satisfies the property of rigorous rotation

invariance but also preserves necessary information which

helps to reconstruct the original point cloud on a weak con-

dition as stated in the following theorem.

Theorem 2. Given a K-NN graph G = (S, E) on point

set S, if G is a strongly connected graph, then for ∀R ∈
SO(3), given Cartesian coordinates of a nonzero point and

one of its non-collinear K-NN neighbor, the Cartesian co-

ordinates of R(S) can be determined by the RRI represen-

tation defined by (5).

Proof. Given the Cartesian coordinates of arbitrary point

pi ∈ R(S)\{0} and one of its non-collinear K-NN neigh-

bor pik, we can obtain the 2-norm of them and their relative

positional information, such as θik and φik. With the rep-

resentation (5), we will show that the coordinate of another

K-NN neighbor pij∗ , which is the rotation-nearest point

of pik in anti-clockwise direction after applying orthogonal

projection Tpi
, can be uniquely determined by the following
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equation system,

〈pij∗ , pij∗〉 = r2ij∗

〈pi, pij∗〉 = ri rij∗ cos θij∗

〈Tpi
(pik), Tpi

(pij∗)〉 = tik tij∗ cosψj∗

〈Tpi
(pik)× Tpi

(pij∗),pi〉 = ri tik tij∗ sinψj∗ ,

(7)

where ψj∗ = φik, tik = ‖Tpi
(pik)‖2. The quantities in the

right hand side of the equation system (7) are all known in

the representation (5). In other words, the unique unknown

variable is pij∗ . On the foundation of the rotation invariance

revealed from Theorem 1, it is apparent that there exists at

least one solution for the equation system (7) because it has

a solution for the original point cloud S.

Suppose that the solution set of the equation system (7)

contains at least two different solutions pij∗ and p̃ij∗ , then

the equation system (7) would imply that

〈pi ,pij∗ − p̃ij∗〉 = 0

〈Tpi
(pik) ,pij∗ − p̃ij∗〉 = 0

〈Tpi
(pik)× (pij∗ − p̃ij∗) ,pi〉 = 0

(8)

Since both Tpi
(pik) and pij∗ − p̃ij∗ are in the plane L =

{x ∈ R
3 | x ⊥ pi}, Tpi

(pik)× (pij∗ − p̃ij∗) = αpi holds

for some α ∈ R\{0}. However, it would imply that

〈Tpi
(pik)× (pij∗ − p̃ij∗) ,pi〉 = α〈pi ,pi〉 = 0 . (9)

Since α 6= 0 and pi 6= 0, the equation (9) causes a con-

tradiction. Thus, the solution set of (7) contains a unique

solution, i.e., given points pi and pik, the Cartesian coor-

dinate of pij∗ can be uniquely determined by the equation

system (7).

Similarly, we can solve the coordinate of the next neigh-

bor which is rotation-nearest from pij∗ in anti-clockwise

direction after applying orthogonal projection Tpi
. The pro-

cess is repeated until all the K-NN neighbors of pi are re-

constructed intactly.

Since the graph G = (S, E) is strongly connected, two

arbitrary points a, b ∈ S are connected by at least one path

(x0,x1, . . . ,xn) between them, where n is the path length,

and x0 = a,xn = b and (xi,xi+1) ∈ E holds for 0 ≤ i ≤
n − 1. Therefore, starting from the K-NN neighborhood

of pi, we can restore the coordinate of arbitrary point in S

step-by-step along a path with finite length.

3.2. Hierarchical Clustering based ClusterNet

We propose a hierarchical clustering based neural net-

work, called ClusterNet, to learn a hierarchical structure

tree for the instruction of hierarchical feature representation

of point clouds. With the assistance of unsupervised learn-

ing, we can explore and exploit distribution information of

point cloud with regard to the hierarchical structure tree.

3.2.1 RRI Representation Processing

We can reformulate the proposed representation (5) of each

point pi ∈ S as

((ri, ri1, θi1, φi1)︸ ︷︷ ︸
Ti1

, (ri, ri2, θi2, φi2)︸ ︷︷ ︸
Ti2

, ..., (ri, riK , θiK , φiK)︸ ︷︷ ︸
TiK

).

(10)

In other words, we summarize the RRI information between

point pi and its K nearest neighbors as (Ti1, Ti2, . . . , TiK)
to characterize point pi. Hence the new representation of a

point cloud S ∈ R
N×3 is a tensor T ∈ R

N×K×4. Since

the local neighborhood pattern of pi is probably embed-

ded in its K nearest neighbors, the proposed representation

takes advantages of the property and captures the local pat-

tern in the K-NN neighborhood by an RRI and conditional

information-lossless mechanism.

Since the RRI representation of point pi can be regarded

as a mini point cloud (Ti1, Ti2, . . . , TiK), and PointNet is a

universal continuous set function approximator, we can ap-

ply PointNet as a basic block to learn a representation of the

mini point cloud and extract local features to characterize

the K-NN neighborhood. In other words, we can transform

the RRI representation, an N ×K × 4 tensor, into a N ×D

tensor of neighborhood features by means of PointNet as

the following formula.

p′
i = max

1≤k≤K
fΘ(Tik) , (11)

where fΘ(·) is a multi-layer perceptron network with pa-

rameters Θ shared with all output features. In other words,

we extract a feature p′
i corresponding to the original point

pi ∈ S.

In the view of DGCNN, the formula (11) is a special

case of the EdgeConv. However, we utilize an RRI repre-

sentation to describe the relationship between a point and

its K-NN neighbors while DGCNN only uses the differ-

ence vector pi − pik concatenated with pi, both of them

vary with rotation transformation.

3.2.2 Hierarchical Clustering Tree

Since point could embeds in low dimensional space R
3

equipped with Euclidean metric, hierarchical clustering is

an appropriate method to analyze the hierarchical structure

of point cloud. With the support of hierarchical clustering,

we can learn a hierarchical clustering tree which illustrates

the arrangement of partition and the relationships between

different clusters.

Specifically, we employ the agglomerative hierarchical

clustering with ward-linkage criteria to learn the hierarchi-

cal structures of point cloud. The ward-linkage criteria

minimizes the total within-cluster variance, which tends to

partition the point cloud into several clusters with similar
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Figure 3: Model architecture: it consists of an RRI module, three cluster abstraction modules and the last classifier module.

The model takes N points as input, applies the RRI module to extract rigorously rotation-invariant features for each point,

extracts hierarchical cluster features using three cluster abstraction modules, and eventually obtains a global feature of the

whole point cloud, which is used to generate classification scores for c categories. RRI module: the RRI module employs

RRI mapping to obtain the RRI representation of point cloud and then aggregate the point features in K-NN neighborhood

into local embedding of each point. Cluster Abstraction module: the module extracts edge features of each sub-cluster using

multi-layer perception (mlp) with the number of layer neurons defined as {a1, a2, . . . , an} and then applies neighborhood

aggregation to obtain super-cluster features. Then it leverages hierarchical structure as a guidance for feature aggregation

within each cluster.

sizes. On a particular merge-level in hierarchical clustering

tree, hierarchical clustering method will make an optimal

partition with respect to the objective function concerning

ward’s minimum variance.

Similar to CNNs, ClusterNet learns the local features of

fine-grained geometric structures from small clusters and

then the local features are further aggregated into a higher-

level feature of larger cluster according to the cluster re-

lationships revealed in the hierarchical clustering tree. In

other words, we can apply the hierarchical clustering tree

to instruct the neural network how to extract and aggregate

features in a more efficient way.

3.2.3 EdgeConv for Cluster Feature

The EdgeConv layer is first proposed by DGCNN [18],

which improves the PointNet++ by dense sampling, i.e., all

points are considered as sampled points and the feature of

each point is aggregated from its K-nearest neighbors. The

K-nearest neighbors are determined by a dynamic K-NN

graph since the graph is affected by a similarity matrix of

features from previous layer. The dynamic K-NN graph fa-

cilitates nonlocal diffusion of similar features in the feature

space.

Specifically, given a F -dimensional point set P =
{x1,x2, . . . ,xN} ⊂ R

F , we can construct a K-NN graph

E⊆P ×P and then the output of EdgeConv can be obtained

by

x′
i = max

j:(i,k)∈E
fΘ(xi − xk, xi) . (12)

Different from DGCNN, the input of EdgeConv is a set

of D-dimensional cluster features C = {c1, c2, . . . , cn} ∈
R

D, where n is the number of clusters in a particular parti-

tion. Hence, if we apply EdgeConv to C, the features corre-

sponding to K-nearest clusters of ci will be aggregated as a

higher-level feature to characterize the cluster ci.

3.2.4 Aggregation within Cluster

Since the hierarchical clustering tree contains relationship

of clusters, we propose a novel aggregation method for

point cloud, which utilizes the relationship to aggregate sub-

cluster features into that of a super-cluster. In particular, we

can apply max pooling function to the sub-cluster features

according to cluster index which records how sub-clusters

are merged into a super-cluster in the hierarchical cluster-

ing tree. Therefore, it is feasible to learn the hierarchical

representation of each cluster passing along the hierarchical

clustering tree from bottom to top and finally the global fea-

ture of the whole point cloud can be obtained from the root

node of the tree.

The proposed aggregation method is similar to the pool-

ing methods in CNNs, since they both downsample the in-

put data and maintain the maximum signal. In terms of

the property of downsampling, the proposed aggregation

method can improve robustness against mild corruptions of

input data. Besides, aggregation reduces the total compu-

tational expense and the memory usage of GPU compared

with DGCNN which extracts features for all points in the

original point cloud.
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Method Input (size) z/z z/SO(3) SO(3)/SO(3) SO(3)/SO(3)∗

PointNet (without STN) [11] pc (1024× 3) 88.5 14.4 70.5 72.5

PointNet++ (MSG without STN) [13] pc+normal (5000× 6) 91.9 16.0 74.7 78.5

SO-Net (without STN) [8] pc+normal (5000× 6) 93.4 19.6 78.1 81.4

DGCNN (without STN) [18] pc (1024× 3) 91.2 16.2 75.3 76.4

PointNet [11] pc (1024× 3) 89.2 16.4 75.5 76.4

PointNet++ (MSG) [13] pc+normal (5000× 6) 91.8 18.4 77.4 79.3

SO-Net [8] pc+normal (5000× 6) 92.6 21.1 80.2 81.9

DGCNN [18] pc (1024× 3) 92.2 20.6 81.1 82.0

Spherical CNN [2] voxel (2× 642) 88.9 76.9 86.9 86.9

Ours pc (1024× 3) 87.1 87.1 87.1 87.1

Table 1: Comparison of Rotation Robustness on rotation-augmented benchmark.

3.2.5 Permutation Invariance of ClusterNet

Trivial K-nearest neighbor searching is not permutation-

invariant, since the K-nearest neighbors will become un-

stable when there exists some neighbors with exactly the

same 2-norm. In such degeneration case, the result of K-

NN searching is inevitably affected by the order of input

points. However, we can modify the method of K-NN

searching to avoid such degeneration. Specifically, if pk

is the k-th nearest neighbor of p, then we consider the set

of k-nearest neighbors of p as {q ∈ S | ‖q‖2 ≤ ‖pk‖2}.

On the foundation of the modified K-NN searching and the

permutation-symmetric aggregation, it is obvious that the

proposed ClusterNet is of permutation invariance.

4. Experiments

In this section, we propose a novel benchmark to evalu-

ate the rotation robustness, on which we compare the pro-

posed method with the state-of-the-art methods to empir-

ically validate the effectiveness of the RRI representation

and ClusterNet. Furthermore, we conduct an experiment to

validate the superiority of ClusterNet over other architec-

tures to learn deep hierarchical embeddings from the RRI

representation. Finally, we evaluate the effect of the unique

hyperparameterK in the RRI representation if we construct

a K-nearest neighbor (K-NN) graph on point cloud.

4.1. Benchmarks

We design a new benchmark to fairly evaluate the rota-

tion robustness of a model. Since the majority of objects

in the original dataset are in a fixed postures, we are re-

quired to conduct rotation augmentation to enrich the test

set. Considering SO(3) is infinite, it is infeasible to cover

all the postures thoroughly, so we uniformly sample a rea-

sonable amount of rotation transformations from SO(3).

According to Euler’s rotation theorem [3], any rotation

can be represented by a Euler axis and a rotation angle. The

Euler axis is a three-dimensional unit vector and the rotation

angle is a scalar. We can employ the following formulas to

solve the rotation matrix R corresponding to the Euler axis

e and the rotation angle θ,

R = I3 cos θ + (1− cos θ)eeT + [e]× sin θ ,

[e]× ,




0 −e3 e2
e3 0 −e1
−e2 e1 0


 .

(13)

As [4] stated, Fibonacci lattice is a mathematical idealiza-

tion of natural patterns with optimal packing, where the

area represented by each point is almost identical. Owing

to the favorable property, we sample the Fibonacci lattice

(points) from unit sphere surface as Euler axes and then

uniformly sample the rotation angle in the space [0, 2π).
We choose such sampling method to generate Euler axes

and rotation angles, and then solve the rotation matrix by

the formulas (13). Consequently, we obtained a rotaion-

sampling method that can sample rotation transformations

from SO(3) uniformly.

In terms of dataset, we choose ModelNet40 [20], a

widely-used 3D object classification dataset, as our basic

dataset. ModelNet40 dataset consists of 12,311 CAD mod-

els from 40 manmade object categories, in which 9,843 is

used for training and 2,468 is used for testing. Since each

CAD model in ModelNet40 is composed of many mesh

faces, we sample point cloud from them uniformly with re-

spect to face area and then shift and normalize each point

cloud into [−1, 1]3 with centroid on the origin. We employ

the sampling method to generate 500 Euler axes and 60 ro-

tation angles for each Euler axes, i.e., 30,000 rotation trans-

formations are sampled uniformly from SO(3) to augment

the test set. As a result, we obtain a rotation-augmented test

set with 74,040,000 point clouds in total as the benchmark

dataset. We employ the augmented test set to evaluate the

rotation robustness of each model.

4.2. Comparison of Rotation Robustness

We compare the proposed method with the state-of-the-

art approaches on the benchmark for rotation-robustness
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Method Accuracy (%) Time (h)

RRI+PointNet 85.9 8.5

RRI+DGCNN 86.4 12

RRI+ClusterNet (8, 1) 86.6 9

RRI+ClusterNet (32, 1) 86.8 10.5

RRI+ClusterNet (32, 8, 1) 87.1 9.5

Table 2: Analysis of Architecture Design

evaluation. The results are summarized in Table 1 with

four comparison modes: (1) both training set and test set

are augmented by azimuthal rotation (z/z); (2) training

with azimuthal rotation and testing with arbitrary rotation

(z/SO(3)); (3) both training and testing with arbitrary ro-

tation (SO(3)/SO(3)); (4) conditions are almost as same as

(3), but test the model with multi-rotation voting strategy

(SO(3)/SO(3)∗). In order to make the comparison more

comprehensive, we make use of the following methods to

improve the rotation-robustness of existing methods.

Rotation-augmentation is applied to the training set us-

ing two sampling strategies respectively. The first strategy

only samples azimuthal rotations for augmentation, i.e., we

merely use z-axis as Euler axis. While the second one sam-

ples all rotations from SO(3). In a particular epoch, we ro-

tate each object using the sampled rotation transformation

so that the model might improve rotation robustness from

the objects under different orientations. We can use multi-

rotation voting strategy to boost the robustness of model.

Specially, we feed the model with test set in several orienta-

tion and then sum up the confidence scores as a total one to

determine the classification result. Variants of spatial trans-

former network [5] are used to alleviate the problem caused

by rotation transformation. For example, both PointNet and

DGCNN employ spatial transformation module to learn a

3× 3 rotation matrix which transforms point cloud into the

canonical space.

Table 1 consists of four groups of methods. The first

group from the top of the table consists of four models

without using spatial transformer network (STN), while the

methods in the second group are equipped with STN. In

the third group, we choose a representative method based

on rotation-equivariant network, spherical CNN[2], to com-

pare with our proposed method. As shown in Table 1, the

widely used augmentation using azimuthal rotations suf-

fers from a sharp decline on the rotation-augmented test

set. Furthermore, it illustrates that rotation-augmentation

and STN can improve the rotation robustness of models but

still have a large margin with our proposed method without

the demand of any data augmentation. Although the spheri-

cal CNN is rotation-equivalent, it is also dependent with ro-

tation augmentation and its performance is sensitive to the

strategy of augmentation. Besides, our proposed method

also outperforms spherical CNN on the rotation-augmented

test set.

4.3. Ablation Analysis

4.3.1 Analysis of Architecture Design

Since the proposed RRI representation can be processed

to be compatible with many architectures dealing with

point cloud data, we enhance PointNet and DGCNN with

the RRI representation, and Table 2 shows that Cluster-

Net outperforms both the enhanced PointNet and the en-

hanced DGCNN by a large margin on the foundation of the

same RRI representation. As is illustrated in Section 3.2,

DGCNN is a special case of ClusterNet without cluster ag-

gregation, thus Table 2 shows that the aggregation within

cluster along hierarchy indeed facilitates the hierarchical

features learning and then extracts more discriminative fea-

tures for 3D recognization.

4.3.2 Effectiveness of K in RRI Representation

K 40 50 60 70 80 90

Acc. (%) 85.6 86.4 86.8 87.0 87.1 87.1

Table 3: Effectiveness of K in RRI Representation

In terms of the proposed RRI representation, K is the

unique hyperparameter, which controls the connectivity of

the graph G, thus we analyze the effectiveness of different

K in RRI representation. As shown in Table 3, the archi-

tecture of ClusterNet is robust to diverse values of K even

when K is too small to satisfy the connectivity condition in

Theorem 2. For example, when K = 40, there exists nearly

25% of the point clouds not satisfying strongly connected

condition, however, it still achieves comparable classifica-

tion accuracy. When K is gradually increased to over 70,

accuracies of the model remain stable.

5. Conclusion

In this paper, we step forward to enhance the rotation

robustness of 3D object recognization model. Specifically,

we introduce a novel RRI representation to assign a unique

and consistent data form for any identical object in infinite

attitude. We theoretically and empirically demonstrate that

the representation is rigorously rotation-invariant and con-

ditional information-lossless. Besides, our representation

is complementary with prevailing 3D recognition architec-

ture and improves their rotation robustness. Finally, we fur-

ther design a deep hierarchical network called ClusterNet

to better adapt to RRI representation. Extensive experimen-

tal evaluation on augmented test split set from widely-used

3D classification benchmark demonstrates the superiority of

our novel RRI representation as well as the elaborate Clus-

terNet.
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