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Abstract

Globally modeling and reasoning over relations between

regions can be beneficial for many computer vision tasks on

both images and videos. Convolutional Neural Networks

(CNNs) excel at modeling local relations by convolution

operations, but they are typically inefficient at capturing

global relations between distant regions and require stack-

ing multiple convolution layers. In this work, we propose

a new approach for reasoning globally in which a set of

features are globally aggregated over the coordinate space

and then projected to an interaction space where relational

reasoning can be efficiently computed. After reasoning,

relation-aware features are distributed back to the original

coordinate space for down-stream tasks. We further present

a highly efficient instantiation of the proposed approach

and introduce the Global Reasoning unit (GloRe unit) that

implements the coordinate-interaction space mapping by

weighted global pooling and weighted broadcasting, and

the relation reasoning via graph convolution on a small

graph in interaction space. The proposed GloRe unit is

lightweight, end-to-end trainable and can be easily plugged

into existing CNNs for a wide range of tasks. Extensive ex-

periments show our GloRe unit can consistently boost the

performance of state-of-the-art backbone architectures, in-

cluding ResNet [15, 16], ResNeXt [34], SE-Net [18] and

DPN [9], for both 2D and 3D CNNs, on image classifica-

tion, semantic segmentation and video action recognition

task.

1. Introduction

Relational reasoning between distant regions of arbitrary

shape is crucial for many computer vision tasks like image

classification [10], segmentation [36, 37] and action recog-

nition [32]. Humans can easily understand the relations

among different regions of an image/video, as shown in Fig-

ure 1(a). However, deep CNNs cannot capture such rela-

tions without stacking multiple convolution layers, since an

individual layer can only capture information locally. This

is very inefficient, since relations between distant regions of

arbitrary shape on the feature map can only be captured by

projection
reverse

projection
(a) GT: Playing TV Game

Interaction Space

(b) Reasoning between Regions (c) Graph Reasoning Framework

Coordinate SpaceCoordinate Space

Figure 1: Illustration of our main idea. Aiming at capturing

relations between arbitrary regions over the full input space

(shown in different colors), we propose a novel approach for

reasoning globally (shown in Fig. (c)). Features from the

colored regions in coordinate space are projected into nodes

in interaction space, forming a fully-connected graph. After

reasoning over the graph, node features are projected back

to the coordinate space.

a near-top layer with a sufficiently large receptive field to

cover all the regions of interest. For instance, in ResNet-

50 [15] with 16 residual units, the receptive field is gradu-

ally increased to cover the entire the image of size 224×224
at 11th unit (the near-end of Res4). To solve this problem,

we propose a unit to directly perform global relation rea-

soning by projecting features from regions of interest to an

interaction space and then distribute back to the original co-

ordinate space. In this way, relation reasoning can be per-

formed in early stages of a CNN model.

Specifically, rather than relying solely on convolutions in

the coordinate space to implicitly model and communicate

information among different regions, we propose to con-

struct a latent interaction space where global reasoning can

be performed directly, as shown in Figure 1(c). Within this

interaction space, a set of regions that share similar seman-

tics are represented by a single feature, instead of a set of

scattered coordinate-specific features from the input. Rea-

soning the relations of multiple different regions is thus sim-

plified to modeling those between the corresponding fea-
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tures in the interaction space, as shown on the top of Fig-

ure 1(c). We thus build a graph connecting these features

within the interaction space and perform relation reason-

ing over the graph. After the reasoning, the updated in-

formation is then projected back to the original coordinate

space for down-streaming tasks. Accordingly, we devise a

Global Reasoning unit (GloRe) to efficiently implement the

coordinate-interaction space mapping process by weighted

global pooling and weighted broadcasting, as well as the

relation reasoning by graph convolution [21], which is dif-

ferentiable and also end-to-end trainable.

Different from the recently proposed Non-local Neu-

ral Networks (NL-Nets) [32] and Double Attention Net-

works [7] which only focus on delivering information

and rely on convolution layers for reasoning, our pro-

posed model is able to directly reason on relations over

regions. Similarly, Squeeze-and-Excitation Networks (SE-

Nets) [18] only focus on incorporating image-level features

via global average pooling, leading to an interaction graph

containing only one node. It is not designed for regional

reasoning as our proposed method. Extensive experiments

show that inserting our GloRe can consistently boost per-

formance of state-of-the-art CNN architectures on diverse

tasks including image classification, semantic segmentation

and video action recognition.

Our contributions are summarized below:

• We propose a new approach for reasoning globally by

projecting a set of features that are globally aggregated

over the coordinate space into an interaction space where

relational reasoning can be efficiently computed. After

reasoning, relation-aware features are distributed back to

the coordinate space for down-stream tasks.

• We present the Global Reasoning unit (GloRe unit) a

highly efficient instantiation of the proposed approach

that implements the coordinate-interaction space map-

ping by weighted global pooling and weighted broadcast-

ing, and the relation reasoning via graph convolution in

the interaction space.

• We conduct extensive experiments on a number of

datasets and show the Global Reasoning unit can bring

consistent performance boost for a wide range of back-

bones including ResNet, ResNeXt, SE-Net and DPN, for

both 2D and 3D CNNs, on image classification, semantic

segmentation and video action recognition task.

2. Related Work

Deep Architecture Design. Research on deep architecture

design focuses on building more efficient convolution layer

topologies, aiming at alleviating optimization difficulties or

increasing efficiency of backbone architectures. Residual

Networks (ResNet) [15, 16] and DenseNet [19] are pro-

posed to alleviate the optimization difficulties of deep neu-

ral networks. DPN [9] combines benefits of these two net-

works with further improved performance. Xception [11],

MobileNet [17, 28], and ResNeXt [34] use grouped or

depth-wise convolutions to reduce the computational cost.

Meanwhile, reinforcement learning based methods [39] try

to automatically find the network topology in a predefined

search space. All these methods, though effective, are

built by stacking convolution layers and thus suffer low-

efficiency of convolution operations on reasoning between

disjoint or distant regions. In this work we propose an aux-

iliary unit that can overcome this shortage and bring signif-

icant performance gain for these networks.

Global Context Modeling. Many efforts try to overcome

the limitation of local convolution operators by introducing

global contexts. PSP-Net [37] and DenseASPP [36] com-

bine multi-scale features to effectively enlarge the receptive

field of the convolution layers for segmentation tasks. De-

formable CNNs [13] achieve the similar outcome by fur-

ther learning offsets for the convolution sampling locations.

Squeeze-and-Excitation Networks [18] (SE-Net) use global

average pooling to incorporate an image-level descriptor at

every stage. Nonlocal Networks [32], self-attention Mecha-

nism [31] and Double Attention Networks (A2-Net) [7] try

to deliver long-range information from one location to an-

other. Meanwhile, bilinear pooling [25] extracts image level

second-order statistics to complement the convolution fea-

tures. Although we also incorporate global information, in

the proposed approach we go one step further and perform

higher-level reasoning on a graph of the relations between

disjoint or distant regions as shown in Figure 1(b).

Graph-based Reasoning. Graph-based methods have been

very popular in recent years and shown to be an efficient

way of relation reasoning. CRFs [3] and random walk net-

works [1] are proposed based on the graph model for effec-

tive image segmentation. Recently, Graph Convolution Net-

works (GCN) [21] are proposed for semi-supervised classi-

fication, and Wang et al. [33] propose to use GCN to capture

relations between objects in video recognition tasks, where

objects are detected by an object detector pre-trained on ex-

tra training data. In contrast to [33], we adopt the reasoning

power of graph convolutions to build a generic, end-to-end

trainable module for reasoning between disjoint and distant

regions, regardless of their shape and without the need for

object detectors or extra annotations. It is worth noting that,

in a concurrent work, Li et al. [24] draw inspiration from

region-based recognition and present a graph-based repre-

sentation similar to ours; they however only explore the se-

mantic instance segmentation and object detection tasks.
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3. Graph-based Global Reasoning

In this section, we first provide an overview of the pro-

posed Global Reasoning unit, the core unit to our graph-

based global reasoning network, and introduce the motiva-

tion and rationale for its design. We then describe its archi-

tecture in details. Finally, we elaborate on how to apply it

for several different computer vision tasks.

Throughout this section, for simplicity, all figures are

plotted based on 2D (image) input tensors. A graph G =
(V, E , A) is typically defined by its nodes V , edges E and

adjacent matrix A describing the edge weights. In the fol-

lowing, we interchangeably use A or G to refer to a graph

defined by A.

3.1. Overview

Our proposed GloRe unit is motivated by overcoming the

intrinsic limitation of convolution operations for modeling

global relations. For an input feature tensor X ∈ R
L×C ,

with C being the feature dimension and L = W ×H loca-

tions, standard convolutional layers process inputs w.r.t. the

regular grid coordinates Ω = {1, . . . , H} × {1, . . . ,W} to

extract features. Concretely, the convolution is performed

over a regular nearest neighbor graph defined by an adja-

cent matrix A ∈ R
L×L where Aij = 1 if regions i and j

are spatially adjacent, and otherwise Aij = 0. The edges

of the graph encode spatial proximity and its node stores

the feature for that location as shown on the bottom of Fig-

ure 1(c). Then the output features of such a convolution

layer are computed as Y = AXW where W denotes pa-

rameters of the convolution kernels. A single convolution

layer can capture local relations covered by the convolution

kernel (i.e., locations connected over the graph A). But cap-

turing relations among disjoint and distant regions of arbi-

trary shape requires stacking multiple such convolution lay-

ers, which is highly inefficient. Such a drawback increases

the difficulty and cost of global reasoning for CNNs.

To solve this problem, we propose to first project the fea-

tures X from the coordinate space Ω to the features V in a

latent interaction space H, where each set of disjoint regions

can be represented by a single feature instead of a bunch of

features at different locations. Within the interaction space

H, we can build a new fully-connected graph Ag , where

each node stores the new feature as its state. In this way, the

relation reasoning is simplified as modeling the interaction

between pairs of nodes over a smaller graph Ag as shown

on the top of the Figure 1(c).

Once we obtain the feature for each node of graph Ag ,

we apply a general graph convolution to model and reason

about the contextual relations between each pair of nodes.

After that, we perform a reverse projection to transform

the resulting features (augmented with relation information)

back to the original coordinate space, providing comple-

mentary features for the following layers to learn better
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Figure 2: Architecture of the proposed Global Reasoning

unit. It consists of five convolutions, two for dimension re-

duction and expansion (the left and right most ones) over

input features X and output Y , one for generating the bi-

projection B between the coordinate and latent interaction

spaces (the top one), and two for global reasoning based

on the graph Ag in the interaction space (the middle ones).

Here V encodes the regional features as graph nodes and

Wg denotes parameters for the graph convolution.

task-specific representations. Such a three-step process is

conceptually depicted in Figure 1(c). To implement this

process, we propose a highly efficient unit, termed GloRe

unit, with its architecture outlined in Figure 2.

In the following subsections, we describe each step of

the proposed GloRe unit in detail.

3.2. From Coordinate Space to Interaction Space

The first step is to find the projection function f(·) that

maps original features to the interaction space H. Given a

set of input features X ∈ R
L×C , we aim to learn the pro-

jection function such that the new features V = f(X) ∈
R

N×C in the interaction space are more friendly for global

reasoning over disjoint and distant regions. Here N is the

number of the features (nodes) in the interaction space.

Since we expect to directly reason over a set of regions, as

shown in Figure 1(b), we formulate the projection function

as a linear combination (a.k.a weighted global pooling) of

original features such that the new features can aggregate

information from multiple regions. In particular, each new

feature is generated by

vi = biX =
∑

∀j

bijxj , (1)

with learnable projection weights B = [b1, · · · ,bN ] ∈
R

N×L, xj ∈ R
1×C , vi ∈ R

1×C .

We note that the above equation gives a more generic

formulation than an existing method [33], where an object

detector pre-trained on an extra dataset is adopted to de-

termine bi, i.e. bij = 1 if j is inside the object box, and

bij = 0 if it is outside the box. Instead of using extra anno-

tation and introducing a time-consuming object detector to

form a binary combination, we propose to use convolution
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layers to directly generate bi (we use one convolution layer

in this work).

In practice, to reduce input dimension and enhance ca-

pacity of the projection function, we implement the func-

tion f(X) as f(φ(X;Wφ)) and B = θ(X;Wθ). We model

φ(·) and θ(·) by two convolution layers as shown in Fig-

ure 2. Wφ and Wθ are the learnable convolutional kernel

of each layer. The benefits of directly using the output of

a convolution layer to form the bi include the following

aspects. 1) The convolution layer is end-to-end trainable.

2) Its training does not require any object bounding box as

[33]. 3) It is simple to implement and faster in speed. 4)

It is more generic since the convolution output can be both

positive and negative, which linearly fuses the information

in the coordination space.

3.3. Reasoning with Graph Convolution

After projecting the features from coordinate space into

the interaction space, we have graph where each node con-

tains feature descriptor. Capturing relations between arbi-

trary regions in the input is now simplified to capturing in-

teractions between the features of the corresponding nodes.

There are several possible ways of capturing the relations

between features in the new space. The most straightfor-

ward one would be to concatenate the features as input and

use a small neural network to capture inter-dependencies,

like the one proposed in [29]. However, even a simple re-

lation network is computationally expensive and concate-

nation destroys the pair-wise correspondence along the fea-

ture dimension. Instead, we propose treating the features as

nodes of a fully connected graph, propose to reason on the

fully connected graph by learning edge weights that corre-

spond to interactions of the underlying globally-pooled fea-

tures of each node. To that end, we adopt the recently pro-

posed graph convolution [21], a highly efficient, effective

and differentiable module.

In particular, let G and Ag denote the N ×N node adja-

cency matrix for diffusing information across nodes, and let

Wg denote the state update function. A single-layer graph

convolution network is defined by Eqn. (2), where the ad-

jacency matrix Ag is randomly initialized and learned by

gradient decent during training, together with the weights.

The identity matrix serves as a shortcut connection that al-

leviates the optimization difficulties. The graph convolu-

tion [21, 23] is formulated as

Z = GVWg = ((I −Ag)V )Wg. (2)

The first step of the graph convolution performs Lapla-

cian smoothing [23], propagating the node features over the

graph. During training, the adjacent matrix learns edge

weights that reflect the relations between the underlying

globally-pooled features of each node. If, for example,

two nodes contain features that focus on the eyes and the
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Figure 3: Relation reasoning through graph convolution.

(a) An intuitive explanation of graph convolution. (b) Im-

plementation of Graph Convolution using two-direction 1D

convolutions.

nose, learning a strong connection between the two would

strengthen the features for a possible downstream “face”

classifier. After information diffusion, each node has re-

ceived all necessary information and its state is updated

through a linear transformation. This two step process is

conceptually visualized in Figure 3(a). In Figure 3(b), we

show the implementation of this two step process and the

graph convolution via two 1D convolution layers along dif-

ferent directions, i.e. channel-wise and node-wise. The rea-

soning step makes our proposed method stands out from

existing works [32, 7] which only focuses on gathering and

distributing information.

3.4. From Interaction Space to Coordinate Space

To make the above building block compatible with exist-

ing CNN architectures, the last step is to project the output

features back to the original space after the relation reason-

ing. In this way, the updated features from reasoning can

be utilized by the following convolution layers to make bet-

ter decisions. This reverse projection is very similar to the

projection in the first step.

Given the node-feature matrix Z ∈ R
N×C , we aim to

learn a mapping function that can transform the features to

Y ∈ RL×C as follows:

Y = g(Z). (3)

Similar to the first step, we adopt linear projection to for-

mulate g(Z):

yi = diZ =
∑

∀j

dijzj . (4)

The above projection is actually performing feature diffu-

sion. The feature zj of node j is assigned to yi weighted by
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a scalar dij . These weighs form the dense connections from

the semantic graph to the grid map. Again, one can force

the weighted connections to be binary masks or can sim-

ply use a shallow network to generate these connections. In

our work, we use a single convolution layer to predict these

weights. In practice, we find that we can reuse the projec-

tion generated in the first step to reduce the computational

cost without producing any negative effect upon the final

accuracy. In other words, we set D = B⊤.

The right most side of Figure 2 shows the detailed im-

plementation. In particular, the information from the graph

convolution layer is projected back to the original space

through the weighted broadcasting in Eqn. (4), where we

reuse the output from the top convolution layer as the

weight. Another convolution layer is attached after migrat-

ing the information back to the original space for dimension

expansion, so that the output dimension can match the input

dimension forming a residual path.

3.5. Deploying the Global Reasoning Unit

The core processing of the proposed Global Reason-

ing unit happens after flattening all dimensions referring

to locations. It therefore straightforwardly applies to 3D

(e.g. spatio-temporal) or 1D (e.g. temporal or any one-

dimensional) features by adapting the dimensions of the

three convolutions that operate in the coordinate space and

then flattening the corresponding dimensions. For exam-

ple, in the 3D input case, the input is a set of frames and

L = H ×W × T , where H,W are the spatial dimensions

and T is the temporal dimension, i.e. the number of frames

in the clip. In this case, the three 1 convolutional layers

shown in Figure 2 will be replaced by 1 × 1 × 1 convolu-

tions.

In practice, due to its residual nature, the proposed

Global Reasoning unit can be easily incorporated into a

large variety of existing backbone CNN architectures. It

is light-weight and can therefore be inserted one or multiple

times throughout the network, reasoning global information

at different stages and complementary to both shallow and

deeper networks. Although the latter can in theory capture

such relations via multiple stacked convolutions, we show

that adding one or more of the proposed Global Reasoning

unit increases performance for downstream tasks even for

very deep networks. In the following section, we present

results from different instantiations of Graph-Based Global

Reasoning Networks with one or multiple Global Reason-

ing unit at different stages, describing the details and trade-

offs in each case. We will refer to networks with at least one

Global Reasoning unit as Graph-Based Global Reasoning

Networks.

4. Experiments

We begin with image classification task on the large-

scale ImageNet [22] dataset for studying key proprieties of

the proposed method, which servers as the main benchmark

dataset. Next, we use the Cityscapes [12] dataset for image

segmentation task, examining if the proposed method can

also work well for dense prediction on small-scale datasets.

Finally, we use the Kinetics [20] dataset to demonstrate the

proposed method can generalize well not only on 2D im-

ages, but also on 3D videos with spatial-temporal dimen-

sion for action recognition task.1

4.1. Implementation Details

Image Classification We first use ResNet-50 [16] as a

shallow CNN to conduct ablation studies and then use

deeper CNNs to further exam the effectiveness of the pro-

posed method. We determine N so that the total #FLOPs

and #Params can match our baseline method, i.e. NL-

Net [32], for fair comparison and therefore we set the num-

ber of node represented by N to be 1

4
of the number of

channels in X . A variety of networks are tested as the back-

bone CNN, including the ResNet [16], ResNeXt [34], Dual

Path Network(DPN) [9], and SE-Net [18]. All networks are

trained with the same strategy [9] using MXNet [6] with

64 GPUs. The learning rate is decreased by a factor of 0.1
starting from 0.42; the weight decay is set to 0.0002; the

networks are updated using SGD with a total batch size of

2, 048. We report the Top-1 classification accuracies on the

validation set with 224× 224 single center crop [16, 34, 9].

Semantic Image Segmentation We employ the simple

yet effective Fully Convolutional Networks (FCNs) [4] as

the backbone. Specifically, we adopt ImageNet [22] pre-

trained ResNet [15], remove the last two down-sampling

operations and adopt the multi-grid [5] dilated convolu-

tions. Our proposed block(s) is randomly initialized and

is appended at the end of the FCN just before the final

classifier, between two adaptive convolution layers. Same

with [26, 5, 4], we employ a “poly” learning rate policy

where power = 0.9 and the initial learning rate is 0.006
with batch size of 8.

Video Action Recognition We run the baseline methods

and our proposed method with the code released by [8] us-

ing PyTorch [27]. We follow [32] to build the backbone

3D ResNet-50/101 which is pre-trained on ImageNet [22]

classification task. However, instead of using 7 × 7 × 7
convolution kernel for the first layer, we use 3× 5× 5 con-

volution kernel for faster speed as suggested by [7]. The

1Code is available at: https://github.com/facebookresearch/GloRe
2For SE-Nets, we adopt 0.3 as the initial learning rate since it diverged

when using 0.4 as the initial learning rate.
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Figure 4: Ablation study on ImageNet validation set with

ResNet-50 [16] as the backbone CNN. Black circles denote

results reported by authors in [16, 18], while all other colors

denote results reproduced by us. Specifically, red circles

refer to models with at least one GloRe, blue circle denote

the use of the related NL unit [32], while “SE-” denotes the

use of SE units [18]. The size of the circle reflects model

size. Our reproduced ResNet-50 (R50) and SE-ResNet-50

(SE-R50) give slightly better results that reported, due to the

use of strided convolution3and different training strategies.

learning rate starts from 0.04 and is decreased by a factor

of 0.1. Newly added blocks are randomly initialized and

trained from scratch. We select the center clip with center

crop for the single clip prediction, and evenly sample 10

clips per video for the video level prediction which is simi-

lar with [32].

4.2. Results on ImageNet

We first conduct ablation studies using ResNet-50 [16] as

the backbone architecture and considering two scenarios: 1)

when only one extra block is added; 2) when multiple ex-

tra blocks are added. We then conduct further experiments

with more recent and deeper CNNs to further examine the

effectiveness of the proposed unit.

Ablation Study Figure 4 shows the ablation study results,

where the y-axis is the Top-1 accuracy and x-axis shows

the computational cost measured by FLOPs, i.e. floating-

point multiplication-adds [15]. We use “R”, “NL”, “Our”

to represent Residual Networks, Nonlocal Block [32], our

proposed method respectively, and use “(n, m)” to indicate

insert location. For example, “R50+Our(1,3)” means one

extra GloRe unit is inserted to ResNet-50 on Res3, and three

3https://github.com/facebook/fb.resnet.torch

Table 1: Performance comparison of adding different num-

bers of graph convolution layers on ImageNet validation set.

g denotes the number of graph convolution layers inside a

GloRe unit. Top-1 accuracies on ImageNet validation set

are reported.

Plain
+1 Global Reasoning unit

g = 1 g = 2 g = 3

ResNet-50 76.15% 77.60% 77.62% 77.66%

GloRe units are inserted on Res4 evenly. We first study the

case when only one extra block is added as shown in gray

area. Seen from the results, the proposed method improves

the accuracy of ResNet-50 (pink circle) by 1.5% when only

one extra block is added. Compared with Nonlocal method,

the proposed method shows higher accuracy under the same

computation budget and model size. We also find inserting

the block on Res4, i.e. “R50+Ours(0,1)”, gives better accu-

racy gain than inserting it on Res3, i.e. “R50+Ours(1,0)”,

which is probably because Res4 contains more level fea-

tures with semantics. Next, we insert more blocks on Res4

and the results are shown in the green area. We find that

GloRe unit can consistently lift the accuracy when more

blocks are added. Surprisingly, just adding three GloRe

units enhances ResNet-50 by up to 78.4% in Top-1 accu-

racy, which is even 0.1% better than the deepest ResNet-

200 [16], yet with only about 30% GFLOPS and 50%

model parameters. This is very impressive, showing that

our newly added block can provide some complementary

features which cannot be easily captured by stacking convo-

lution layers. Similar improvement has also been oberved

on SE-ResNet-50 [18]. We also insert multiple blocks on

different stages as shown in the purple area, and find adding

all blocks at Res4 gives the best results. It is also interest-

ing to see that the Nonlocal method starts to diverge during

the optimization when more blocks are added, while we did

not observe such optimization difficulties for the proposed

method.4 The Table 1 shows the effects of using different

numbers of graph convolution layers for each GloRe unit.

Since stacking more graph convolution layers does not give

significant gain, we only use one graph convolution layer

per unit unless explicitly stated.

Going Deeper with Our Block We further examine if

the proposed method can improve the performance of

deeper CNNs. In particular, we exam four different deep

CNNs: ResNet-200 [16], ResNeXt-101 [34], DPN-98 [9]

and DPN-131 [9]. The results are summarized in Table 2,

where all baseline results are reproduced by ourselves using

4For better comparing the optimization difficulty, we do not adopt the

zero initialization trick [14] for both methods.
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Table 2: Performance gain by adding our proposed GloRe

unit on different state-of-the-art networks on ImageNet val-

idation set. We find the GloRe unit provides consistent im-

provements independent of the architecture. “+n” means

adding n extra blocks at “Res3” or “Res4”.

Method Res3 Res4 GFLOPs #Params Top-1

ResNet50 [16]

Baseline 4.0 25.6M 76.2%

GloRe (Ours) +3 5.2 30.5M 78.4%

GloRe (Ours) +2 +3 6.0 31.4M 78.2%

SE-ResNet50 [18]
Baseline 4.0 28.1M 77.2%

GloRe (Ours) +3 5.2 33.0M 78.7%

ResNet200 [16]

Baseline 15.0 64.6M 78.3%

GloRe (Ours) +3 16.2 69.7M 79.4%

GloRe (Ours) +2 +3 16.9 70.6M 79.7%

ResNeXt101 [34]

(32× 4)

Baseline 8.0 44.3M 78.8%

GloRe (Ours) +2 +3 9.9 50.3M 79.8%

DPN-98 [9]
Baseline 11.7 61.7M 79.8%

GloRe (Ours) +2 +3 13.6 67.7M 80.2%

DPN-131 [9]
Baseline 16.0 79.5M 80.1%

GloRe (Ours) +2 +3 17.9 85.5M 80.3%

Table 3: Semantic segmentation results on Cityscapes val-

idation set. ImageNet pre-trained ResNet-50 is used as the

backbone CNN.

FCN multi-grid +1 GloRe unit +2 GloRe unit mIoU ∆ mIoU

X 75.79%

X X 76.45% 0.66%

X X X 78.25% 2.46%

X X X 77.84% 2.05%

the same training setting for fair comparison. We observe

consistent performance gain by inserting GloRe unit even

for these very deep models where accuracies are already

quite high. It is also interesting to see that adding GloRe

unit on both “Res3” and “Res4” can further improve the ac-

curacy for deeper networks, which is different from the ob-

servations on ResNet-50, probably because deeper CNNs

contains more informative features in “Res3” than the shal-

low ResNet-50.

4.3. Results on Cityscapes

The Cityscapes contains 5,000 images captured by the

dash camera in 2048×1024 resolution. We use it to evaluate

the dense prediction ability of the proposed method for se-

mantic segmentation. Compared with the ImageNet, it has

much fewer images with higher resolution. Note that we do

not use the extra coarse data [12] during training which is

orthogonal to the study of our approach.

The performance gain of each component is shown in

Table 3. As can be seen, adopting the multi-grid trick [5]

can help improve the performance, but the most significant

gain comes from our proposed GloRe unit. In particular, by

Table 4: Semantic segmentation results on Cityscapes test

set. All networks are evaluated by the testing server. Our

method is trained without using extra “coarse” training set.

Method Backbone IoU cla. iIoU cla. IoU cat. iIoU cat.

DeepLab-v2 [4] ResNet101 70.4% 42.6% 86.4% 67.7%

PSPNet [37] ResNet101 78.4% 56.7% 90.6% 78.6%

PSANet [38] ResNet101 80.1% 59.1% 91.2% 79.7%

DenseASPP [36] ResNet101 80.6% 57.9% 90.7% 78.1%

FCN + 1 GloRe unit ResNet50 79.5% 60.3% 91.3% 81.5%

FCN + 1 GloRe unit ResNet101 80.9% 62.2% 91.5% 82.1%

inserting one GloRe unit, the mIoU is improved by 1.8%
compared with the “FCN + multi-grid” baseline. Besides,

we find that adding two GloRe units sequentially does not

give extra gain as shown in the last row of the table.

We further run our method on the testing set and then up-

load its prediction to the testing server for evaluation, with

results shown in Table 4 along with other state-of-the-art

methods. Interestingly without bells and trick (i.e. with-

out using extra coarse annotations, in-cooperated low-level

features or ASPP [5]), our proposed method that only use

ResNet-50 as backbone can already achieves better accu-

racy than some of the popular bases, and the deep ResNet-

101 based model achieves competitive performance with

the state-of-the-arts.

Figure 5 shows results on the validation set. As high-

lighted by the yellow boxes, GloRe unit enhances the gen-

eralization ability of the backbone CNN, and is able to alle-

viate ambiguity and capture more details.

4.4. Results on Kinetics

The experiments presented in the previous section

demonstrate the effectiveness of the propose method on 2D

image related tasks. We now evaluate the performance of

out GloRe unit on 3D inputs and the flagship video under-

standing task of action recognition. We choose the large-

scale Kinetics-400 [20] dataset fortesting that contains ap-

proximately 300k videos. We employ the ResNet-50(3D)

and ResNet-101(3D) as the backbone and insert 5 extra

GloRe units in total, on Res3 and Res4. The backbone net-

works are pre-trained on ImageNet [22], where the newly

added blocks are randomly initialized and trained from

scratch.

We first compare with Nonlocal Networks (NL-Net)[32],

the top performing method. We reproduce the NL-Net

for fair comparison since we use distributive training with

much larger batch size and fewer input frames for faster

speed. We note that the reproduced models achieve perfor-

mance comparable to the one reported by authors with much

lower costs. The results are shown in Figure 6 and show that

the proposed method consistently improves recognition ac-

curacy over both the ResNet-50 and ResNet-101 baselines,
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Input Ground Truth FCN FCN + 1 GloRe unit Input Ground Truth FCN FCN + 1 GloRe unit

Figure 5: Qualitative segmentation results from the Cityscapes validation set for FCN with and without GloRe unit. Differ-

ences are highlighted with yellow boxes. The figure is better viewed digitally, when zooming in.
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Figure 6: Performance comparison on Kinetics-400 dataset.

The clip level top-1 accuracy is shown one the left, while the

video level top-1 accuracy is shown on the right.

Table 5: Results on the Kinetics validation set. All methods

use only RGB information (no Optical Flow).

Method Backbone Frames FLOPs Clip Top-1 Video Top-1

I3D-RGB [2] Inception-v1 64 107.9 G – 71.1%

R(2+1)D-RGB [30] ResNet-xx 32 152.4 G – 72.0%

MF-Net [8] MF-Net 16 11.1 G – 72.8%

S3D-G [35] Inception-v1 64 71.4 G – 74.7%

NL-Nets [32] ResNet-50 8 30.5 G 67.12% 74.57%

GloRe (Ours) ResNet-50 8 28.9 G 68.02% 75.12%

NL-Nets [32] ResNet-101 8 56.1 G 68.48% 75.69 %

GloRe (Ours) ResNet-101 8 54.5 G 68.78% 76.09%

and provides further improvement over the NL-Nets.

All results including comparison with other prior work

are shown in Table 5 along with other recently proposed

methods. Results show that by simply adding the GloRe

unit on basic architectures we are able to outperforms other

recent state-of-the-art methods.

4.5. Visualizing the GloRe Unit

In this section, we visualize the internal projection

weights of the GloRe unit. To generate higher resolution

internal features for better visualization, we trained a shal-

lower ResNet-18 [16] with one GloRe unit inserted in the

middle of Res4. We trained the model on ImageNet with

512 × 512 input crops, so that the intermediate feature

maps are enlarged by 2.2× containing more details. Fig-

ure 7 shows the weights for four projection maps (i.e. bi

in Eqn. 1) for two images. The depicted weights would be

Figure 7: Visualization of the learned projection weights

(best viewed in color). Red color denotes positive and green

negative values, color brightness denotes magnitude.

the coefficients for the corresponding features at each loca-

tion for a weighted average pooling over the whole image,

giving a single feature descriptor in interaction space. For

this visualization we used N = 128. As expected, differ-

ent projection weight map learn to focus on different global

or local discriminative patterns. For example, the left-most

weight map seems to focus on cat whiskers, the second

weight maps seems to focus on edges, the third one seems

to focus on eyes, and the last one on the entire space, acting

more like a global average pooling.

5. Conclusion
In this paper, we present a highly efficient approach for

global reasoning that can be effectively implemented by

projecting information from the coordinate space to nodes

in an interaction space graph where we can directly rea-

son over globally-aware discriminative features. The GloRe

unit is an efficient instantiation of the proposed approach,

where projection and reverse projection are implemented by

weighted pooling and weighted broadcasting, respectively,

and interactions over the graph are modeled via graph con-

volution. It is lightweight, easy to implement and optimize,

while extensive experiments show that it can effectively

learn features complementary to various popular CNNs and

consistently boost their performance on both 2D and 3D

tasks over a number of datasets.
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