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Figure 1: Applications of the proposed method. Our method has the applications ranging from semantic segmentation (top

row), depth prediction (middle row), to optical flow estimation (bottom row).

Abstract

Unsupervised domain adaptation algorithms aim to

transfer the knowledge learned from one domain to another

(e.g., synthetic to real images). The adapted representa-

tions often do not capture pixel-level domain shifts that are

crucial for dense prediction tasks (e.g., semantic segmenta-

tion). In this paper, we present a novel pixel-wise adversar-

ial domain adaptation algorithm. By leveraging image-to-

image translation methods for data augmentation, our key

insight is that while the translated images between domains

may differ in styles, their predictions for the task should be

consistent. We exploit this property and introduce a cross-

domain consistency loss that enforces our adapted model to

produce consistent predictions. Through extensive experi-

mental results, we show that our method compares favor-

ably against the state-of-the-art on a wide variety of unsu-

pervised domain adaptation tasks.

1. Introduction

Deep convolutional neural networks (CNNs) are ex-

tremely data hungry. However, for many dense predic-

tion tasks (e.g., semantic segmentation, optical flow esti-

mation, and depth prediction), collecting large-scale and di-

verse datasets with pixel-level annotations is difficult since

the labeling process is often expensive and labor intensive

(see Figure 1). Developing algorithms that can transfer the

knowledge learned from one labeled dataset (i.e., source

domain) to another unlabeled dataset (i.e., target domain)

thus becomes increasingly important. Nevertheless, due to

the domain-shift problem (i.e., the domain gap between the

source and target datasets), the learned models often fail to

generalize well to new datasets.

To address these issues, several unsupervised domain

adaptation methods have been proposed to align data dis-

tributions between the source and target domains. Existing

methods either apply feature-level [39, 26, 44, 42, 15, 14]
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or pixel-level [1, 36, 7, 14] adaptation techniques to mini-

mize the domain gap between the source and target datasets.

However, aligning marginal distributions does not necessar-

ily lead to satisfactory performance as there is no explicit

constraint imposed on the predictions in the target domain

(as no labeled training examples are available). While sev-

eral methods have been proposed to alleviate this issue via

curriculum learning [34, 6] or self-paced learning [53], the

problem remains challenging since these methods may only

learn from cases where the current models perform well.

Our work. In this paper, we present CrDoCo, a pixel-

level adversarial domain adaptation algorithm for dense

prediction tasks. Our model consists of two main mod-

ules: 1) an image-to-image translation network and 2) two

domain-specific task networks (one for source and the other

for target). The image translation network learns to translate

images from one domain to another such that the translated

images have a similar distribution to those in the translated

domain. The domain-specific task network takes images of

source/target domain as inputs to perform dense prediction

tasks. As illustrated in Figure 2, our core idea is that while

the original and the translated images in two different do-

mains may have different styles, their predictions from the

respective domain-specific task network should be exactly

the same. We enforce this constraint using a cross-domain

consistency loss that provides additional supervisory signals

for facilitating the network training, allowing our model to

produce consistent predictions. We show the applicability

of our approach to multiple different tasks in the unsuper-

vised domain adaptation setting.

Our contributions. First, we present an adversarial

learning approach for unsupervised domain adaptation

which is applicable to a wide range of dense predic-

tion tasks. Second, we propose a cross-domain consis-

tency loss that provides additional supervisory signals for

network training, resulting in more accurate and consis-

tent task predictions. Third, extensive experimental re-

sults demonstrate that our method achieves the state-of-

the-art performance against existing unsupervised domain

adaptation techniques. Our source code is available at

https://yunchunchen.github.io/CrDoCo/

2. Related Work

Unsupervised domain adaptation. Unsupervised do-

main adaptation methods can be categorized into two

groups: 1) feature-level adaptation and 2) pixel-level adap-

tation. Feature-level adaptation methods aim at aligning

the feature distributions between the source and target do-

mains through measuring the correlation distance [39], min-

imizing the maximum mean discrepancy [26], or apply-

ing adversarial learning strategies [44, 42] in the feature
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Figure 2: Main idea. While images may have different

appearances/styles in different domains, their task predic-

tions (e.g., semantic segmentation as shown in this exam-

ple) should be exactly the same. Our core idea in this paper

is to impose a cross-domain consistency loss between the

two task predictions.

space. In the context of image classification, several meth-

ods [10, 11, 26, 27, 43, 44] have been developed to address

the domain-shift issue. For semantic segmentation tasks,

existing methods often align the distributions of the fea-

ture activations at multiple levels [15, 17, 42]. Recent ad-

vances include applying class-wise adversarial learning [4]

or leveraging self-paced learning policy [53] for adapting

synthetic-to-real or cross-city adaptation [4], adopting cur-

riculum learning for synthetic-to-real foggy scene adapta-

tion [34], or progressively adapting models from daytime

scene to nighttime [6]. Another line of research focuses on

pixel-level adaptation [1, 36, 7]. These methods address the

domain gap problem by performing data augmentation in

the target domain via image-to-image translation [1, 36] or

style transfer [7] methods.

Most recently, a number of methods tackle joint feature-

level and pixel-level adaptation in image classification [14],

semantic segmentation [14], and single-view depth predic-

tion [48] tasks. These methods [14, 48] utilize image-

to-image translation networks (e.g., the CycleGAN [51])

to translate images from source domain to target domain

with pixel-level adaptation. The translated images are then

passed to the task network followed by a feature-level align-

ment.

While both feature-level and pixel-level adaptation have

been explored, aligning the marginal distributions without

enforcing explicit constraints on target predictions would

not necessarily lead to satisfactory performance. Our model

builds upon existing techniques for feature-level and pixel-

level adaptation [14, 48]. The key difference lies in our

cross-domain consistency loss that explicitly penalizes in-

consistent predictions by the task networks.

Cycle consistency. Cycle consistency constraints have

been successfully applied to various problems. In image-

to-image translation, enforcing cycle consistency allows the

network to learn the mappings without paired data [51, 22].
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In semantic matching, cycle or transitivity based consis-

tency loss help regularize the network training [50, 49, 3].

In motion analysis, forward-backward consistency check

can be used for detecting occlusion [28, 20, 52] or learn-

ing visual correspondence [45]. Similar to the above meth-

ods, we show that enforcing two domain-specific networks

to produce consistent predictions leads to substantially im-

proved performance.

Learning from synthetic data. Training the model on

large-scale synthetic datasets has been extensively studied

in semantic segmentation [41, 42, 15, 14, 7, 17, 34, 35,

53], multi-view stereo [18], depth estimation [48], optical

flow [40, 19, 21], amodal segmentation [16], and object de-

tection [7, 30]. In our work, we show that the proposed

cross-domain consistency loss can be applied not only to

synthetic-to-real adaptation but to real-to-real adaptation

tasks as well.

3. Method

In this section, we first provide an overview of our ap-

proach. We then describe the proposed loss function for en-

forcing cross-domain consistency on dense prediction tasks.

Finally, we describe other losses that are adopted to facili-

tate network training.

3.1. Method overview

We consider the task of unsupervised domain adaptation

for dense prediction tasks. In this setting, we assume that

we have access to a source image set XS , a source label

set YS , and an unlabeled target image set XT . Our goal is

to learn a task network FT that can reliably and accurately

predict the dense label for each image in the target domain.

To achieve this task, we present an end-to-end train-

able network which is composed of two main modules: 1)

the image translation network GS→T and GT→S and 2)

two domain-specific task networks FS and FT . The im-

age translation network translates images from one domain

to the other. The domain-specific task network takes input

images to perform the task of interest.

As shown in Figure 3, the proposed network takes an

image IS from the source domain and another image IT
from the target domain as inputs. We first use the image

translation network to obtain the corresponding translated

images IS→T = GS→T (IS) (in the target domain) and

IT→S = GT→S(IT ) (in the source domain). We then pass

IS and IT→S to FS , IT and IS→T to FT to obtain their task

predictions.

3.2. Objective function

The overall training objective L for training the proposed

network consists of five loss terms. First, the image-level

adversarial loss Limg
adv aligns the image distributions between

the translated images and the images in the corresponding

domain. Second, the reconstruction loss Lrec regularizes

the image translation network GS→T and GT→S to perform

self-reconstruction when translating an image from one do-

main to another followed by a reverse translation. Third,

the feature-level adversarial loss Lfeat
adv aligns the distribu-

tions between the feature representations of the translated

images and the images in the same domain. Fourth, the task

loss Ltask guides the two domain-specific task networks

FS and FT to perform dense prediction tasks. Fifth, the

cross-domain consistency loss Lconsis enforces consistency

constraints on the task predictions. Such a cross-domain

loss couples the two domain-specific task networks FS and

FT during training and provides supervisory signals for the

unlabeled target domain image IT and its translated one

IT→S . Specifically, the training objective L is defined as

L = Ltask + λconsis · Lconsis + λrec · Lrec

+ λimg · L
img
adv + λfeat · L

feat
adv ,

(1)

where λconsis, λrec, λimg, and λfeat are the hyper-

parameters used to control the relative importance of the

respective loss terms. Below we outline the details of each

loss function.

3.3. Cross­domain consistency loss Lconsis

Since we do not have labeled data in the target domain,

to allow our model to produce accurate task predictions on

unlabeled data, we first generate a translated version of IT
(i.e., IT→S) by passing IT to the image translation network

GT→S (i.e., IT→S = GT→S(IT )). Our key insight is that

while IT (belongs to the target domain) and IT→S (belongs

to the source domain) may differ in appearance or styles,

these two images should have the same task prediction re-

sults (i.e., FT (IT ) and FS(IT→S) should be exactly the

same). We thus propose a cross-domain consistency loss

Lconsis that bridges the outputs of the two domain-specific

task networks (i.e., FS and FT ). The loss enforces the

consistency between the two task predictions FT (IT ) and

FS(IT→S). For semantic segmentation task, we compute

the bi-directional KL divergence loss and define the cross-

domain consistency loss for semantic segmentation Lconsis

task as

Lconsis(XT ;GS→T , GT→S , FS , FT )

=− EIT∼XT

∑

h,w,c

fT→S(h,w, c) log

(

fT (h,w, c)

)

− EIT∼XT

∑

h,w,c

fT (h,w, c) log

(

fT→S(h,w, c)

)

,

(2)

where fT = FT (IT ) and fT→S = FS(IT→S) are the task

predictions for IT and IT→S , respectively, while c denotes

the number of classes.
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Figure 3: Overview of the proposed method. Our model is composed of two main modules: an image translation network

(highlighted in gray) and two domain-specific task networks (highlighted in blue and green, respectively). The image trans-

lation network learns to translate input images from one domain to the other. The input and the translated images are then

fed to their corresponding domain-specific task networks to perform task predictions. Our main contribution lies in the use

of cross-domain consistency loss Lconsis for regularizing the network training.

As our task models produce different outputs for differ-

ent tasks, our cross-domain consistency loss Lconsis is task-

dependent. For depth prediction task, we use the ℓ1 loss for

the cross-domain consistency loss Lconsis. For optical flow

estimation task, the cross-domain consistency loss Lconsis

computes the endpoint error between the two task predic-

tions.

3.4. Other losses

In addition to the proposed cross-domain consistency

loss Lconsis, we also adopt several other losses introduced

in [14, 48, 51] to facilitate the network training.

Task loss Ltask. To guide the training of the two task net-

works FS and FT using labeled data, for each image-label

pair (IS , ys) in the source domain, we first translate the

source domain image IS to IS→T by passing IS to GS→T

(i.e., IS→T = GS→T (IS)). Similarly, images before and

after translation should have the same ground truth label.

Namely, the label for IS→T is identical to that of IS which

is ys.

We can thus define the task loss Ltask for training the

two domain-specific task networks FS and FT using la-

beled data. For semantic segmentation, we calculate the

cross-entropy loss between the task predictions and the cor-

responding ground truth labels as our task loss Ltask. Like-

wise, the task loss Ltask is also task dependent. We use ℓ1
loss for depth prediction task and endpoint error for optical

flow estimation.

Feature-level adversarial loss Lfeat
adv . In addition to im-

posing cross-domain consistency and task losses, we apply

two feature-level discriminators Dfeat
S (for source domain)

and Dfeat
T (for target domain) [51]. The discriminator Dfeat

S

helps align the distributions between the feature maps of IS
(i.e., fS) and IT→S (i.e., fT→S). To achieve this, we define

the feature-level adversarial loss in the source domain as

Lfeat
adv (XS , XT ;GT→S ,FS , D

feat
S )

= EIS∼XS
[log(Dfeat

S (fS))]

+ EIT∼XT
[log(1−Dfeat

S (fT→S))].

(3)

Similarly, Dfeat
T aligns the distributions be-

tween fT and fS→T . This corresponds to another

feature-level adversarial loss in the target domain as

Lfeat
adv(XT , XS ;GS→T ,FT , D

feat
T ).
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Image-level adversarial loss Limg
adv . In addition to

feature-level adaptation, we also consider image-level adap-

tation between the translated images and those in the corre-

sponding domain. Similar to Zhu et al. [51], we deploy two

image-level discriminators D
img
S (for source domain) and

D
img
T (for target domain). The D

img
S aims at aligning the

distributions between the image IS and the translated one

IT→S . To accomplish this, we define the image-level ad-

versarial loss in the source domain as

Limg
adv (XS , XT ;GT→S , D

img
S )

= EIS∼XS
[log(Dimg

S (IS))]

+ EIT∼XT
[log(1−D

img
S (IT→S))].

(4)

Similarly, we have another image-level adversarial loss

in the target domain as Limg
adv(XT , XS ;GS→T , D

img
T ).

Reconstruction loss Lrec. Finally, we use an image re-

construction loss Lrec to regularize the training of the im-

age translation network. We exploit the property that when

translating an image from one domain to another followed

by performing a reverse translation, we should obtain the

same image. Namely, GT→S(GS→T (IS)) ≈ IS for any IS
in the source domain and GS→T (GT→S(IT )) ≈ IT for any

IT in the target domain hold.

More precisely, we define the reconstruction loss Lrec as

Lrec (XS , XT ;GS→T , GT→S)

= EIS∼XS
[‖GT→S(GS→T (IS))− IS‖1]

+ EIT∼XT
[‖GS→T (GT→S(IT ))− IT ‖1].

(5)

Following Zhu et al. [51], we use the ℓ1 norm to define

the reconstruction loss Lrec.

Based on the aforementioned loss functions, we aim to

solve for a target domain task network F ∗
T by optimizing

the following min-max problem:

F ∗
T = argmin

FT

min
FS ,

GS→T

GT→S

max
D

img

S
,D

img

T

Dfeat
S

,Dfeat
T

L. (6)

Namely, to train our network using labeled source do-

main images and unlabeled target domain images, we min-

imize the cross-domain consistency loss Lconsis, the task

loss Ltask, and the reconstruction loss Lrec. The image-

level adversarial loss Limg
adv and the feature-level adversar-

ial loss Lfeat
adv are optimized to align the image and feature

distributions within the same domain. The proposed cross-

domain consistency loss, in contrast, aligns the task predic-

tions in two different domains.

3.5. Implementation details

We implement our model using PyTorch. We use the

CycleGAN [51] as our image-to-image translation network

GS→T and GT→S . The structure of the image-level dis-

criminators D
img
S and D

img
T consists of four residual blocks,

each of which is composed of a convolutional layer fol-

lowed by a ReLU activation. For the feature-level discrim-

inators Dfeat
S and Dfeat

T , we use the same architecture as

Tsai et al. [42]. The image-to-image translation network

GS→T and GT→S , and the discriminators D
img
S , D

img
T ,

Dfeat
S , and Dfeat

T are all randomly initialized. We have a

batch size of 1, a learning rate of 10−3 with momentum

0.9, and set the weight decay as 5 × 10−4. Our hyper-

parameters setting: λconsis = 10, λrec = 10, λimg = 0.1,

and λfeat = 0.001. We train our model on a single NVIDIA

GeForce GTX 1080 GPU with 12 GB memory.

4. Experimental Results

4.1. Semantic segmentation

We present experimental results for semantic segmenta-

tion in two different settings: 1) synthetic-to-real: adapt-

ing from synthetic GTA5 [32] and SYNTHIA [33] datasets

to real-world images from Cityscapes dataset [5] and 2)

real-to-real: adapting the Cityscapes dataset to different

cities [4].

4.1.1 GTA5 to Cityscapes

Dataset. The GTA5 dataset [32] consists of 24, 966 syn-

thetic images with pixel-level annotations of 19 categories

(compatible with the Cityscapes dataset [5]). Following

Hoffman et al. [14], we use the GTA5 dataset and adapt

the model to the Cityscapes training set with 2, 975 images.

Evaluation protocols. We evaluate our model on the

Cityscapes validation set with 500 images using the mean

intersection-over-union (IoU) and the pixel accuracy as the

evaluation metrics.

Task network. We evaluate our proposed method using

two task networks: 1) dilated residual network-26 (DRN-

26) [46] and 2) FCN8s-VGG16 [25]. For the DRN-26, we

initialize our task network from Hoffman et al. [14]. For

the FCN8s-VGG16, we initialize our task network from

Sankaranarayanan et al. [35].

Results. We compare our approach with the state-of-the-

art methods [41, 51, 24, 15, 14, 7, 17, 35, 47]. The top block

of Table 1 presents the experimental results. Results on both

feature backbones show that our method performs favorably

against the state-of-the-art methods, outperforming the pre-

vious best competitors by 4.9% in mean IoU [17] when us-

ing the DRN-26 [46] and 1.0% in mean IoU [35] when us-

ing FCN8s-VGG16 [25]. We show that the proposed cross-

domain consistency loss Lconsis is critical for the improved

performance (e.g., adding Lconsis improves the mean IoU
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Table 1: Experimental results of synthetic-to-real adaptation for semantic segmentation. We denote the top results as

bold and underlined.
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Synth. [7]

DRN-26 [46]

68.9 19.9 52.8 6.5 13.6 9.3 11.7 8.0 75.0 11.0 56.5 36.9 0.1 51.3 8.5 4.7 0.0 0.1 0.0 22.9 71.9

DR [41] 67.5 23.5 65.7 6.7 12.0 11.6 16.1 13.7 70.3 8.3 71.3 39.6 1.6 55.0 15.1 3.0 0.6 0.2 3.3 25.5 73.8

CycleGAN [51] 89.3 45.1 81.6 27.5 18.6 29.0 35.7 17.3 79.3 29.4 71.5 59.7 15.7 85.3 18.2 14.8 1.4 21.9 12.5 39.6 86.6

UNIT [24] 90.5 38.5 81.1 23.5 16.3 30.2 25.2 18.5 79.5 26.8 77.8 59.2 17.4 84.4 22.2 16.1 1.6 16.7 16.9 39.1 87.1

FCNs ITW [15] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1 -

CyCADA [14] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5 82.3

DS [7] 89.0 43.5 81.5 22.1 8.5 27.5 30.7 18.9 84.8 28.3 84.1 55.7 5.4 83.2 20.3 28.3 0.1 8.7 6.2 38.3 87.2

GAM [17] - - - - - - - - - - - - - - - - - - - 40.2 81.1

Ours w/o Lconsis 89.1 44.9 80.9 27.5 18.8 30.2 35.6 17.1 79.5 27.2 71.6 59.7 16.1 84.6 18.1 14.6 1.4 22.1 10.9 39.4 85.8

Ours 95.1 49.2 86.4 35.2 22.1 36.1 40.9 29.1 85.0 33.1 75.8 67.3 26.8 88.9 23.4 19.3 4.3 25.3 13.5 45.1 89.2

Synth. [47]

FCN8s [25]

18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3 -

Curr. DA [47] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9 -

LSD [35] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1 -

Ours 89.1 33.2 80.1 26.9 25.0 18.3 23.4 12.8 77.0 29.1 72.4 55.1 20.2 79.9 22.3 19.5 1.0 20.1 18.7 38.1 86.3

SYNTHIA→ Cityscapes

Synth. [7]

DRN-26 [46]

28.5 10.8 49.6 0.2 0.0 18.5 0.7 5.6 65.3 - 71.6 36.6 6.4 43.8 - 2.7 - 0.8 10.0 18.5 54.6

DR [41] 31.3 16.7 59.5 2.2 0.0 19.7 0.4 6.2 64.7 - 67.3 43.1 3.9 35.1 - 8.3 - 0.3 5.5 19.2 57.9

CycleGAN [51] 58.8 20.4 71.6 1.6 0.7 27.9 2.7 8.5 73.5 - 73.1 45.3 16.2 67.2 - 14.9 - 7.9 24.7 27.1 71.4

UNIT [24] 56.3 20.6 73.2 1.8 0.3 29.0 4.0 11.8 72.2 - 74.5 50.7 18.4 67.3 - 15.1 - 6.7 29.5 28.0 70.8

FCNs ITW [15] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 - 68.7 51.2 3.8 54.0 - 3.2 - 0.2 0.6 17.0 -

DS [7] 67.0 28.0 75.3 4.0 0.2 29.9 3.8 15.7 78.6 - 78.0 54.0 15.4 69.7 - 12.0 - 9.9 19.2 29.5 76.5

Ours w/o Lconsis 58.3 17.2 64.3 2.0 0.7 24.3 2.6 5.9 72.2 - 70.8 41.9 10.3 64.2 - 12.5 - 8.0 21.3 29.8 75.3

Ours 62.2 21.2 72.8 4.2 0.8 30.1 4.1 10.7 76.3 - 73.6 45.6 14.9 69.2 - 14.1 - 12.2 23.0 33.4 79.5

Synth. [47]

FCN8s [25]

5.6 11.2 59.6 8.0 0.5 21.5 8.0 5.3 72.4 - 75.6 35.1 9.0 23.6 - 4.5 - 0.5 18.0 22.0 -

Curr. DA [47] 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 - 70.6 47.1 8.2 43.2 - 20.7 - 0.7 13.1 29.0 -

LSD [35] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 - 76.7 48.2 15.2 70.5 - 17.4 - 8.7 16.7 36.1 -

Ours 84.9 32.8 80.1 4.3 0.4 29.4 14.2 21.0 79.2 - 78.3 50.2 15.9 69.8 - 23.4 - 11.0 15.6 38.2 84.7

by 5.7% and the pixel accuracy by 3.4% when adopting

the DRN-26 [46] as the task network). Figure 4 presents

an example that demonstrates the effectiveness of the pro-

posed cross-domain consistency loss Lconsis. We discover

that by applying the cross-domain consistency loss Lconsis,

our model produces more consistent and accurate results be-

fore and after image translation.

4.1.2 SYNTHIA to Cityscapes

Dataset. We use the SYNTHIA-RAND-

CITYSCAPES [33] set as the source domain which

contains 9, 400 images compatible with the Cityscapes

annotated classes. Following Dundar et al. [7], we evaluate

images on the Cityscapes validation set with 16 classes.

Results. We compare our approach with the state-of-the-

art methods [41, 51, 24, 15, 7]. The bottom block of Table 1

presents the experimental results. In either DRN-26 [46]

or FCN8s [25] backbone, our method achieves state-of-the-

art performance. Likewise, we show sizable improvement

using the proposed cross-domain consistency loss Lconsis.

4.1.3 Cityscapes to Cross-City

Dataset. In addition to the synthetic-to-real adaptation,

we conduct an experiment on the Cross-City dataset [4]

which is a real-to-real adaptation. The dataset contains four

different cities: Rio, Rome, Tokyo, and Taipei, where each

city has 3, 200 images without annotations and 100 images

with pixel-level ground truths for 13 classes. Following

Tsai et al. [42], we use the Cityscapes [5] training set as

our source domain and adapt the model to each target city

using 3, 200 images, and use the 100 annotated images for

evaluation.

Results. We compare our approach with the Cross-

City [4], the CBST [53], and the AdaptSegNet [42]. Table 2

shows that our method achieve state-of-the-art performance

on two out of four cities. Note that the results in Adapt-

SegNet [42] are obtained by using a ResNet-101 [13]. We

run their publicly available code with the default settings

and report the results using the ResNet-50 [13] as the fea-

ture backbone for a fair comparison. Under the same exper-

imental setting, our approach compares favorably against

state-of-the-art methods. Furthermore, we show that en-

forcing cross-domain consistency constraints, our method

effectively and consistently improves the results evaluated

on all four cities.

4.2. Single­view depth estimation

To show that our formulation is not limited to se-

mantic segmentation, we present experimental results for
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Input images Ground truth Ours w/o Lconsis Ours

Figure 4: Visual results of semantic segmentation. We translate an image from Cityscapes to GTA5. For each input image,

we present the segmentation results with and without applying the cross-domain consistency loss.

Table 2: Experimental results of real-to-real adaptation for semantic segmentation. Adaptation: Cityscapes →
Cross-City.
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Rome

Cross-City [4] - 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

CBST [53] ResNet-38 [13] 87.1 43.9 89.7 14.8 47.7 85.4 90.3 45.4 26.6 85.4 20.5 49.8 10.3 53.6

AdaptSegNet [42] ResNet-101 [13] 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8

AdaptSegNet [42] ResNet-50 [13] 85.4 34.6 88.1 18.9 39.1 82.3 89.1 43.2 22.4 79.9 44.6 46.0 5.3 52.2

Ours w/o Lconsis ResNet-50 [13] 84.4 31.2 87.7 18.6 38.0 80.7 85.4 43.5 19.8 79.4 45.3 44.2 5.1 51.0

Ours ResNet-50 [13] 90.2 37.2 91.2 22.0 41.1 86.3 91.7 47.1 25.1 83.0 48.0 47.5 6.2 55.1

Rio

Cross-City [4] - 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

CBST [53] ResNet-38 [13] 84.3 55.2 85.4 19.6 30.1 80.5 77.9 55.2 28.6 79.7 33.2 37.6 11.5 52.2

AdaptSegNet [42] ResNet-101 [13] 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

AdaptSegNet [42] ResNet-50 [13] 75.8 43.9 80.7 7.7 21.1 80.8 88.0 51.2 27.4 71.1 25.6 43.7 26.9 49.5

Ours w/o Lconsis ResNet-50 [13] 74.7 44.1 81.2 5.3 19.2 80.7 86.3 52.3 27.7 69.2 24.1 45.4 25.2 48.9

Ours ResNet-50 [13] 77.5 43.3 81.2 10.1 23.2 79.7 88.2 57.4 31.9 72.2 29.1 38.9 22.4 50.4

Tokyo

Cross-City [4] - 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

CBST [53] ResNet-38 [13] 85.2 33.6 80.4 8.3 31.1 83.9 78.2 53.2 28.9 72.7 4.4 27.0 47.0 48.8

AdaptSegNet [42] ResNet-101 [13] 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

AdaptSegNet [42] ResNet-50 [13] 76.0 25.3 78.1 15.4 22.3 81.3 91.1 45.2 34.6 69.3 2.3 20.7 48.2 46.9

Ours w/o Lconsis ResNet-50 [13] 72.3 24.9 77.6 14.3 23.1 80.9 90.7 43.6 35.2 68.9 3.1 19.8 42.4 45.9

Ours ResNet-50 [13] 82.1 29.3 78.2 18.2 27.5 83.1 91.2 56.4 37.8 74.3 9.5 26.0 52.1 51.2

Taipei

Cross-City [4] - 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

CBST [53] ResNet-38 [13] 86.1 35.2 84.2 15.0 22.2 75.6 74.9 22.7 33.1 78.0 37.6 58.0 30.9 50.3

AdaptSegNet [42] ResNet-101 [13] 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

AdaptSegNet [42] ResNet-50 [13] 81.8 27.8 83.2 24.4 12.6 74.1 88.7 30.9 11.1 70.8 40.2 45.3 26.2 47.5

Ours w/o Lconsis ResNet-50 [13] 79.6 26.9 84.1 23.7 14.1 72.8 86.5 30.3 9.9 69.9 40.6 44.7 25.8 46.8

Ours ResNet-50 [13] 79.7 28.1 85.1 24.4 16.4 74.3 87.9 29.5 12.8 69.8 40.0 46.8 28.1 47.9

single-view depth prediction task. Specifically, we use

SUNCG [38] as the source domain and adapt the model to

the NYUDv2 [37] dataset.

Dataset. To generate the paired synthetic training data,

we rendered RGB images and depth map from the SUNCG

dataset [38], which contains 45, 622 3D houses with vari-

ous room types. Following Zheng et al. [48], we choose the

camera locations, poses and parameters based on the distri-

bution of real NYUDv2 dataset [37] and retain valid depth

maps using the criteria described by Song et al. [38]. In to-

tal, we generate 130, 190 valid views from 4, 562 different

houses.

Evaluation protocols. We use the root mean square error

(RMSE) and the log scale version (RMSE log.), the squared

relative difference (Sq. Rel.) and the absolute relative dif-

ference (Abs. Rel.), and the accuracy measured by thresh-

olding (δ < threshold).

Task network. We initialize our task network from the

unsupervised version of Zheng et al. [48].
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Table 3: Synthetic-to-real (SUNCG → NYUv2) adaptation for depth prediction. The column “Supervision” indicates

methods trained with NYUv2 training data. We denote the top two results as bold and underlined.

Method Supervision Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ RMSE log. ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Liu et al. [23] X 0.213 - 0.759 - 0.650 0.906 0.976

Eigen et al. [9] Fine X 0.215 0.212 0.907 0.285 0.611 0.887 0.971

Eigen et al. [8] (VGG) X 0.158 0.121 0.641 0.214 0.769 0.950 0.988

T2Net [48] X 0.157 0.125 0.556 0.199 0.779 0.943 0.983

Synth. 0.304 0.394 1.024 0.369 0.458 0.771 0.916

Baseline (train set mean) 0.439 0.641 1.148 0.415 0.412 0.692 0.586

T2Net [48] 0.257 0.281 0.915 0.305 0.540 0.832 0.948

Ours w/o Lconsis 0.254 0.283 0.911 0.306 0.541 0.835 0.947

Ours 0.233 0.272 0.898 0.289 0.562 0.853 0.952

Results. Table 3 shows the comparisons with prior meth-

ods [23, 9, 8, 48]. Here, the column “Supervision” indicates

that the method is learned in a supervised fashion. While

not directly comparable, we report their results for com-

pleteness. Under the same experimental settings, we ob-

serve that our method achieves state-of-the-art performance

on all adopted evaluation metrics. Moreover, with the in-

tegration of the cross-domain consistency loss Lconsis, our

method shows consistently improved performance.

4.3. Optical flow estimation

We show evaluations of the model trained on a synthetic

dataset (i.e., MPI Sintel [2]) and test the adapted model on

real-world images from the KITTI 2012 [12] and KITTI

2015 [29] datasets.

Dataset. The MPI Sintel dataset [2] consists of 1, 401 im-

ages rendered from artificial scenes. There are two ver-

sions: 1) the final version consists of images with motion

blur and atmospheric effects, and 2) the clean version does

not include these effects. We use the clean version as the

source dataset. We report two results obtained by 1) using

the KITTI 2012 [12] as the target dataset and 2) using the

KITTI 2015 [29] as the target dataset.

Evaluation protocols. We adopt the average endpoint er-

ror (AEPE) and the F1 score for both KITTI 2012 and

KITTI 2015 to evaluate the performance.

Task network. Our task network is initialized from the

PWC-Net [40] (without finetuning on the KITTI dataset).

Results. We compare our approach with the state-of-the-

art methods [40, 31, 19]. Table 4 shows that our method

achieves improved performance on both datasets. When

incorporating the proposed cross-domain consistency loss

Lconsis, our model improves the results by 1.76 in terms

of average endpoint error on the KITTI 2012 test set and

10.6% in terms of F1-all on the KITTI 2015 test set.

Table 4: Experimental results of synthetic-to-real adap-

tation for optical flow estimation. Left: MPI Sintel→
KITTI 2012. Right: MPI Sintel → KITTI 2015.

The column “finetune” indicates that method is finetuned

on the KITTI dataset. The bold and the underlined numbers

indicate top two results, respectively.

Method finetune

KITTI 2012 KITTI 2015

AEPE AEPE F1-Noc AEPE F1-all F1-all

train test test train train test

SpyNet [31] X 4.13 4.7 12.31% - - 35.05%

FlowNet2 [19] X 1.28 1.8 4.82% 2.30 8.61% 10.41%

PWC-Net [40] X 1.45 1.7 4.22% 2.16 9.80% 9.60%

FlowNet2 [19] 4.09 - - 10.06 30.37% -

PWC-Net [40] 4.14 4.22 8.10% 10.35 33.67% -

Ours w/o Lconsis 4.16 4.92 13.52% 10.76 34.01% 36.43%

Ours 2.19 3.16 8.57% 8.02 23.14% 25.83%

4.4. Limitations

Our method is memory-intensive as the training involves

multiple networks at the same time. Potential approaches

to alleviate this issue include 1) adopting partial sharing on

the two task networks, e.g., share the last few layers of the

two task networks, and 2) sharing the encoders in the image

translation network (i.e., GS→T and GT→S).

5. Conclusions

We have presented a simple yet surprisingly effective

loss for improving pixel-level unsupervised domain adap-

tion for dense prediction tasks. We show that by incorporat-

ing the proposed cross-domain consistency loss, our method

consistently improves the performances over a wide range

of tasks. Through extensive experiments, we demonstrate

that our method is applicable to a wide variety of tasks.
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