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Abstract

In this paper, a deep embedding algorithm is developed

to achieve higher accuracy rates on large-scale image clas-

sification. By adapting the importance of the object classes

to their error rates, our deep embedding algorithm can train

multiple complementary deep networks sequentially, where

each of them focuses on achieving higher accuracy rates for

different subsets of object classes in an easy-to-hard way.

By integrating such complementary deep networks to gen-

erate an ensemble network, our deep embedding algorithm

can improve the accuracy rates for the hard object classes

(which initially have higher error rates) at certain degrees

while effectively preserving high accuracy rates for the easy

object classes. Our deep embedding algorithm has achieved

higher overall accuracy rates on large-scale image classifi-

cation.

1. Introduction

With the availability of massive training images and

the rapid growth of computational powers of GPUs, we

are now able to develop scalable learning algorithms to

support large-scale image classification, and deep learn-

ing [17, 13, 5, 30, 31, 22, 10, 12] has demonstrated its out-

standing performance because it can learn more discrim-

inative representations in an end-to-end fashion. On the

other hand, boosting has demonstrated its strong capability

by embedding multiple complementary weak classifiers to

construct an ensemble one [26, 8, 34]. By assigning larger

weights (importance) to hard samples (which are misclas-

sified by the previous weak classifier), boosting can learn a

complementary weak classifier at the current training round

by paying more attention on such hard samples. Thus it is

very attractive to invest whether boosting [26, 8, 34] can

be integrated with deep learning to achieve higher accuracy

∗The first two authors have equal contributions on this work.

rates on large-scale image classification.

By using deep networks to replace the weak classifiers in

traditional boosting frameworks, boosting of deep networks

has recently received enough attention and some interesting

researches have been done [23, 28, 29, 36, 2, 18, 24, 6, 32].

All these existing deep boosting algorithms simply use the

weighted errors (proposed by Adaboost [26, 8, 34]) to re-

place the softmax errors (used in deep learning), and the

underlying deep networks treat the errors from the hard ob-

ject classes and the easy ones to be equally important. It

is worth noting that object classes may have significant dif-

ferences on their learning complexities (i.e., some object

classes could be harder to be recognized than others), thus

the errors from the hard object classes and the easy ones

may have significantly different effects on optimizing their

joint objective function. Therefore, learning a joint deep

network for the hard object classes and the easy ones may

not be an optimal solution for large-scale visual recogni-

tion because such joint deep network may not have strong

discrimination ability on the hard object classes which may

result in low accuracy rates.

To achieve higher accuracy rates on large-scale image

classification, three types of solutions can be invested to

diversify the deep networks being combined and generate

more discriminative ensemble one: (a) weightingthe train-

ing samples according to their error rates and most existing

deep boosting algorithms [23, 28, 29, 36, 2, 18, 24, 6, 32]

belong to this direction; (b) learning multiple deep networks

by using different model parameters or using various sam-

ple subsets and some deep embedding algorithms [15, 25,

33, 9, 27, 14, 20, 4, 21, 1] belong to this direction; (c) train-

ing multiple complementary deep networks, e.g., such com-

plementary deep networks are trained sequentially by focus-

ing on achieving higher accuracy rates for different subsets

of object classes in an easy-to-hard way, so that they can

enhance each other. According to the best of our knowl-

edge, the third direction (i.e., training and embedding com-

plementary deep networks) has not been explored so far.
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Based on these observations, in this paper, a deep embed-

ding algorithm is developed to train and combine multiple

complementary deep networks to generate more discrimina-

tive ensemble network for achieving higher accuracy rates

on large-scale image classification. The rest of the paper

is organized as: Section 2 briefly reviews the related work;

Section 3 introduces our deep embedding algorithm; Sec-

tion 4 reports our experimental results over three datasets;

and we conclude this paper at Section 5.

Our code is public available at https://github.

com/qychen13/DifficultyAwareEmbedding.

2. Related Work

In this section, we briefly review the most relevant re-

searches on deep learning, deep boosting, and deep embed-

ding.

Deep learning has demonstrated its outstanding abili-

ties on large-scale image classification [17, 13, 5, 30, 31,

22, 10, 12], but most existing approaches completely ig-

nore that object classes may have significant differences on

their learning complexities, e.g., some object classes may

be harder to be recognized than others and the gradients of

their joint objective function are not uniform for all of them.

As a result, learning a joint deep network for the hard object

classes and the easy ones may not be an optimal solution for

large-scale image classification. Thus it is very attractive to

develop new approaches that can learn the deep networks

for the easy object classes and the hard ones sequentially in

an easy-to-hard way.

By assigning different weights (importance) to the train-

ing samples adaptively, boosting [26, 8, 34] has provided

an easy-to-hard approach to train multiple complementary

weak classifiers iteratively. Some deep boosting algorithms

have been developed by seamlessly integrating boosting

with deep networks [23, 28, 29, 36, 2, 18, 24, 6, 32]. All

these existing deep boosting algorithms use the weighted

errors to replace the softmax errors in traditional deep learn-

ing frameworks. Because the errors from all the object

classes (hard object classes and easy ones) are treated to

be equally important, such deep boosting algorithms may

still result in low accuracy rates for the hard object classes.

Some deep embedding algorithms have been devel-

oped [15, 25, 33, 9, 27, 14, 20, 4, 21, 1], where various sam-

ple sets or different model parameters are used to diversify

the deep networks but the errors from the hard object classes

and the easy ones are treated to be equally important. On the

other hand, our deep embedding algorithm focuses on com-

bining multiple complementary deep networks to generate

an ensemble network: (a) the errors from the hard object

classes are assigned with larger importance; (b) multiple

complementary deep networks are trained sequentially and

each of them focuses on achieving higher accuracy rates for

different subsets of object classes in an easy-to-hard way, so

that they can enhance each other.

Algorithm 1 Deep Embedding of Complementary Net-

works

Require: Training set for N classes:

{(xi, yi) | yi ∈ {C1, ..., CN}, i = 1, ..., R}; Ini-

tial importance for N classes: φ1(C1) = ... =
φ1(CN ) = 1

N
; Number of complementary deep

networks or iterations: τ .

1: for t = 1, . . . , τ do

2: Normalizing: ϕt(Cl) =
φt(Cl)∑

N
j=1

φt(Cj)

3: Training the tth deep network ft(x);
4: Calculating the error rate εt(Cl) for each class;

5: Computing the weighted error rate for ft(x):

εt =
∑N

l=1 ϕt(Cl) εt(Cl);
6: Setting γt =

µεt
1−µεt

;

7: Updating φt+1(Cl) = φt(Cl)γ
1−µεt(Cl)
t ;

8: end for

9: Output: F(x) = 1
Z

∑τ

t=1 log
(

1
γt

)

ft(x)

3. Embedding Complementary Deep Networks

As illustrated in Algorithm 1, our deep embedding algo-

rithm contains the following key components: (a) Training

the current tth deep network ft(x) by focusing on achiev-

ing higher accuracy rates for the hard object classes which

have higher error rates with the previous (t− 1)th deep net-

work ft−1(x); (b) Estimating the weighted error rate for

ft(x) according to the distribution of importance for N ob-

ject classes; (c) Updating the distribution of importance for

N object classes according to their error rates by ft(x), so

that the (t + 1)th deep network ft+1(x) can spend more

efforts on the hard object classes at the next training round;

(d) Such iterative process stops when the maximum number

of iterations is reached or a certain level of accuracy rates

is achieved. Our deep embedding algorithm uses the deep

CNNs as its weak learners and many well-designed deep

networks can be used.

3.1. Learning Complementary Deep Networks

To train the current tth deep network ft(x), a deep CNNs

is employed to obtain more discriminative representation

for the image x, followed by a fully connected discriminant

layer and a N -way softmax layer. The output of the tth deep

network ft(x) is a distribution of the prediction probabili-

ties for N object classes, denoted as ft(x; θt) = [pt(C1|x),
..., pt(CN |x)]⊤, where the lth probability score pt(Cl|x) is

for the image x to be assigned into the lth object class Cl,

and θt is the model parameter set for the tth deep network

ft(x). Ideally, the tth deep network ft(x) assigns the image

x into the object class with the maximum probability score:

ŷt = argmax
l

pt(Cl|x), l ∈ {1, · · · , N} (1)
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The training set for N object classes is denoted as:

{(xi, yi) | yi ∈ {C1, ..., CN}, i = 1, ..., R}, where R is the

number of training samples. To train the tth deep network

ft(x), its model parameters can be obtained by maximizing

the objective function:

Ωt(θt) =
N
∑

l=1

ϕt(Cl)ξlt (2)

where ϕt(Cl) =
φt(Cl)∑

N
j=1

φt(Cj)
is the normalized importance

for the lth object class Cl, while φt(Cl) is the unnormalized

importance. ξlt is used to measure the margin between the

average confidences for the correctly-classified images and

the misclassified images for the lth object class Cl:

ξlt =
1

Rl

R
∑

i=1

1(yi = Cl) log pt(Cl|xi)−

1

R−Rl

R
∑

i=1

1(yi 6= Cl) log pt(Cl|xi)

(3)

where Rl is the number of training images from the lth

object class, and
∑N

l=1 Rl = R. The indication function

1(yi = Cl) is equal to 1 if yi = Cl; otherwise zero. If the

second item in Eq.(3) is small enough and negligible, it ap-

proximates ξlt ≈ 1
Rl

∑R

i=1 1(yi = Cl) log pt(Cl|xi), then

maximizing the objective function in Eq.(2) is equivalent to

maximizing the weighted likelihood. By using the normal-

ized importance [ϕt(C1),...,ϕt(CN )] to estimate the learn-

ing complexities for N object classes, our deep embedding

algorithm can push the current deep network ft(x) to focus

on distinguishing the hard object classes which have higher

error rates and tend to be misclassified by the previous deep

network ft−1(x), thus it can support an easy-to-hard solu-

tion for large-scale image classification.

For the tth deep network ft(x), the error rate ǫt(Cl) for

the lth object class Cl is defined as:

ǫt(Cl) =
1

2

R
∑

i=1

{

1(yi = Cl)
1− pt(Cl|xi)

Rl

+

1(yi 6= Cl)
pt(Cl|xi)

R−Rl

}

(4)

The error rate in Eq.(4) is calculated in a soft decision way

with probability; alternatively, we can also simply com-

pute the error rate in a hard decision way as ǫt(Cl) =
1
R

∑R

i=1 1(yi = Cl ∧ ŷti 6= Cl).

The error rate εt for ft(x) is defined as:

εt =

N
∑

l=1

ϕt(Cl)ǫt(Cl) (5)

The importance over N object classes are initialized to

be equal: φ1(Cl) =
1
N

, l = 1, ..., N , and they are updated

iteratively according to the error rates:

φt+1(Cl) = φt(Cl)γ
1−µǫt(Cl)
t

(6)

and the normalization:

ϕt+1(Cl) =
φt+1(Cl)

∑N

j=1 φt+1(Cj)
(7)

where µ in Eq.(6) is a hyper-parameter to be selected. γt in

Eq.(6) is an increasing function of εt and its range is 0 <

γt < 1, and as in Section 3.3, the optimal γt in Eq.(6) is set

to be:

γt =
µεt

1− µεt
(8)

Thus updating the importance for N object classes accord-

ing to their error rates can push the (t+ 1)th deep network

ft+1(x) to pay more attention on the hard object classes

(with larger error rates) at the next training round, so that

such sequential deep networks ft+1(x) and ft(x) are com-

plementary to each other.

3.2. Deep Embedding of Complementary Networks

After τ iterations, we can obtain τ complementary deep

networks {f1, · · · , ft, · · · , fτ}, where each of them focuses

on achieving higher accuracy rates on different subsets of N

object classes in an easy-to-hard way and they can enhance

each other. For recognizing N object classes accurately,

all these τ complementary deep networks are embedded to

generate an ensemble network F(x):

F(x) =
1

Z

τ
∑

t=1

log

(

1

γt

)

ft(x) (9)

where Z =
∑τ

t=1 log
(

1
γt

)

is a normalization factor. The

output of F(x) is an N−dim vector for prediction probabil-

ity distribution. For a given test sample xtest, its lth prob-

ability score p(Cl|xtest) (for assigning it into the lth class

Cl) can be easily calculated by Eq.(9).

The given test sample xtest is finally be assigned into

top-1 object class with the maximum probability score or

top-k object classes with top-k scores. By training and com-

bining multiple complementary deep networks, our deep

embedding algorithm can generate more discriminative en-

semble network F(x) to achieve higher overall accuracy

rates on large-scale visual recognition, e.g., our deep em-

bedding algorithm can improve the accuracy rates for the

hard object classes at certain degrees while effectively pre-

serving high accuracy rates for the easy ones.
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3.3. Parameter Selection for Deep Embedding

Inspired by [7], we study the optimal parameter selec-

tion for deep embedding. In the proposed algorithm, γt in

the range [0, 1] is set to be an increasing function of the er-

ror rate εt. γt is employed in two folds: (i) As defined in

Eq.(6), γt is used to update the distribution of importance

to pay more attention on the hard object classes with higher

error rates; (ii) As defined in Eq.(9), the reciprocal of γt is

used to determine the weight or importance of the tth com-

plementary deep network ft(x) in the ensemble network.

The error rate is used as the criterion for the tth deep

network ft(x) to determine the hard object class: ǫt(Cl) >
1
2µ , l ∈ {1, · · · , N}, e.g., the error rate for the hard object

class is above a threshold 1
2µ . For the lth object class, by

assessing it over τ complementary deep networks, we can

further define ǫmin(Cl) as:

ǫmin(Cl) , min
t∈{1,··· ,τ}

{ǫt(Cl)}

If ǫmin(Cl) > 1
2µ , the lth object class Cl is always hard

to be recognized by all τ complementary deep networks.

The occurrence of such always-hard object classes may se-

riously affect the overall accuracy rates of our deep embed-

ding algorithm on large-scale image classification.

We use ̺ to denote the number of such always-hard ob-

ject classes:

̺ =

N
∑

l=1

1

(

ǫmin(Cl) >
1

2µ

)

where 1(ǫmin(Cl) > 1
2µ ) = 1 if ǫmin(Cl) > 1

2µ is true,

otherwise, 1(ǫmin(Cl) > 1
2µ ) = 0. To achieve higher

overall accuracy rates on large-scale visual recognition, we

should select suitable γt in Eq.(8) to guarantee that ρ = ̺
N

is minimized (e.g., the number of such always-hard object

classes ̺ is minimized).

For 0 < η < 1, we have xη ≤ 1− (1− x)η. According

to Eq.(6), the importance for Cl is updated as:

φt+1(Cl) = φt(Cl)γ
1−µǫt(Cl)
t

we can get:

N
∑

l=1

φt+1(Cl) =
N
∑

l=1

φt(Cl)γ
1−µǫt(Cl)
t

≤

N
∑

l=1

φt(Cl)(1− (1− γt)(1− µǫt(Cl)))

=

N
∑

l=1

φt(Cl)(1− (1− γt)) + µ(1− γt)

N
∑

l=1

φt(Cl)ǫt(Cl)

(10)

According to Eq.(5) and Eq.(2), we can get:

N
∑

l=1

φt(Cl)ǫt(Cl) =

(

N
∑

l=1

φt(Cl)

)

εt

N
∑

l=1

φt+1(Cl) ≤
N
∑

l=1

φt(Cl)(1− (1− γt))+

µ(1− γt)

(

N
∑

l=1

φt(Cl)

)

εt

=

(

N
∑

l=1

φt(Cl)

)

[1− (1− γt)(1− µεt)]

(11)

Because
∑N

l=1 φ1(Cl) = 1, we can have:

N
∑

l=1

φ2(Cl) ≤ 1− (1− γ1)(1− µε1)

N
∑

l=1

φT+1(Cl) ≤ Πτ
t=1[1− (1− γt)(1− µεt)] (12)

By substituting Eq.(6) into Eq.(12), we can get:

Πτ
t=1[1− (1− γt)(1− µεt)] ≥

N
∑

l=1

φt+1(Cl)

=

N
∑

l=1

(

φ1(Cl)Π
τ
t=1γ

1−µǫt(Cl)
t

)

=
1

N

N
∑

l=1

(

ΠT
t=1γ

1−µǫt(Cl)
t

)

≥
1

N

∑

ǫmin(Cl)>
1

2µ

(

Πτ
t=1γ

1−µǫt(Cl)
t

)

(13)

When ǫmin(Cl) >
1
2µ holds, it guarantees that ǫt(Cl) >

1
2µ

and 1 − µǫt(Cl) < 1
2 for all N object classes. Recall the

constraint 0 < γt < 1, we can have:

1

N

∑

ǫmin(Cl)>
1

2µ

(

Πτ
t=1γ

1−µǫt(Cl)
t

)

≥
1

N

∑

ǫmin(Cl)>
1

2µ

(

Πτ
t=1γ

1

2

t

)

=
̺

N
Πτ

t=1γ
1

2

t

(14)

Combining Eq.(13) with Eq.(14), we can get:

ρ =
̺

N
≤

Πτ
t=1[1− (1− γt)(1− µεt)]

Πτ
t=1γ

1

2

t

= Πτ
t=1

1− (1− γt)(1− µεt)

γ
1

2

t

(15)
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To minimize the right-side in Eq.(15), we set its partial

derivative over γt to be zero, and the optimal γt is deter-

mined as:

γt =
µεt

1− µεt

We substitute γt = µεt
1−µεt

into Eq.(15), and obtain the

upper boundary for ρ as:

ρ =
̺

N
≤ 2τΠτ

t=1

√

µεt(1− µεt) (16)

Now we study the range for the hyper-parameter µ. The

criterion for the tth deep network ft(x) to determine the

hard object classes (with higher error rates) is defined as

ǫt(Cl) >
1
2µ , where µ is used to control the threshold of the

expected error rate (i.e., when we have more strict require-

ment on the expected error rate (i.e., smaller threshold), µ

should be larger), and we set the constraint for the hyper-

parameter µ as µ > 1
2 . On the other hand, the range of

γt =
µεt

1−µεt
is 0 < γt < 1, and it is required that µεt <

1
2 ,

i.e., µ < 1
2εt

. As a result, µ should be selected between the

interval [ 12 ,
1

2εt
].

From the relationship between µεt and µεt(1−µεt), we

can observe the effect of µ on the upper boundary of ρ in

Eq.(16): (a) When µ ∈ [ 12 ,
1

2εt
], i.e., εt

2 < µεt < 1
2 , the

condition 0 < γt < 1 is satisfied, and the upper bound-

ary for ρ in Eq.(16) increases when µ increases, the reason

is that when µ increases, the threshold for determining the

hard object classes is smaller, thus the number of always-

hard object classes may increase (i.e., the error rates for

more classes could be above such smaller threshold). (b)

When µ > 1
2εt

, i.e., µεt > 1
2 . In this case, the condition

0 < γt =
µεt

1−µεt
< 1 is not satisfied, thus updating the dis-

tribution of importance in Eq.(6) can not effectively push

the next deep network to pay more attention on the hard ob-

ject classes. For such situation, large error rates εt tend to

result in µεt being larger than or approaching 1
2 , and γt be-

ing larger than or approaching 1. Thus the value of µ should

be smaller to alleviate large εt such that the following con-

straints can still exist: µεt <
1
2 and 0 < γt < 1. (c) When

µ < 1
2 , i.e., 1

2µ > 1, it can not be used as the criterion

for the tth deep network ft(x) to determine the hard object

classes that satisfy ǫt(Cl) >
1
2µ .

4. Experimental Results and Discussions

In this section, we report our evaluation results for

our deep embedding algorithm over three popular datasets:

MNIST [19], CIFAR-100 [16], and ImageNet1K [3].

(a) Experimental Results on MNIST: MNIST dataset

consists of 60,000 training handwritten digit samples and

10,000 test samples [19]. The research in [28] has demon-

strated the accuracy improvement on MNIST dataset by up-

dating the sample weights according to their error rates. For

fair comparison, we use two approaches to train the deep

(a) (b)

Figure 1: Results on MNIST dataset: (a)The compar-

ison on top 1 error for MNIST dataset when different

weighting approaches are used; (b)The comparison on

AP (average precision) of the ensemble network when

different numbers of complementary deep networks are

combined.

networks: (1) our deep embedding algorithm updates the

class weights according to their error rates; (2) traditional

approach updates the sample weights like AdaBoost. In

our experiments, we simply train the deep network with the

learning rate 0.01 throughout the whole 120 epochs.

With our deep embedding method, the top 1 error rate

on the test dataset decreases from 4.73% to 1.87% after

three iterations (as shown in Fig. 1a). After the first iter-

ation, the top 1 error of our deep embedding method drops

more quickly than the traditional approach. Our deep em-

bedding method, which updates the class weights (i.e., the

distribution of importance), can exploit the idea that dif-

ferent classes may have different learning complexities and

they should be treated differentially in an easy-to-hard way.

From Fig. 1b, one can easily observe that our deep embed-

ding algorithm can significantly improve the accuracy rates

for the hard classes while effectively preserving the high

accuracy rates for the easy ones.

(b) Experimental Results on CIFAR-100: We also

carry out our experiments on CIFAR-100 dataset [16].

CIFAR-100 dataset has 60,000 images for 100 object

classes. There are 500 training images and 100 testing

images for each class. In the training stage, we hold out

5,000 images for validation and use 45,000 images for train-

ing. We further adopt padding, mirroring, shifting for data

augmentation and normalization [10, 12]. After several it-

erations, the training error rate for each class is close to

zero [35], thus we update the distribution of importance ac-

cording to their error rates on the validation datasets. When

we train the deep networks on CIFAR-100, the initial learn-

ing rate is set to 0.1 and divided by 0.1 at epoch [150,225],

and we train the deep networks for 300 epoches. The com-

parison results are demonstrated in Tab. 1 when (1) different

types of deep networks (such as ResNet56(µ = 0.7) [11]

and DenseNet-BC(k=12) [12]) are used; (2) different num-

bers T of complementary deep networks are combined.

To train the first deep network, we treat all 100 object

classes in CIFAR-100 with equal importance as shown in
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Figure 2: The comparison on CIFAR-100 dataset: (a) the distribution of weights (importance) for the deep networks

at different iterations; (b) the comparison on the accuracy rates for the complementary network on the training set

for CIFAR-100 dataset; (c) the effects of using different µ; (d) The comparison on the accuracy rates for the ensemble

network on the test set for CIFAR-100 dataset.

Fig. 2a, and the first deep network is learned and its accu-

racy rates for all 100 object classes are shown in Fig. 2b.

One can easily observe that some easy object classes can

achieve acceptable accuracy rates at the first iteration (i.e.,

the first deep network) but some hard object classes may

have very low accuracy rates. By updating the distribution

of importance for 100 object classes (putting larger weights

for hard object classes and smaller weights for easy object

classes) as shown in Fig. 2a, from the second iteration, our

deep embedding algorithm can pay more attention on the

hard object classes. The effects of the hyper-parameter µ

on the performances of our deep embedding algorithm are

shown in Fig. 2c.

By combining multiple complementary deep networks,

our deep embedding algorithm can generate more discrim-

inative ensemble network to improve the overall accuracy

rates on large-scale image classification. As shown in

Fig. 2b, one can observe that our complementary deep net-

works can achieve almost zero error rates on the training

image set, which has good correspondence with the obser-

vations in [35]. By increasing the importance of hard object

classes and pushing the next deep network to pay more at-

tention on them, one can easily observe that the accuracy

rates for such hard object classes may improve on the train-

ing set (as shown in Fig. 2b), however, the improvement of

their accuracy rates on the testing set may still be limited

as shown in Fig. 2d and Tab. 1. The reasons for this phe-

nomenon are: (1) such hard object classes may have huge

intra-class visual diversities, thus the test images and the

training images may have significant differences on their

visual properties; (2) such hard object classes may have

huge inter-class visual similarities with others, thus they are

easily confused from other similar ones. Besides handling

the hard object classes and the easy ones sequentially in an

easy-to-hard way by weighting their importance according

to their error rates, we also need to look for more effective

solutions to deal with the issues of huge intra-class visual

diversities and huge inter-class visual similarities.

(c) Experimental Results on ImageNet1K: Ima-

geNet1K dataset [3] consists 1,000 object classes, which

have 1.2 million images for training, and 50,000 for vali-

dation. When we train the deep networks on ImageNet1K

dataset, the initial learning rates are set to 0.1 and divided

by 0.1 at epoch [30, 60]. The performances of our ensem-

ble network are shown in Tab. 1 when: (1) different types of

complementary deep networks are used; (2) different num-

bers T of complementary deep networks are combined to

generate the ensemble network.

When we train the first deep network, we treat all 1,000

object classes with equal importance as shown in Fig. 3(a),

and a deep network is learned and its accuracy rates for all

1,000 object classes on the training set are shown in Fig.

3(b). One can easily observe that some easy object classes

have achieved acceptable accuracy rates at the first iteration

(i.e., by the first deep network) but some hard object classes

may have very low accuracy rates. By updating the impor-

tance of 1,000 object classes according to their error rates

as shown in Fig. 3(a), from the second iteration, our deep

embedding algorithm can pay more attention on the hard

object classes and their accuracy rates can be improved dra-

matically on the training set.

Our deep embedding algorithm can generate more dis-

criminative ensemble network to achieve higher accuracy

rates on large-scale image classification as shown in Fig.

3(c), e.g., our deep embedding algorithm can improve the

accuracy rates for the hard object classes at certain degrees

while effectively preserving high accuracy rates for the easy

ones. By comparing the performance improvement on the

test set (as shown in Fig. 3(c)) and that on the training set

(as shown in Fig. 3(b)), we have similar observations as

we have obtained on CIFAR-100 dataset: our deep embed-

ding algorithm can improve the accuracy rates for the hard

object classes at the training set while the improvement on

the testing set may not be so significant, e.g., some hard ob-

ject classes are always hard for all τ complementary deep

networks and ρ is larger for ImageNet1K dataset.

Besides the two reasons (huge intra-class visual diver-

sities and huge inter-class visual similarities) which have

discussed above, another key reason for this phenomenon

in ImageNet1K dataset is that: (a) Some hard object classes
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Table 1: The comparisons on the top-1 average error rates (%), where the results in () are the top-5 average error

rates.

Datasets Network T = 1 T = 2 T = 3 T = 4

MNIST MLP [19] 4.73 2.22 1.87 1.86

CIFAR-100
ResNet56 [11] 29.53 26.65 24.97 24.15

DenseNet-BC(k=12) [12] 30.78 28.95 27.60 26.64

ImageNet1K

ResNet50 [11] 24.18(7.49) 23.28(6.98) 22.96(6.81) 22.12(6.79)

DenseNet121 [12] 25.88(8.38) 24.85(7.89) 23.67(7.25) 22.32(6.17)

AlexNet [17] 43.71(21.24) 42.61(20.61) 40.83(19.32) 39.23(17.78)

Figure 3: The comparison on ImageNet1K: (a) the distribution of importance at different iterations; (b) the train-

ing accuracy rates for the complementary networks at different iterations; (c) the validation accuracy rates of the

embedding networks when different numbers T of complementary networks are trained and combined to form the

embedding networks.

are from the leaf nodes of the concept ontology with longer

depths, there may have multiple visually-similar object

classes which are hard to be distinguished from each other,

e.g., fine-grained hard object classes. As illustrated in Ta-

ble 1, the top-1 accuracy rates could be very low but the

top-5 accuracy rates could be much better because the mis-

takes on distinguishing among multiple fine-grained hard

object classes are not counted in such top-5 error rates. (2)

Some hard object classes are from the leaf nodes of the con-

cept ontology with very short depths (i.e., coarse-grained

hard object classes), we may need larger numbers of train-

ing images to learn the deep networks for discriminating

such coarse-grained hard object classes effectively, as a re-

sult, using the same number of training images for all the

object classes (as it has been done by most existing deep

learning algorithms) may not be sufficient to learn discrim-

inative deep networks for such coarse-grained hard object

classes.

To learn more discriminative deep networks for the hard

object classes, we may further invest: (1) Integrating ad-

ditional information (such as the inter-class semantic cor-

relations from the concept ontology [3]) to learn the deep

network for the fine-grained hard object classes; (2) Us-

ing more training images for the coarse-grained hard ob-

ject classes and developing new deep learning algorithms

which can handle sample imbalances effectively; (3) Us-

ing heterogeneous embedding, e.g., using different types of

deep networks at different iterations such as AlexNet for the

first one, ResNet50 for the second complementary one, and

ResNet152 for the third complementary one, et al..

(d) Comparison over Embedding Approaches: For

CIFAR-100 and ImageNet1K datasets, we have compared

three embedding approaches: (1) deep boosting [28, 29]; (2)

traditional deep embedding [9, 27]; (3) our deep embedding

algorithm. In this comparison experiment, the same type

of deep networks (ResNet56 for CIFAR-100 and ResNet50

for ImageNet1k) is used as the complementary network-

for three approaches. By combining the same numbers T

of deep networks, we have compared the performances of

the ensemble networks which are generated by three ap-

proaches. As shown in Table 2, one can easily observe that

our deep embedding algorithm can achieve higher overall

accuracy rates on large-scale image classification.

Further Discussion

(a) Regularization: AdaBoost [7](weighting at the sam-

ple level) has achieved higher training accuracy by combin-

ing traditional weak learning models (i.e. small networks in

[28, 29]), but it is unsuitable for combining large networks:

(a) In deep learning, the training error could approach zero

and easily suffers from overfitting [35]; (b) When the train-

ing error rates are close to zeros, focusing on the hard sam-

ples could make the problem of overfitting even worse be-

cause the deep networks will be trained with a small portion
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Figure 4: Illustration for training convergence process of complementary networks dynamically/jointly optimized

on CIFAR100: the convergence process of one complementary network(a), the average precision among different

networks for the first three epochs(b,c,d). It shows that the difficult categories (small class ID) are similar even with

the randomization from the network initialization and optimization process.

Table 2: The comparisons on the top-1 average error rates (%) for multiple embedding approaches.

Datasets Different Approaches for Network Embedding T = 1 T = 2 T = 3 T = 4

CIFAR-100

Our deep embedding 29.53 26.65 24.97 24.15

traditional deep embedding [9, 27] 29.53 29.40 29.35 29.32

deep boosting [28, 29] 29.53 27.60 26.82 26.53

ImageNet1K

Our deep embedding 24.18 23.28 22.96 22.12

traditional deep embedding [9, 27] 24.18 23.65 23.15 23.08

deep boosting [28, 29] 24.18 24.07 23.98 23.75

of samples. For example, in our experiments on CIFAR100

dataset, the training errors could easily approach zeros (Fig.

2a), which is in line with [35], thus we use the validation

error rates to weight the objective function in the subse-

quent iterations. At this scenario, weighting at the sample

level is not practical to use the validation results and would

only leave a small portion of the samples focused and may

worsen the overfitting.

Overall, weighting at the sample level may impair the

generation ability of strong complementary learning mod-

els (ResNet56/ResNet50 in Tab. 2). Weighting at the cate-

gory level provides an effective alternative which acts as a

regularization method and guides the optimization process

(SGD) to pay more attention on difficult categories by op-

timizing the weighted objective function subsequently (Fig.

2 and Fig. 2d).

(b) Sequentially Guided Optimization: Combin-

ing multiple complementary deep networks dynami-

cally/jointly [9, 27] is indeed a reasonable alternative for

embedding and it has shown improved results on fine-

grained tasks [9] and small neural networks [27], but the

improved margin is small with dynamic weighting on non-

fine-grained task (CIFAR-100/ImageNet) with deep neural

networks (ResNet56/ResNet50) in our experiments (Tab.2).

The diversity of dynamic weighting is based on randomiza-

tion from network initialization and optimization process

(SGD) while our proposed method is based on learning dif-

ficulty of categories. For difficult categories which are hard

to learn and converge slowly for all networks, i.e. small

ID categories in Fig.4a for all complementary networks (

Fig.4b,4c,4d), the weights/occupations could be distributed

almost equally for the complementary networks if opti-

mized jointly and behaves like average ensemble. How-

ever, such hard categories would be focused and learned by

guided objective function in the subsequent networks with

the proposed method (Fig.2&Fig.3). In addition, we have

proven the theoretical convergence of our proposed method

(Sec. 3.3&Eq. 16).

5. Conclusions

A deep embedding algorithm is developed to train and

combine multiple complementary deep networks, where

each of them focuses on achieving higher accuracy rates for

different subsets of object classes in an easy-to-hard way

and they can enhance each other. Our deep embedding al-

gorithm can improve the accuracy rates for the hard object

classes at certain degrees while effectively preserving high

accuracy rates for the easy ones, thus it can achieve higher

overall accuracy rates on large-scale image classification.
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