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Abstract

Cascade is a classic yet powerful architecture that has

boosted performance on various tasks. However, how to in-

troduce cascade to instance segmentation remains an open

question. A simple combination of Cascade R-CNN and

Mask R-CNN only brings limited gain. In exploring a more

effective approach, we find that the key to a successful in-

stance segmentation cascade is to fully leverage the recip-

rocal relationship between detection and segmentation. In

this work, we propose a new framework, Hybrid Task Cas-

cade (HTC), which differs in two important aspects: (1) in-

stead of performing cascaded refinement on these two tasks

separately, it interweaves them for a joint multi-stage pro-

cessing; (2) it adopts a fully convolutional branch to pro-

vide spatial context, which can help distinguishing hard

foreground from cluttered background. Overall, this frame-

work can learn more discriminative features progressively

while integrating complementary features together in each

stage. Without bells and whistles, a single HTC obtains

38.4% and 1.5% improvement over a strong Cascade Mask

R-CNN baseline on MSCOCO dataset. Moreover, our over-

all system achieves 48.6 mask AP on the test-challenge split,

ranking 1st in the COCO 2018 Challenge Object Detection

Task. Code is available at: https://github.com/

open-mmlab/mmdetection.

1. Introduction

Instance segmentation is a fundamental computer vision

task that performs per-pixel labeling of objects at instance

level. Achieving accurate and robust instance segmenta-

tion in real-world scenarios such as autonomous driving and

video surveillance is challenging. Firstly, visual objects are

often subject to deformation, occlusion and scale changes.

Secondly, background clutters make object instances hard

to be isolated. To tackle these issues, we need a robust rep-

resentation that is resilient to appearance variations. At the

same time, it needs to capture rich contextual information

for discriminating objects from cluttered background.

Cascade is a classic yet powerful architecture that has

boosted performance on various tasks by multi-stage refine-

ment. Cascade R-CNN [5] presented a multi-stage archi-

tecture for object detection and achieved promising results.

The success of Cascade R-CNN can be ascribed to two key

aspects: (1) progressive refinement of predictions and (2)

adaptive handling of training distributions.

Though being effective on detection tasks, integrating

the idea of cascade into instance segmentation is nontriv-

ial. A direct combination of Cascade R-CNN and Mask

R-CNN [18] only brings limited gain in terms of mask AP

compared to bbox AP. Specifically, it improves bbox AP by

3.5% but mask AP by 1.2%, as shown in Table 1. An im-

portant reason for this large gap is the suboptimal informa-

tion flow among mask branches of different stages. Mask

branches in later stages only benefit from better localized

bounding boxes, without direct connections.

To bridge this gap, we propose Hybrid Task Cascade

(HTC), a new cascade architecture for instance segmen-

tation. The key idea is to improve the information flow

by incorporating cascade and multi-tasking at each stage

and leverage spatial context to further boost the accuracy.

Specifically, we design a cascaded pipeline for progressive

refinement. At each stage, both bounding box regression

and mask prediction are combined in a multi-tasking man-

ner. Moreover, direct connections are introduced between

the mask branches at different stages – the mask features

of each stage will be embedded and fed to the next one,

as demonstrated in Figure 2. The overall design strength-

ens the information flow between tasks and across stages,

leading to better refinement at each stage and more accurate

predictions on all tasks.

For object detection, the scene context also provides use-

ful clues, e.g. for inferring the categories, scales, etc. To

leverage this context, we incorporate a fully convolutional

branch that performs pixel-level stuff segmentation. This

branch encodes contextual information, not only from fore-

ground instances but also from background regions, thus

complementing the bounding boxes and instance masks.

Our study shows that the use of the spatial contexts helps
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to learn more discriminative features.

HTC is easy to implement and can be trained end-to-

end. Without bells and whistles, it achieves 2.6% and 1.4%
higher mask AP than Mask R-CNN and Cascade Mask

R-CNN baselines respectively on the challenging COCO

dataset. Together with better backbones and other common

components, e.g. deformable convolution, multi-scale train-

ing and testing, model ensembling, we achieve 49.0 mask

AP on test-dev dataset, which is 2.3% higher than the win-

ning approach [28] of COCO Challenge 2017.

Our main contributions are summarized as follows: (1)

We propose Hybrid Task Cascade (HTC), which effectively

integrates cascade into instance segmentation by interweav-

ing detection and segmentation features together for a joint

multi-stage processing. It achieves the state-of-the-art per-

formance on COCO test-dev and test-challenge. (2) We

demonstrate that spatial contexts benefit instance segmenta-

tion by discriminating foreground objects from background

clutters. (3) We perform extensive study on various compo-

nents and designs, which provides a reference and is helpful

for futher research on object detection and instance segmen-

tation.

2. Related Work

Instance Segmentation. Instance segmentation is a task

to localize objects of interest in an image at the pixel-

level, where segmented objects are generally represented by

masks. This task is closely related to both object detection

and semantic segmentation [30, 22]. Hence, existing meth-

ods for this task roughly fall into two categories, namely

detection-based and segmentation-based.

Detection-based methods resort to a conventional de-

tector to generate bounding boxes or region proposals,

and then predict the object masks within the bounding

boxes. Many of these methods are based on CNN, in-

cluding DeepMask [36], SharpMask [37], and Instance-

FCN [10]. MNC [11] formulates instance segmentation

as a pipeline that consists of three sub-tasks: instance lo-

calization, mask prediction and object categorization, and

trains the whole network end-to-end in a cascaded man-

ner. In a recent work, FCIS [23] extends InstanceFCN and

presents a fully convolutional approach for instance seg-

mentation. Mask-RCNN [18] adds an extra branch based

on Faster R-CNN [39] to obtain pixel-level mask predic-

tions, which shows that a simple pipeline can yield promis-

ing results. PANet [28] adds a bottom-up path besides the

top-down path in FPN [24] to facilitate the information flow.

MaskLab [7] produces instance-aware masks by combining

semantic and direction predictions.

Segmentation-based methods, on the contrary, first ob-

tains a pixel-level segmentation map over the image, and

then identifies object instances therefrom. Along this line,

Zhang et al. [46, 45] propose to predict instance labels

based on local patches and integrate the local results with

an MRF. Arnab and Torr [1] also use CRF to identify in-

stances. Bai and Urtasun [2] propose an alternative way,

which combines watershed transform and deep learning to

produce an energy map, and then derive the instances by

dividing the output of the watershed transform. Other ap-

proaches include bridging category-leval and instance-level

segmentation [42], learning a boundary-aware mask rep-

resentation [17], and employing a sequence of neural net-

works to deal with different sub-grouping problems [27].

Multi-stage Object Detection. The past several years

have seen remarkable progress in object detection. Main-

stream object detection frameworks are often categorized

into two types, single-stage detectors [29, 38, 25] and two-

stage detectors [39, 12, 18, 32]. Recently, detection frame-

works with multiple stages emerge as an increasingly pop-

ular paradigm for object detection. Multi-region CNN [14]

incorporates an iterative localization mechanism that alter-

nates between box scoring and location refinement. Attrac-

tioNet [15] introduces an Attend & Refine module to up-

date bounding box locations iteratively. CRAFT [44] in-

corporates a cascade structure into RPN [39] and Fast R-

CNN [16] to improve the quality of the proposal and detec-

tion results. IoU-Net [20] performs progressive bounding

box refinement (even though not presenting a cascade struc-

ture explicitly). Cascade structures are also used to exclude

easy negative samples. For example, CC-Net [31] rejects

easy RoIs at shallow layers. Li et al. [21] propose to operate

at multiple resolutions to reject simple samples. Among all

the works that use cascade structures, Cascade R-CNN [5]

is perhaps the most relevant to ours. Cascade R-CNN com-

prises multiple stages, where the output of each stage is fed

into the next one for higher quality refinement. Moreover,

the training data of each stage is sampled with increasing

IoU thresholds, which inherently handles different training

distributions.

While the proposed framework also adopts a cascade

structure, it differs in several important aspects. First, multi-

ple tasks, including detection, mask prediction, and seman-

tic segmentation, are combined at each stage, thus form-

ing a joint multi-stage processing pipeline. In this way, the

refinement at each stage benefits from the reciprocal rela-

tions among these tasks. Moreover, contextual information

is leveraged through an additional branch for stuff segmen-

tation and a direction path is added to allow direct informa-

tion flow across stages.

3. Hybrid Task Cascade

Cascade demonstrated its effectiveness on various tasks

such as object detection [5]. However, it is non-trivial to

design a successful architecture for instance segmentation.

In this work, we find that the key to a successful instance
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(d) Hybrid Task Cascade (semantic feature fusion with box

branches is not shown on the figure for neat presentation.)

Figure 1: The architecture evolution from Cascade Mask R-CNN to Hybrid Task Cascade.
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Figure 2: Architecture of multi-stage mask branches.

segmentation cascade is to fully leverage the reciprocal re-

lationship between detection and segmentation.

Overview. In this work, we propose Hybrid Task Cascade

(HTC), a new framework of instance segmentation. Com-

pared to existing frameworks, it is distinctive in several as-

pects: (1) It interleaves bounding box regression and mask

prediction instead of executing them in parallel. (2) It in-

corporates a direct path to reinforce the information flow

between mask branches by feeding the mask features of

the preceding stage to the current one. (3) It aims to ex-

plore more contextual information by adding an additional

semantic segmentation branch and fusing it with box and

mask branches. Overall, these changes to the framework

architecture effectively improve the information flow, not

only across stages but also between tasks.

3.1. Multitask Cascade

Cascade Mask R-CNN. We begin with a direct combi-

nation of Mask R-CNN and Cascade R-CNN, denoted as

Cascade Mask R-CNN. Specifically, a mask branch follow-

ing the architecture of Mask R-CNN is added to each stage

of Cascade R-CNN, as shown in Figure 1a. The pipeline is

formulated as:

x
box
t = P(x, rt−1), rt = Bt(x

box
t ),

x
mask
t = P(x, rt−1), mt = Mt(x

mask
t ).

(1)

Here, x indicates the CNN features of backbone network,

x
box
t and x

mask
t indicates box and mask features derived

from x and the input RoIs. P(·) is a pooling operator, e.g.,

RoI Align or ROI pooling, Bt and Mt denote the box and

mask head at the t-th stage, rt and mt represent the corre-

sponding box predictions and mask predictions. By com-

bining the advantages of cascaded refinement and the mu-

tual benefits between bounding box and mask predictions,

this design improves the box AP, compared to Mask R-CNN

and Cascade R-CNN alone. However, the mask prediction

performance remains unsatisfying.

Interleaved Execution. One drawback of the above de-

sign is that the two branches at each stage are executed in

parallel during training, both taking the bounding box pre-

dictions from the preceding stage as input. Consequently,

the two branches are not directly interacted within a stage.

In response to this issue, we explore an improved design,

which interleaves the box and mask branches, as illustrated

in Figure 1b. The interleaved execution is expressed as:

x
box
t = P(x, rt−1), rt = Bt(x

box
t ),

x
mask
t = P(x, rt), mt = Mt(x

mask
t ).

(2)

In this way, the mask branch can take advantage of the up-

dated bounding box predictions. We found that this yields

improved performance.
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Mask Information Flow. In the design above, the mask

prediction at each stage is based purely on the ROI features

x and the box prediction rt. There is no direct information

flow between mask branches at different stages, which pre-

vents further improvements on mask prediction accuracy.

Towards a good design of mask information flow, we first

recall the design of the cascaded box branches in Cascade

R-CNN [5]. An important point is the input feature of box

branch is jointly determined by the output of the preced-

ing stage and backbone. Following similar principles, we

introduce an information flow between mask branches by

feeding the mask features of the preceding stage to the cur-

rent stage, as illustrated in Figure 1c. With the direct path

between mask branches, the pipeline can be written as:

x
box
t = P(x, rt−1), rt = Bt(x

box
t ),

x
mask
t = P(x, rt), mt = Mt(F(xmask

t ,m−

t−1
)),

(3)

where m
−

t−1
denotes the intermediate feature of Mt−1 and

we use it as the mask representation of stage t − 1. F is

a function to combine the features of the current stage and

the preceding one. This information flow makes it possible

for progressive refinement of masks, instead of predicting

masks on progressively refined bounding boxes.

Implementation. Following the discussion above, we

propose a simple implementation as below.

F(xmask
t ,mt−1) = x

mask
t + Gt(m

−

t−1
) (4)

In this implementation, we adopt the RoI feature before

the deconvolutional layer as the mask representation m
−

t−1
,

whose spatial size is 14×14. At stage t, we need to forward

all preceding mask heads with RoIs of the current stage to

compute m
−

t−1
.

m
−

1
= M−

1
(xmask

t ),

m
−

2
= M−

2
(F(xmask

t ,m−

1
)),

...

m
−

t−1
= M−

t (F(xmask
t ,m−

t−2
)).

(5)

Here, M−

t denotes the feature transformation component

of the mask head Mt, which is comprised of 4 consecutive

3× 3 convolutional layers, as shown in Figure 2. The trans-

formed features m−

t−1
are then embedded with a 1× 1 con-

volutional layer Gt in order to be aligned with the pooled

backbone features x
mask
t . Finally, Gt(m

−

t−1
) is added to

x
mask
t through element-wise sum. With this introduced

bridge, adjacent mask branches are brought into direct in-

teraction. Mask features in different stages are no longer

isolated and all get supervised through backpropagation.

1x1 
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1x1 

conv

1x1 

conv

1x1 
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1x1 
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4 conv

semantic feature
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Figure 3: We introduce complementary contextual informa-

tion by adding semantic segmentation branch.

3.2. Spatial Contexts from Segmentation

To further help distinguishing the foreground from the

cluttered background, we use the spatial contexts as an ef-

fective cue. We add an additional branch to predict per-pixel

semantic segmentation for the whole image, which adopts

the fully convolutional architecture and is jointly trained

with other branches, as shown in Figure 1d. The seman-

tic segmentation feature is a strong complement to existing

box and mask features, thus we combine them together for

better predictions:

x
box
t = P(x, rt−1) + P(S(x), rt−1),

rt = Bt(x
box
t ),

x
mask
t = P(x, rt) + P(S(x), rt),

mt = Mt(F(xmask
t ,m−

t−1
)),

(6)

where S indicates the semantic segmentation head. In the

above formulation, the box and mask heads of each stage

take not only the RoI features extracted from the backbone

as input, but also exploit semantic features, which can be

more discriminative on cluttered background.

Semantic Segmentation Branch. Specifically, the se-

mantic segmentation branch S is constructed based on the

output of the Feature Pyramid [24]. Note that for semantic

segmentation, the features at a single level may not be able

to provide enough discriminative power. Hence, our design

incorporates the features at multiple levels. In addition to

the mid-level features, we also incorporate higher-level fea-

tures with global information and lower-level features with

local information for better feature representation.

Figure 3 shows the architecture of this branch. Each level

of the feature pyramid is first aligned to a common represen-

tation space via a 1× 1 convolutional layer. Then low level

feature maps are upsampled, and high level feature maps are

downsampled to the same spatial scale, where the stride is

set to 8. We found empirically that this setting is sufficient

for fine pixel-level predictions on the whole image. These
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transformed feature maps from different levels are subse-

quently fused by element-wise sum. Moreover, we add four

convolutional layers thereon to further bridge the semantic

gap. At the end, we simply adopt a convolutional layer to

predict the pixel-wise segmentation map. Overall, we try

to keep the design of semantic segmentation branch simple

and straightforward. Though a more delicate structure can

further improve the performance, It goes beyond our scope

and we leave it for future work.

Fusing Contexts Feature into Main Framework. It is

well known that joint training of closely related tasks can

improve feature representation and bring performance gains

to original tasks. Here, we propose to fuse the semantic fea-

tures with box/mask features to allow more interaction be-

tween different branches. In this way, the semantic branch

directly contributes to the prediction of bounding boxes and

masks with the encoded spatial contexts. Following the

standard practice, given a RoI, we use RoIAlign to extract a

small (e.g., 7× 7 or 14 × 14) feature patch from the corre-

sponding level of feature pyramid outputs as the representa-

tion. At the same time, we also apply RoIAlign on the fea-

ture map of the semantic branch and obtain a feature patch

of the same shape, and then combine the features from both

branches by element-wise sum.

3.3. Learning

Since all the modules described above are differentiable,

Hybrid Task Cascade (HTC) can be trained in an end-to-end

manner. At each stage t, the box head predicts the classifica-

tion score ct and regression offset rt for all sampled RoIs.

The mask head predicts pixel-wise masks mt for positive

RoIs. The semantic branch predicts a full image seman-

tic segmentation map s. The overall loss function takes the

form of a multi-task learning:

L =

T∑

t=1

αt(L
t
bbox + Lt

mask) + βLseg,

Lt
bbox(ci, rt, ĉt, r̂t) = Lcls(ct, ĉt) + Lreg(rt, r̂t),

Lt
mask(mt, m̂t) = BCE(mt, m̂t),

Lseg = CE(s, ŝ).

(7)

Here, Lt
bbox is the loss of the bounding box predictions at

stage t, which follows the same definition as in Cascade

R-CNN [5] and combines two terms Lcls and Lreg , re-

spectively for classification and bounding box regression.

Lt
mask is the loss of mask prediction at stage t, which adopts

the binary cross entropy form as in Mask R-CNN [18]. Lseg

is the semantic segmentation loss in the form of cross en-

tropy. The coefficients αt and β are used to balance the con-

tributions of different stages and tasks. We follow the hy-

perparameter settings in Cascade R-CNN [5]. Unless other-

wise noted, we set α = [1, 0.5, 0.25], T = 3 and β = 1 by

default.

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. We perform experiments on the challenging

COCO dataset [26]. We train our models on the split of

2017train (115k images) and report results on 2017val and

2017test-dev. Typical instance annotations are used to su-

pervise box and mask branches, and the semantic branch is

supervised by COCO-stuff [4] annotations.

Evaluation Metrics. We report the standard COCO-style

Average Precision (AP) metric which averages APs across

IoU thresholds from 0.5 to 0.95 with an interval of 0.05.

Both box AP and mask AP are evaluated. For mask AP,

we also report AP50, AP75 (AP at different IoU thresholds)

and APS , APM , APL (AP at different scales). Runtime is

measured on a single TITAN Xp GPU.

4.2. Implementation Details

In all experiments, we adopt a 3-stage cascade. FPN is

used in all backbones. For fair comparison, Mask R-CNN

and Cascade R-CNN are reimplemented with PyTorch [33]

and mmdetection [6], which are slightly higher than the re-

ported performance in the original papers. We train detec-

tors with 16 GPUs (one image per GPU) for 20 epoches

with an initial learning rate of 0.02, and decrease it by 0.1
after 16 and 19 epoches, respectively. The long edge and

short edge of images are resized to 1333 and 800 respec-

tively without changing the aspect ratio.

During inference, object proposals are refined progres-

sively by box heads of different stages. Classification scores

of multiple stages are ensembled as in Cascade R-CNN.

Mask branches are only applied to detection boxes with

higher scores than a threshold (0.001 by default).

4.3. Benchmarking Results

We compare HTC with the state-of-the-art instance seg-

mentation approaches on the COCO dataset in Table 1. We

also evaluate Cascade Mask R-CNN, which is described

in Section 1, as a strong baseline of our method. Com-

pared to Mask R-CNN, the naive cascaded baseline brings

3.5% and 1.2% gains in terms of box AP and mask AP re-

spectively. It is noted that this baseline is already higher

than PANet [28], the state-of-the-art instance segmentation

method. Our HTC achieves consistent improvements on

different backbones, proving its effectiveness. It achieves

a gain of 1.5%, 1.3% and 1.1% for ResNet-50, ResNet-101

and ResNeXt-101, respectively.

4.4. Ablation Study

Component-wise Analysis. Firstly, we investigate the

effects of main components in our framework. “Inter-

leaved” denotes the interleaved execution of bbox and mask
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Table 1: Comparison with state-of-the-art methods on COCO test-dev dataset.

Method Backbone box AP mask AP AP50 AP75 APS APM APL runtime (fps)

Mask R-CNN [18] ResNet-50-FPN 39.1 35.6 57.6 38.1 18.7 38.3 46.6 5.3

PANet[28] ResNet-50-FPN 41.2 36.6 58.0 39.3 16.3 38.1 52.4 -

Cascade Mask R-CNN ResNet-50-FPN 42.7 36.9 58.6 39.7 19.6 39.3 48.8 3.0

Cascade Mask R-CNN ResNet-101-FPN 44.4 38.4 60.2 41.4 20.2 41.0 50.6 2.9

Cascade Mask R-CNN ResNeXt-101-FPN 46.6 40.1 62.7 43.4 22.0 42.8 52.9 2.5

HTC (ours) ResNet-50-FPN 43.6 38.4 60.0 41.5 20.4 40.7 51.2 2.5

HTC (ours) ResNet-101-FPN 45.3 39.7 61.8 43.1 21.0 42.2 53.5 2.4

HTC (ours) ResNeXt-101-FPN 47.1 41.2 63.9 44.7 22.8 43.9 54.6 2.1

branches, “Mask Info” indicates the mask branch informa-

tion flow and “Semantic” means introducing the seman-

tic segmentation branch. From Table 2, we can learn that

the interleaved execution slightly improves the mask AP by

0.2%. The mask information flow contributes to a further

0.6% improvement, and the semantic segmentation branch

leads to a gain of 0.6%.

Effectiveness of Interleaved Branch Execution. In Sec-

tion 3.1, we design the interleaved branch execution to ben-

efit the mask branch from updated bounding boxes dur-

ing training. To investigate the effeciveness of this strat-

egy, we compare it with the conventional parallel execution

pipeline on both Mask R-CNN and Cascade Mask R-CNN.

As shown in Table 3, interleaved execution outperforms par-

allel execution on both methods, with an improvement of

0.5% and 0.2% respectively.

Effectiveness of Mask Information Flow. We study how

the introduced mask information flow helps mask prediction

by comparing stage-wise performance. Semantic segmen-

tation branch is not involved to exclude possible distraction.

From Table 4, we find that introducing the mask informa-

tion flow greatly improves the the mask AP in the second

stage. Without direct connections between mask branches,

the second stage only benefits from better localized bound-

ing boxes, so the improvement is limited (0.8%). With the

mask information flow, the gain is more significant (1.5%),

because it makes each stage aware of the preceding stage’s

features. Similar to Cascade R-CNN, stage 3 does not out-

perform stage 2, but it contributes to the ensembled results.

Effectiveness of Semantic Feature Fusion. We exploit

contextual features by introducing a semantic segmentation

branch and fuse the features of different branches. Multi-

task learning is known to be beneficial, here we study the

necessity of semantic feature fusion. We train different

models that fuse semantic features with the box or mask

or both branches, and the results are shown in Table 5. Sim-

ply adding a full image segmentation task achieves 0.6%
improvement, mainly resulting from additional supervision.

Feature fusion also contributes to further gains,e.g., fusing

the semantic features with both the box and mask branches

brings an extra 0.4% gain, which indicates that complemen-

tary information increases feature discrimination for box

and mask branches.

Influence of Loss Weight. The new hyper-parameter β is

introduced, since we involve one more task for joint train-

ing. We tested different loss weight for the semantic branch,

as shown in Table 6. Results show that our method is insen-

sitive to the loss weight.

4.5. Extensions on HTC

With the proposed HTC, we achieve 49.0 mask AP and

2.3% absolute improvement compared to the winning entry

last year. Here we list all the steps and additional mod-

ules used to obtain the performance. The step-by-step gains

brought by each component are illustrated in Table 7.

HTC Baseline. The ResNet-50 baseline achieves 38.2
mask AP.

DCN. We adopt deformable convolution [13] in the last

stage (res5) of the backbone.

SyncBN. Synchronized Batch Normalization [34, 28] is

used in the backbone and heads.

Multi-scale Training. We adopt multi-scale training. In

each iteration, the scale of short edge is randomly sampled

from [400, 1400], and the scale of long edge is fixed as 1600.

SENet-154. We tried different backbones besides ResNet-

50, and SENet-154 [19] achieves best single model perfor-

mance among them.

GA-RPN. We finetune trained detectors with the propos-

als generated by GA-RPN [41], which achieves near 10%

higher recall than RPN.

Multi-scale Testing. We use 5 scales as well as horizontal

flip at test time and ensemble the results. Testing scales are

(600, 900), (800, 1200), (1000, 1500), (1200, 1800), (1400,

2100).

Ensemble. We utilize an emsemble of five networks:

SENet-154 [19], ResNeXt-101 [43] 64x4d, ResNeXt-101

32x8d, DPN-107 [9], FishNet [40].
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Table 2: Effects of each component in our design. Results are reported on COCO 2017 val.

Cascade Interleaved Mask Info Semantic box AP mask AP AP50 AP75 APS APM APL

X 42.5 36.5 57.9 39.4 18.9 39.5 50.8

X X 42.5 36.7 57.7 39.4 18.9 39.7 50.8

X X X 42.5 37.4 58.1 40.3 19.6 40.3 51.5

X X X X 43.2 38.0 59.4 40.7 20.3 40.9 52.3

Table 3: Results of parallel/interleaved branch execution on different methods.

Method execution box AP mask AP AP50 AP75 APS APM APL

Mask R-CNN
parallel 38.4 35.1 56.6 37.4 18.7 38.4 47.7

interleaved 38.7 35.6 57.2 37.9 19.0 39.0 48.3

Cascade Mask R-CNN
parallel 42.5 36.5 57.9 39.4 18.9 39.5 50.8

interleaved 42.5 36.7 57.7 39.4 18.9 39.7 50.8

Table 4: Effects of the mask information flow. We evaluate

the stage-wise and ensembled performance with or without

the information flow (denoted as I.F.).

I.F. test stage AP AP50 AP75 APS APM APL

N

stage 1 35.5 56.7 37.8 18.7 38.8 48.6

stage 2 36.3 57.5 39.0 18.8 39.4 50.6

stage 3 35.9 56.5 38.7 18.2 39.1 49.9

stage 1 ∼ 3 36.7 57.7 39.4 18.9 39.7 50.8

Y

stage 1 35.5 56.8 37.8 19.0 38.8 49.0

stage 2 37.0 58.0 39.8 19.4 39.8 51.3

stage 3 36.8 57.2 39.9 18.7 39.8 51.1

stage 1 ∼ 3 37.4 58.1 40.3 19.6 40.3 51.5

Table 5: Ablation study of semantic feature fusion on

COCO 2017 val.

Fusion AP AP50 AP75 APS APM APL

- 36.5 57.9 39.4 18.9 39.5 50.8

none 37.1 58.6 39.9 19.3 40.0 51.7

bbox 37.3 58.9 40.2 19.4 40.2 52.3

mask 37.4 58.7 40.2 19.4 40.1 52.4

both 37.5 59.1 40.4 19.6 40.3 52.6

4.6. Extensive Study on Common Modules

We also perform extensive study on some components

designed for detection and segmentation. Components are

often compared under different conditions such as back-

bones, codebase, etc. Here we provide a unified environ-

ment with state-of-the-art object detection and instance seg-

mentation framework to investigate the functionality of ex-

tensive components. We integrate several common modules

Table 6: Ablation study of semantic branch loss weight β

on COCO 2017 val.

β AP AP50 AP75 APS APM APL

0.5 37.9 59.3 40.7 19.7 41.0 52.5

1 38.0 59.4 40.7 20.3 40.9 52.3

2 37.9 59.3 40.6 19.6 40.8 52.8

3 37.8 59.0 40.5 19.9 40.5 53.2

Table 7: Results (mask AP) with better backbones and bells

and whistles on COCO test-dev dataset.

AP AP50 AP75 APS APM APL

2017 winner [28] 46.7 69.5 51.3 26.0 49.1 64.0

Ours 49.0 73.0 53.9 33.9 52.3 61.2

HTC baseline 38.4 60.0 41.5 20.4 40.7 51.2

+ DCN 39.5 61.3 42.8 20.9 41.8 52.7

+ SyncBN 40.7 62.8 44.2 22.2 43.1 54.4

+ ms train 42.5 64.8 46.4 23.7 45.3 56.7

+ SENet-154 44.3 67.5 48.3 25.0 47.5 58.9

+ GA-RPN 45.3 68.9 49.4 27.0 48.3 59.6

+ ms test 47.4 70.6 52.1 30.2 50.1 61.8

+ ensemble 49.0 73.0 53.9 33.9 52.3 61.2

designed for detection and segmentation and evaluate them

under the same settings, and the results are shown in Ta-

ble 8. Limited by our experience and resources, some im-

plementations and the integration methods may not be op-

timal and worth further study. Code will be released as a

benchmark to test more components.

ASPP. We adopt the Atrous Spatial Pyramid Pooling

(ASPP) [8] module from the semantic segmentation com-

munity to capture more image context at multiple scales.
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Figure 4: Examples of segmentation results on COCO dataset.

We append an ASPP module after FPN.

PAFPN. We test the PAFPN module from PANet [28]. The

difference from the original implementation is that we do

not use Synchronized BatchNorm.

GCN. We adopt Global Convolutional Network (GCN) [35]

in the semantic segmentation branch.

PreciseRoIPooling. We replace the RoI align layers in

HTC with Precise RoI Pooling [20].

SoftNMS. We apply SoftNMS [3] to box results.

Table 8: Extensive study on related modules on COCO

2017 val.

Method AP AP50 AP75 APS APM APL

HTC 38.0 59.4 40.7 20.3 40.9 52.3

HTC+ASPP 38.1 59.9 41.0 20.0 41.2 52.8

HTC+PAFPN 38.1 59.5 41.0 20.0 41.2 53.0

HTC+GCN 37.9 59.2 40.7 20.0 40.6 52.3

HTC+PrRoIPool 37.9 59.1 40.9 19.7 40.9 52.7

HTC+SoftNMS 38.3 59.6 41.2 20.4 41.2 52.7

5. Conclusion

We propose Hybrid Task Cascade (HTC), a new cas-

cade architecture for instance segmentation. It interweaves

box and mask branches for a joint multi-stage processing,

and adopts a semantic segmentation branch to provide spa-

tial context. This framework progressively refines mask

predictions and integrates complementary features together

in each stage. Without bells and whistles, the proposed

method obtains 1.5% improvement over a strong Cascade

Mask R-CNN baseline on MSCOCO dataset. Notably, our

overall system achieves 48.6 mask AP on the test-challenge

dataset and 49.0 mask AP on test-dev.
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