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Abstract

Generative adversarial networks have achieved great

success in unpaired image-to-image translation. Cycle con-

sistency allows modeling the relationship between two dis-

tinct domains without paired data. In this paper, we propose

an alternative framework, as an extension of latent space

interpolation, to consider the intermediate region between

two domains during translation. It is based on the fact that

in a flat and smooth latent space, there exist many paths

that connect two sample points. Properly selecting paths

makes it possible to change only certain image attributes,

which is useful for generating intermediate images between

the two domains. We also show that this framework can be

applied to multi-domain and multi-modal translation. Ex-

tensive experiments manifest its generality and applicability

to various tasks.

1. Introduction

Unpaired image-to-image translation and latent space in-

terpolation were developed separately and serve different

applications. Unpaired image-to-image translation [28, 9,

14, 4] aims to map images from one domain to another,

e.g, translating a collection of neutral faces to smiling ones.

Since no pair information is available, the connection of dif-

ferent domains is usually built upon the cycle-consistency

constraint [28], which largely promotes the capacity of gen-

erative models and leads to many impressive results.

When the purpose is to generate a sequence of images

between the input two domains, intermediate states should

be considered, which is however beyond the capability of

the cycle-consistency constraint. We show an example in

Fig. 1 – directly using StarGAN [4] does not generate a nat-

ural sequence (or expression flow) to gradually close mouth.

There exists a quick change between (c) and (d).

On the other hand, to generate smooth flow, latent

space interpolation [11, 21, 22] focuses on intermediate

states based on an assumption that deep neural networks
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Figure 1. Rendering intermediate states between (a) “open-mouth”

domain and (e) “close-mouth” domain. The first-row results

are generated by StarGAN [4]. Rendering intermediate states is

achieved by altering the input domain label continuously. (c) and

(d) show that abrupt change of expression exists. Our results in the

second row model intermediate regions and show smooth transla-

tion effect.

can model natural images as flat and smooth distributions.

Specifically, if x and y are sampled from two respective do-

mains X and Y , moving from x toward y in the latent space

continuously produces realistic images from domain X to

Y . Albeit this nice property, this method cannot directly

serve image-to-image translation because it does not dis-

tinguish among different attribute factors, and thus makes

complicated expression transition tangled with identity or

background changes. Also, the interpolation path ends at y

instead of a translated version of x.

In this paper, we address latent space interpolation in un-

paired image-to-image translation. This solution inherently

allows modeling intermediate regions between different do-

mains, with additional important and appealing capacity of

multi-domain and multi-modal translation. Since in a flat

and smooth latent space, many paths exist to connect two

samples, interpolating along different paths leads to diverse

intermediate results [24]. Our idea is to choose the path

that only corresponds to a certain attribute component to

make transition natural to human perception. Here the term

attribute defines image domains. For example, smiling at-

tribute divides facial images to smiling and non-smiling do-

mains. Fig. 2 provides an example where translating be-
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Path 1

Path 2

Path 3
(a)

(b)

(c)

(i) Non-smiling → Smiling (ii) Male → Female

(i) Male → Female (ii) Non-smiling → Smiling 

(iii) Change other factors

(iii) Change other factors

(iii) Change other factors(i) Non-smiling → Smiling (ii) Male → Female

Figure 2. Illustration of latent space interpolation along different paths. Paths 1 and 2 connect (a) “non-smiling male” and (b) “ smiling

female”. They change facial attributes in different orders – i.e., path 1 changes the smiling expression first while path 2 interpolates

gender. They naturally serve the multi-domain image-to-image translation task where path 1(i) and 2(i) form translation between

smiling and non-smiling domains, and male and female domains respectively. Path 3(i) synthesizes a smile different from path 1(i). Thus,

using different target-domain samples, our method can produce output required for each domain, termed as multi-modal image-to-image

translation. Image sequence of the last row illustrates the continuous change of path 3(i).

tween Male and Female (or Smiling and Non-smiling) can

be achieved by interpolating along path 1(i) (or path 2(i))

respectively. Besides multi-domain and continuous transla-

tion capacity, as shown in paths 1(i) and 3(i), this model can

also deal with multi-modal translation.

With this principle, the key to our method is a control-

lable interpolator, whose output is controlled by a vector

v. Each element of v corresponds to a mixing indicator for

each attribute. We take path 3(i) of Fig. 2 for example. A

proper v only deals with the smiling attribute between (a)

and (c), while keeping other attributes untouched.

Although promising, this strategy requires conquering a

few difficulties. First, interpolation is only allowed in a

smooth and flat space. VAE [13] imposes Gaussian prior

on the latent feature space so that interpolation is allowed.

However, it could generate blurry results, as a Gaussian

prior may be insufficient to model complicated natural im-

ages. Our solution is to directly minimize the Wasserstein

distance between the interpolated and real samples of the

latent space. This makes interpolated sample distribution

as close as possible to the real ones. We also introduce a

knowledge guidance loss that leverages a well-trained net-

work to regularize the latent space, which further improves

interpolation quality. Finally, a homomorphic loss is intro-

duced to train the controllable interpolator. Our total con-

tribution is manifold.

• We propose an interpolation-based framework for un-

paired image-to-image translation, which is feasible

for multi-domain, multi-modal and continuous trans-

lation tasks.

• We propose a few important strategies to train our

model, leading to an interpolatable latent space and a

controllable interpolator.

• Extensive experiments show that our model can gener-

ate high-quality results and is flexible to serve various

applications.

2. Related Work

Latent Space Interpolation Latent space interpolation is

widely used to visualize the manifold structure in a flat fea-

ture space [10, 1, 21, 22, 2]. Intuitively, semantical inter-

polation in the latent space indicates that the space cap-

tures certain high-level information, which is beneficial for

both recognition [1] and generation tasks [10]. However, a

vanilla interpolation between two images may not be that

useful for creation, since all attributes would change to-

gether along the interpolation path, and users lose control

of individual ones. One remedy is to interpolate along at-

tribute vectors rather than between samples [23, 13, 10, 3].

For certain target attributes, average of positive and negative

samples are computed, and the attribute vector is defined as
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the difference of them. This cancels out the influence of

non-target attributes and allows users to edit only the target

one. Nevertheless, it ignores the fact that many attributes

are intrinsically multi-modal. As illustrated in Fig. 2(b) and

(c), smiling can be quite different. Interpolation with a uni-

versal smiling attribute vector can only generate the average

smile. In contrast, our model can produce multi-modal re-

sults with different examples.

Unpaired Image-to-image Translation Unpaired

image-to-image translation [28, 4, 9, 15] aims to map

images of one domain to another. CycleGAN [28], Disco-

GAN [9] and DualGAN [26] are three pioneering methods,

which introduce the cycle-consistency constraint to build

the connection. There are however a few remaining issues.

The domain scalability issue refers to the incapability of

handling more than two domains, which is addressed by

StarGAN [4] and ModularGAN [27]. The multi-modality

issue refers to incapability to produce multiple results,

which is addressed by MUNIT [7] and DRIT [14]. The

discreteness issue refers to the inability to continuously

control the transformation strength between two domains,

which is addressed by GANimation [17]. We note GANi-

mation [17] requires continuous label annotation, which is

costly and is limited in the field of facial expression.

Instead of relying on the cycle consistency constraint,

our model seeks another way to tackle the unpaired image-

to-image translation problem. Our model can be deemed

as a general alternative that tackles the domain scalability,

multi-modality and discreteness issues simultaneously.

3. Proposed Method

Without the loss of generality, we take the face attribute

translation task as an example to introduce our method.

Other tasks are also supported and are presented in the

supplementary material. We define the dataset as D =
{(I1,y1), (I2,y2) · · · (IN ,yN )} of N samples, where Ii ∈
R

H×W×3 and yi = [y1
i ,y

2
i , · · · ,y

d
i ] are the i-th face image

and its corresponding attributes respectively. The subscript

and superscript index samples and attributes respectively.

We further introduce the concept of grouped attribute.

For example, we can group angry, happy, sad, contemp-

tuous, disguised, fear and surprise – these attributes are

provided in RaFD [12] dataset as binary attribute labels –

to form the group expression attribute. Thus, the plain at-

tributes yi can be rearranged to zi = {z1
i , z

2
i , · · · , z

c
i },

where zk
i ∈ R

ci×1 denotes the k-th grouped attribute of the

i-th sample. This makes it more intuitive to use our model.

An instance is that paths 1(i), 2(ii) and 3(i) of Fig. 2, with

the expression attribute, consider the 8 expressions rather

than only smiling.

In the model level, we have an encoder E, an interpola-

tor I and a decoder D. The encoder E maps images Ii and

Ij to feature Fi = E(Ii) and Fj = E(Ij), so that the in-

terpolated feature I(Fi, Fj) is indistinguishable from real

samples. The interpolator I produces interpolated results

of two samples. The decoder D maps the latent features

back to the image space. In the following, we elaborate on

the design of each part.

3.1. Learning Encoder and Decoder

It is well known that natural images usually lie on a non-

convex manifold, making interpolation usually difficult. We

train an encoder to unfold the image manifold to a flattened

latent space, such that the interpolated samples are in real-

image space. This is achieved by applying GAN to make

interpolated feature similar to that of real samples.

Specifically, we leverage WGAN-GP [5] to train our

model. A critic D is trained to maximize the Wasserstein

distance between real samples and interpolated ones, and

the encoder E and interpolator I are trained to minimize

the distance between them. It is formulated as

min
D

LGAND
= EPI

[D(F̂ )]− EPr
[D(F )] + λgpLgp,

(1)

min
E,I
LGANE,I

= EPr
[D(F )]− EPI

[D(F̂ )], (2)

where F = E(I) is the feature extracted by the encoder, F̂

is the interpolated feature generated by F̂ = I(Fi, Fj), Pr

and PI are the distributions of real and interpolated sam-

ples respectively, and Lgp is the gradient penalty term de-

fined in [5]. Here the interpolator I works with encoder E

cooperatively to generate reasonable images. More details

of I are provided in later sections.

Note that simply using Eqs. (1) and (2) may cause the

encoder to map all images to a small feature space where

interpolation becomes easy. To an extreme, if the encoder

maps all images to a single point, the interpolated and real

samples yield Wasserstein distance 0. But this trivial solu-

tion carries no information about the images. To avoid it, we

additionally incorporate a decoder D to invert features back

to images. The decoder is trained with perceptual loss [8] as

Eq. (3). The reconstruction term for the encoder is defined

as Eq. (4).

min
D

LD = E(||Φ3(D(F ))− Φ3(I)||
2), (3)

min
E

Lrecon = E(||Φ3(D(E(I)))− Φ3(I)||
2), (4)

where Φ3(I) is the RELU3 1 feature of the VGG network.

Semantic Knowledge Guidance Previous work has ob-

served that a pretrained VGG network [20] can be utilized

for latent space interpolation [3, 23, 1]. We leverage this

property to guide the training of our encoder. Inspired

by [18, 6], we treat a pretrained VGG network as a teacher,
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and use its intermediate layer to guide the training of our

encoder, formulated as

min
E,P
LKG = EPr

||P [E(I)]− Φ5(I)||
2, (5)

where P is a 1×1 convolutional layer that adapts the feature

space defined by E(I) to the space of Φ5(I). Φ5 denotes

the ReLU5 1 layer of the VGG network [20]. As the VGG

network is trained with millions of images, Φ5(I) contains

rich semantic information and provides extra guidance for

the encoder. Generally, this term works as regularization

and helps the encoder converge to a good result.

By combining Eqs. (2), (4) and (5), the final objective

function of the encoder E is

LE = λGANE
LGANE,I

+λreconLrecon+λKGLKG, (6)

where λGANE
, λrecon and λKG are scalars to balance

terms. We set them as 1s in our experiments.

3.2. Learning Interpolator

With a well-learned encoder that maps images to a flat

space, interpolation can be done linearly as

I(Fi, Fj) = Fi + α(Fj − Fi), (7)

where Fi and Fj are two real samples, and α ∈ [0, 1] is a

parameter that controls the level of mixing of two samples.

The second term α(Fj−Fi) can also be viewed as a shifting

vector that points from Fi towards Fj .

Note that Eq. (7) only defines one possible path that con-

nects samples i and j. Other interpolation methods like

Slerp [19] can also connect them and produces different

intermediate results. Nevertheless, all these handcrafted

methods do not allow adjusting how attributes are mixed.

So they are not usable for our task. To accommodate image-

to-image translation, we extend I(Fi, Fj) to a more flexi-

ble Iv(Fi, Fj), where v ∈ [0, 1]c×1 is a control vector.

Each dimension of v sets the interpolation strength of each

grouped attribute between two samples. More specifically,

the linear interpolation defined in Eq. (7) is extended to a

piecewise one of

Iv(Fi, Fj) = Fi +
c∑

k=1

vk
T

k(Fj − Fi), (8)

where vk is the kth dimension of v, and T
k(·) is a learnable

mapping function represented by CNN.

Minimizing Homomorphic Gap It is expected that

T
k(Fj − Fi) and vk correspond to the interpolation direc-

tion and strength of the kth grouped attribute zk respec-

tively. As vk varies from 0 to 1, the kth grouped attribute

changes from sample i to j accordingly. If all possible val-

ues of z form an attribute space, interpolation in the latent

feature space should correspond to interpolation in the at-

tribute space. Let A(·) be a function that maps latent fea-

ture to an attribute vector, i.e., A(Fi) = zi, we define the

relation between the latent space and the attribute space as

A(Iv(Fi, Fj)) = I
′

v
(A(Fi),A(Fj)), ∀v ∈ [0, 1]c×1 (9)

where I
′

v
(zi, zj) can be viewed as an interpolation func-

tion defined in the attribute space. Further, I ′

v
(zi, zj) is

defined as I
′

v
(zi, zj) = [I ′

v
(zi, zj)

1 · · · ,I ′

v
(zi, zj)

c],
where I

′

v
(zi, zj)

k = zk
i + vk(zk

j − zk
i ). So the left hand

side of Eq. (9) denotes the attribute values of interpolated

samples Iv(Fi, Fj), and the right hand side contains the

corresponding attribute values of the two samples. As both

sides are conditioned on the same control vector v, they are

expected to be equal. In this regard, Eq. (9) describes an

ideal case that the interpolation operations Iv and I
′

v
share

the same structure in the latent feature and attribute space.

This property is analogous to homomorphism in algebra. In

practice, there inevitably exists a gap between two sides in

Eq. (9), which we call the homomorphic gap.

With Eq. (9) introduced, our objective turns to minimiz-

ing the homomorphic gap. Recall thatA(·) maps latent fea-

ture to attribute values, which is not defined for interpolated

features. We choose to train a networkA′(·) to approximate

A(·) and replace A(Iv(Fi, Fj)) with A′(Iv(Fi, Fj)) in

Eq. (9). Then we reduce the homomorphic gap by minimiz-

ing the cross-entropy of I ′

v
(zi, zj) and A′(Iv(Fi, Fj)), as

shown in Eq. (10). We call it the Homomorphic loss:

min
Iv

LIhom
= E[−I ′

v
(zi, zj) log(A

′(Iv(Fi, Fj)))].

(10)

Also, v is defined everywhere in the c-dimensional unit hy-

percube. During training, we assign uniformly random val-

ues to v to cover the whole feasible set.

Rigorous Training According to Eq. (8), optimizing Eq.

(10) needs to optimize T
k(·), where k = 1, · · · , c. In

experiments, when complicated attributes exist, the corre-

sponding T
k(·) tends to be lazy – that is, it may update Fi

slightly to fool the attribute classification networkA′(·). To

alleviate this problem, we turnA′(·) to a rigorous classifier:

instead of mapping Fi to zi, A
′(·) is trained to map the in-

terpolated feature Fi +
∑c

k=1
vkT

k(Fj − Fi) to attribute

zi, expressed as

min
A′

LA′ = E[−zi log(A
′(Iv(Fi, Fj)))]. (11)

From Eqs. (10) and (11), we note that Iv(·) and A′(·)
are mutually dependent. Therefore, they are iteratively up-

dated during training. In this way, A′(·) keeps checking

unchanged parts, making it harder for T k(·) to fool.

Handling Residual Components When v = 1 where

1 = [1, 1, · · · , 1] ∈ R
c×1, Iv(Fi, Fj) is expected to reach
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sample j. However, this is not guaranteed with solely the

homomorphic loss, because the provided attributes may not

explain everything. Therefore, we extend Eq. (8) to

Iv(Fi, Fj) = Fi +
c+1∑

k=1

vk
T

k(Fj − Fi), (12)

where the additional mapping function T
c+1(Fj−Fi) mod-

els the residual components that are not explained by the

given attributes. Accordingly, we extend the c-dimension

control vector v to c+ 1 dimensions, where the last dimen-

sion is the edit strength of the residual mapping function.

Now we can safely impose the terminal of the interpolation

curve as Fj , which is formulated as

LIt
= ||Iv(Fi, Fj)− Fj ||

2,where v = 1. (13)

To summarize this part, the overall loss function of Iv is

LI = λGANI
LGANE,I

+ λIhom
LIhom

+ λIt
LIt

, (14)

where LGANE,I
, LIhom

and LIt
are defined in Eqs. (2),

(10) and (13) respectively. λGANI
, λIhom

and λIhom
are

set to 1 in our experiments.

The training procedure is outlined in Algorithm 1. More

training details are contained in the supplementary material.

Algorithm 1 Training Our Model

Input: Ii and zi, where i = 1, 2, · · · , N
Output: encoder E, interpolator Iv and decoder D

while not converged do

sample v from c-dimensional uniform distribution;

t← 0;

while t < 5 do

update the critic D based on Eq. (1);

update the decoder D based on Eq. (3);

update the P in Eq. (5);

update the attribute classifier A′ based on Eq. (11);

end while

update the encoder E based on Eq. (6);

update the interpolator I based on Eq. (14).

end while

3.3. Applications

We describe how our model can be applied to multi-

domain, multi-modal and continuous translation as follows.

Multi-domain Translation For each target domain t, we

preselect a sample It. Given a query sample Iq , domain

translation is conducted as

Iout = D(Ivt
(E(Iq),E(It))), (15)

where vt is the vector corresponding to the target domain.

Dim Attribute Labels

1 Age Young

2 Expression Mouth Slightly Open, Smiling

3 Hair Color Black Hair, Blond Hair Brown Hair, Gray Hair

4 Hair Style Receding Hairline, Bangs

5 Gender Trait Male, No Beard, Mustache, Goatee, Sideburns

Table 1. Grouped Attributes of CelebA [16]. The 1st-3rd columns:

dimension index in the control vector v, name of grouped at-

tributes, corresponding attribute labels.

Dim Attribute Labels

1 Expression
happy, angry, contemptuous, sad,

disgusted, neutral, fearful, surprised

2 Gaze look left, look front, look right

3 Others is Caucasian, is male, is kid

Table 2. Grouped Attributes of RaFD [12].

Multi-Modal Translation By using different exemplars in

Eq. (15), we can generate results like MUNIT [7].

Continuous Translation By changing vt in Eq. (15)

smoothly, our model allows changing attributes continu-

ously. This controls the edit strength or generates animation

along the translation process.

4. Experiments

Datasets Our experiments are conducted on CelebA [16]

and RaFD [12]. CelebA contains 200K celebrity images,

each with 40 attribute labels. We define grouped attributes

based on these labels as shown in Table 1. Separation of

training and testing sets follows that of [16]. RaFD [12] is

a smaller dataset that contains 67 identities, each displays

8 emotional expressions, 3 eye locations, and 3 other at-

tributes about the identities. Similarly, we group these la-

bels into 3 higher-level attributes as shown in Table 2. In

our experiments, we use 65 identities for training and the

other two for testing. All images are center cropped, resized

to 128× 128.

4.1. Analysis

Pivotal Parts in Training It is noted that the knowledge

guidance loss LKG and the homomorphic loss LIhom
with

rigorous training play a key role in our model. Without ei-

ther of them, the training may converge poorly, leading to

unsatisfactory results. To illustrate this, we disable each

part and compare results with our final one in Fig. 3. The

homomorphic loss Eq. (10) allows controlling the interpo-

lated attribute with control vector v. As shown in Fig. 3(f),

without this term, the generated image cannot transfer the

target attribute from the reference image.

When we disable the rigorous training, the interpolator

may produce small change to just deceive the discriminator,

leading to very mild update of results. This is shown in Fig.

3(d). Compared with our final model in Fig. 3(c), the effect
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(a) Ref (b) Original (c) Final (d) no RT (e) no KG (f) no Hom

Figure 3. Effectiveness of rigorous training (RT), knowledge guid-

ance (KG) and homomorphic loss (Hom). Each row edits one at-

tribute. (a) and (b) are the input reference and original images

respectively. (c) is our final result. (d-f) are the results without

using one component each.

(a) Ref (b) Original (c) Gender (d) Smile (e) Hair Color

Figure 4. Illustration of the role of control vector and exemplar. (a)

and (b) are the reference and original images respectively. (c)-(e)

are the results conditioned by different v. Rows 1 and 2 are of

different reference images, and thus the results vary accordingly.

is not desirable. The knowledge guidance loss utilizes a

well-trained network as a teacher to guide training of the

encoder. As the teacher network is trained on many images,

it effectively extracts semantic features and seldom suffer

from overfitting. As shown in Fig. 3(e), without this term,

the encoder does not learn a smooth and flat latent space.

This makes the generated image look unrealistic.

Pivotal Parts in Testing The control vector v and the ref-

erence exemplars are also important to apply our model to

image-to-image translation tasks. The control vector de-

termines which attribute to alter, while the exemplars de-

termine how attribute translation is instantiated. By jointly

using both of them, we flexibly control the interpolation re-

sults. This is illustrated in Fig. 4. Each row shows how the

result changes with the same exemplar and yet a different

control vector. Each column shows how it changes with the

same control vector and yet a different exemplar. As shown

in Fig. 4(c)-(e), by setting v to one-hot vectors presenting

the gender, expression, and hair color respectively, we suc-

cessfully and effectively vary corresponding attributes. The
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(a) (b) (c) (d) (e)

Figure 5. Multi-modal image-to-image translation on bang at-

tribute. (a) is the input image. (b-d) present four different output

(the 1st-3rd rows) and the corresponding exemplars (the 4th row).

exemplars also affect the final results. For example, results

in the 1st and 2nd rows of Fig. 4 have quite different gender,

expression, and hair color change.

4.2. Comparison with Other Methods

One of the largest advantages of our model is the abil-

ity to handle multi-modal, multi-domain, and continuous

image-to-image translation. In this section, we provide both

qualitative and quantitative comparison with other methods.

4.2.1 Qualitative Evaluation

Multi-Modal Translation Using different exemplars, our

model can produce multiple outputs for image-to-image

translation. Fig. 5 compares our approach with two multi-

modal translation methods, i.e., MUNIT [7] and ELEGANT

[25]. For ELEGANT [25], the assumption of attribute dis-

entangled to different latent codes, again, could be hard to

achieve. As shown in Fig. 5(d), the image does not change

much. Compared with our method, MUNIT [7] does not

leverage information of multiple domains. When skin, hair

color and background are wrongly updated, as shown in Fig.

5, the result quality decreases.

Multi-Domain Translation Our model deals with multi-

domain image-to-image translation with Eq. (15). Figs. 6

and 7 compare our results with two related methods, i.e.,

StarGAN [4] and ELEGANT [25]. StarGAN [4] takes do-

main labels as input to generator, and produces target do-

main results. ELEGANT [25] divides the latent code into

different parts. Each part encodes information of one at-

tribute. Visually, our model accomplishes more natural
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(a) Original (b) Angry (c) Sad (d) Happy (e) Contemptuous (f) Disgusted (g) Fear (h) Surprise (i) Look Left (j) Look Right

Figure 6. Multi-domain image-to-image translation on RaFD [12].
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Original Young Mustache Not Smile Close Mouth Black Hair Bangs Hairline Female

Figure 7. Multi-domain image-to-image translation on CelebA [16].
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(a) Interpolation (b) Extrapolation

Figure 8. Illustration of attribute interpolation and extrapolation. (a) is the result of interpolation. (b) further increases the edit strength to

perform exaggeration.

– and with significant changes – results than ELEGANT

[25] and StarGAN [4]. ELEGANT [25] assumes each at-

tribute can be well disentangled into different parts of the

latent code. This is not easily achieved because several at-

tributes are intrinsically correlated. As a result, the training

is not stable, causing sometimes noisy results. StarGAN [4]

works well, and yet still occasionally produces strong edit,

leading to visual artifacts.

Continuous Translation With the well learned latent

space, our model allows synthesizing images across differ-

ent domains. This has already been shown in Figs. 1 and

2. We also note that a good latent space should uncover the

structure of natural image manifold [2]. To an extreme, it

should even gain the capacity of extrapolation. This allows
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Young Male Smiling Black Hair Bangs Mustache Hairline Mouth Open Total

ELEGANT [25] 20% 27% 22% 36% 48% 41% 23% 35% 31%

StarGAN [4] 28% 24% 23% 47% 42% 47% 21% 34% 33%

Facelet [3] 25% 30% 35% 24% 25% 49% 10% 16% 27%

Ours 41% 18% 43% 49% 43% 48% 33% 45% 40%

Table 3. Turing Test on CelebA dataset. Each entry reports the percentage of taking the edited image as real. Higher is better.

Young Male Smiling Bangs Black Hair Mustache Hairline Mouth Open Total

Ours > StarGAN 64% 51% 83% 50% 72% 49% 46% 74% 61%

Ours > Facelet 76% 72% 67% 57% 83% 49% 90% 80% 72%

Ours > ELEGANT 89% 88% 50% 59% 65% 51% 76% 71% 69%

Table 4. A/B Test on CelebA dataset. Each entry reports the percentage that our results are preferred. Larger than 50% indicates that our

method is statically more preferred by the subjects.

exaggerating the difference between two domains. Fig. 8

compares the interpolation/extrapolation capacity between

our model and Facelet [3].

Facelet [3] is a feature interpolation approach whose

latent feature is defined by a pretrained VGG network.

Similar to ours, it requires only discrete attribute labels

and has the capability to translate between different do-

mains smoothly. However, when applying very strong edit

strength, the result quality could drop. In contrast, our

model works consistently well in both situations of inter-

polation and extrapolation. This indicates that the encoder

trained by Eq. (6) actually unfolds the natural image man-

ifold, leading to a flat and smooth latent space that allows

interpolation and even extrapolation.

4.2.2 User Study

We also conduct user study on the Amazon Mechanical

Turk platform to compare our performance with others.

Turing Test and A/B Test are conducted.

Turing Test Each time subjects are presented with an arbi-

trary real image and the other that is edited by one method.

Both images are normalized to 128 × 128. Subjects are re-

quested to pick the real one. Table 3 shows the percentage

that an edited image is regarded as real. Note that differ-

ent attributes are counted separately, each includes 2,500

comparisons. Higher value means that human is harder to

distinguish between the real image and the edited one. The

final statistics show that our model has 40% chance to fool

human eyes, which outperforms StarGAN [4] (33%), EL-

EGANT [25] (31%) and Facelet [3] (27%). We also note

for Male attribute, people are easier to identify the edited

image. The reason might be that our model only changes

gender traits on faces, while the hairstyle or clothes are

also highly correlated with gender. Therefore, subjects can

recognize the edited image based on the incompatibility of

faces and other cues.

A/B Test A/B Test refers to the pair-wise comparison of

Label ⇒ Facade Facade ⇒ Label

Figure 9. A failure case. Our method does not perfectly handle the

situation when two domains are essentially different.

our model and another baseline model. Each time subjects

are given an original image and two edited ones (our method

vs. another), and are asked to pick one with higher edit qual-

ity. All three images are scaled to 128 × 128 and placed in

one row. Similar to the Turing Test, different attributes are

separately counted, and each one includes 2,500 compar-

isons. Table 4 presents the percentage that images gener-

ated by our method are chosen. Overall, our method out-

performs StarGAN [4], ELEGANT [25], and Facelet [3] by

61%, 72% and 69% respectively.

4.3. Limitations

Our model relies on the assumption that images of dif-

ferent domains can be embedded in a smooth and flat space.

This is hardly achieved when these domains are very differ-

ent. Fig. 9 illustrates a case that performs translation be-

tween facade images and semantic labels. Our model does

not perform well in this case, since it is very difficult to find

intermediate regions in between.

5. Concluding Remarks

We have proposed a framework for unpaired image-to-

image translation focusing on generating natural and gradu-

ally changing intermediate results. Our method is based on

latent space interpolation, which intrinsically allows con-

tinuous translation. In addition, by learning a controllable

interpolator, we flexibly select the interpolation path, which

alters the target attribute while keeping others almost in-

tact. We have also shown that our method can serve multi-

domain and multi-modal image-to-image translation.
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