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Figure 1. Illustration of a variety of image deformations: ghosted (a, b), stitched (c), montaged (d), and partially occluded (e) images.

Abstract

Humans can robustly learn novel visual concepts even

when images undergo various deformations and loose cer-

tain information. Mimicking the same behavior and syn-

thesizing deformed instances of new concepts may help vi-

sual recognition systems perform better one-shot learning,

i.e., learning concepts from one or few examples. Our key

insight is that, while the deformed images may not be vi-

sually realistic, they still maintain critical semantic infor-

mation and contribute significantly to formulating classi-

fier decision boundaries. Inspired by the recent progress of

meta-learning, we combine a meta-learner with an image

deformation sub-network that produces additional training

examples, and optimize both models in an end-to-end man-

ner. The deformation sub-network learns to deform images

by fusing a pair of images — a probe image that keeps the

visual content and a gallery image that diversifies the de-

formations. We demonstrate results on the widely used one-

shot learning benchmarks (miniImageNet and ImageNet 1K

Challenge datasets), which significantly outperform state-

of-the-art approaches.

1. Introduction

Deep architectures have made significant progress in var-

ious visual recognition tasks, such as image classification

and object detection. This success typically relies on super-

*Yanwei Fu is the corresponding author

vised learning from large amounts of labeled examples. In

real-world scenarios, however, one may not have enough re-

sources to collect large training sets or need to deal with rare

visual concepts. It is also unlike the human visual system,

which can learn a novel concept with very little supervision.

One-shot or low/few-shot learning [4], which aims to build

a classifier for a new concept from one or very few labeled

examples, has thus attracted more and more attention.

Recent efforts to address this problem have leveraged a

learning-to-learn or meta-learning paradigm [25, 20, 28,

32, 31, 22, 33, 17, 5, 13]. Meta-learning algorithms train a

learner, which is a parameterized function that maps labeled

training sets to classifiers. Meta-learners are trained by sam-

pling a collection of one-shot learning tasks and the corre-

sponding datasets from a large universe of labeled examples

of known (base) categories, feeding the sampled small train-

ing set to the learner to obtain a classifier, and then comput-

ing the loss of the classifier on the sampled test set. The

goal is that the learner is able to tackle the recognition of

unseen (novel) categories from few training examples.

Despite their noticeable performance improvements,

these generic meta-learning algorithms typically treat im-

ages as black boxes and ignore the structure of the visual

world. By contrast, our biological vision system is very ro-

bust and trustable in understanding images that undergo var-

ious deformations [27, 1]. For instance, we can easily rec-

ognize the objects in Figure 1, despite ghosting (Figure 1(a,

b)), stitching (Figure 1(c)), montaging (Figure 1(d)), and

partially occluding (Figure 1(e)) the images. While these
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deformed images may not be visually realistic, our key in-

sight is that they still maintain critical semantic information

and presumably serve as “hard examples” that contribute

significantly to formulating classifier decision boundaries.

Hence, by leveraging such modes of deformations shared

across categories, the synthesized deformed images could

be used as additional training data to build better classifiers.

A natural question then arises: how could we produce in-

formative deformations? We propose a simple parametriza-

tion that linearly combines a pair of images to generate the

deformed image. We use a probe image to keep the vi-

sual content and overlay a gallery image on a patch level to

introduce appearance variations, which could be attributed

to semantic diversity, artifacts, or even random noise. Fig-

ure 5 shows some examples of our deformed images. Im-

portantly, inspired by [30], we learn to deform images that

are useful for a classification objective by end-to-end meta-

optimization that includes image deformations in the model.

Our Image Deformation Meta-Network (IDeMe-Net)

thus consists of two components: a deformation sub-

network and an embedding sub-network. The deforma-

tion sub-network learns to generate the deformed images

by linearly fusing the patches of probe and gallery images.

Specifically, we treat the given small training set as the

probe images and sample additional images from the base

categories to form the gallery images. We evenly divide

the probe and gallery images into nine patches, and the de-

formation sub-network estimates the combination weight of

each patch. The synthesized images are used to augment the

probe images and train the embedding sub-network, which

maps images to feature representations and performs one-

shot classification. The entire network is trained in an end-

to-end meta-learning manner on base categories.

Our contributions are three-fold. (1) We propose

a novel image deformation framework based on meta-

learning to address one-shot learning, which leverages the

rich structure of shared modes of deformations in the visual

world. (2) Our deformation network learns to synthesize di-

verse deformed images, which effectively exploits the com-

plementarity and interaction between the probe and gallery

image patches. (3) By using the deformation network, we

effectively augment and diversify the one-shot training im-

ages, leading to a significant performance boost on one-shot

learning tasks. Remarkably, our approach achieves state-of-

the-art performance on both the challenging ImageNet1K

and miniImagenet datasets.

2. Related Work

Meta-Learning. Typically, meta-learning [25, 24, 20,

28, 32, 31, 22, 33, 17, 5, 13, 37, 15] aims at training

a parametrized mapping from a few training instances to

model parameters in simulated one-shot learning scenarios.

Other meta-learning strategies in one-shot learning include

graph CNNs [7] and memory networks [19, 2]. Attention is

also introduced in meta-learning, in ways of analyzing the

relation between visual and semantic representations [29]

and learning the combination of temporal convolutions and

soft attention [14]. Different from prior work, we focus on

exploiting the complementarity and interaction between vi-

sual patches through the meta-learning mechanism.

Metric Learning. This is another important line of work

in one-shot learning. The goal is to learn a metric space

which can be optimized for one-shot learning. Recent work

includes Siamese networks [11], matching networks [28],

prototypical networks [22], relation networks [23], and dy-

namic few-shot learning without forgetting [8].

Data Augmentation. The key limitation of one-shot learn-

ing is the lack of sufficient training images. As a com-

mon practice, data augmentation has been widely used to

help train supervised classifiers [12, 3, 35]. The standard

techniques include adding Gaussian noise, flipping, rotat-

ing, rescaling, transforming, and randomly cropping train-

ing images. However, the generated images in this way

are particularly subject to visual similarity with the origi-

nal images. In addition to adding noise or jittering, previ-

ous work seeks to augment training images by using semi-

supervised techniques [31, 18, 16], or directly synthesizing

new instances in the feature domain [9, 30, 21, 6] to transfer

knowledge of data distribution from base classes to novel

classes. By contrast, we also use samples from base classes

to help synthesize deformed images but directly aim at max-

imizing the one-shot recognition accuracy.

The most relevant to our approach is the work of [30, 36].

Wang et al. [30] introduces a generator to hallucinate novel

instances in the feature domain by adding noise, whereas

we focus on learning to deform two real images in the im-

age domain without introducing noise. Zhang et al. [36]

randomly sample image pairs and linearly combine them to

generate additional training images. In this mixup augmen-

tation, the combination is performed with weights randomly

sampled from a prior distribution and is thus constrained to

be convex. The label of the generated image is similarly

the linear combination of the labels (as one-hot label vec-

tors) of the image pairs. However, they ignore structural

dependencies between images as well as image patches. By

contrast, we learn classifiers to select images that are simi-

lar to the probe images from the unsupervised gallery image

set. Our combination weights are learned through a defor-

mation sub-network on the image patch level and the com-

bination is not necessarily convex. In addition, our gener-

ated image preserves the label of its probe image. Com-

paring with these methods, our approach learns to dynami-

cally fuse patches of two real images in an end-to-end man-

ner. The produced images maintain the important patches

of original images while being visually different from them,

thus facilitating training one-shot classifiers.
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3. One-Shot Learning Setup

Following recent work [28, 17, 5, 22, 30], we establish

one-shot learning in a meta-learning framework: we have a

base category set Cbase and a novel category set Cnovel, in

which Cbase ∩ Cnovel = ∅; correspondingly, we have a base

dataset Dbase = {(Ii, yi) , yi ∈ Cbase} and a novel dataset

Dnovel = {(Ii, yi) , yi ∈ Cnovel}. We aim to learn a clas-

sification algorithm on Dbase that can generalize to unseen

classes Cnovel with one or few training examples per class.

To mimic the one-shot learning scenario, meta-learning

algorithms learn from a collection of N -way-m-shot clas-

sification tasks/datasets sampled from Dbase and are eval-

uated in a similar way on Dnovel. Each of these sampled

datasets is termed as an episode, and we thus have different

meta-sets for meta-training and meta-testing. Specifically,

we randomly sample N classes L ∼ Ck for a meta-training

(i.e., k = base) or meta-testing episode (i.e., k = novel).
We then randomly sample m and q labeled images per class

in L to construct the support set S and query set Q, re-

spectively, i.e., |S| = N × m and |Q| = N × q. During

meta-training, we sample S and Q to train our model. Dur-

ing meta-testing, we evaluate by averaging the classification

accuracy on query sets Q of many meta-testing episodes.

We view the support set as supervised probe images and

different from the previous work, we introduce an addi-

tional gallery image set G that serves as an unsupervised

image pool to help generate deformed images. To construct

G, we randomly sample some images per base class from

the base dataset, i.e., G ∼ Dbase. The same G is used

in both the meta-training and meta-testing episodes. Note

that since it is purely sampled from Dbase, the newly in-

troduced G does not break the standard one-shot setup as

in [34, 22, 5, 17]. We do not introduce any additional im-

ages from the novel categories Cnovel.

4. Image Deformation Meta-Networks

We now explain our image deformation meta-network

(IDeMe-Net) for one-shot learning. Figure 2 shows the ar-

chitecture of IDeMe-Net fθ(·) parametrized by θ. IDeMe-

Net is composed of two modules — a deformation sub-

network and an embedding sub-network. The deformation

sub-network adaptively fuses the probe and gallery images

to synthesize the deformed images. The embedding sub-

network maps the images to feature representations and

then constructs the one-shot classifier. The entire meta-

network is trained in an end-to-end manner.

4.1. Deformation Subnetwork

This sub-network fθdef (·) learns to explore the interac-

tion and complementarity between the probe images Iprobe
((Iprobe, yprobe) ∈ S) and the gallery images Igallery ∈ G,

and fuses them to generate the synthesized deformed im-

ages Isyn, i.e., Isyn = fθdef (Iprob, Igallery). Our goal

is to synthesize meaningful deformed images such that

ysyn = yprobe. This is achieved by using two strategies: (1)

ysyn = yprobe is explicitly enforced as a constraint during

the end-to-end optimization; (2) we propose an approach

to sample Igallery that are visually or semantically similar

to the images of yprobe. Specifically, for each class yprobe,

we directly use the feature extractor and one-shot classi-

fier learned in the embedding sub-network to select the top

ǫ% images from G which have the highest class probability

of yprobe. From this initial pool of images, we randomly

sample Igallery for each probe image (Iprobe, yprobe). Note

that during meta-training, both Iprobe and Igallery are ran-

domly sampled from base classes, so they might belong to

the same class. We find that further constraining them to

belong to different base classes has little impact on the per-

formance. During meta-testing, Iprobe and Igallery belong

to different classes, with Iprobe sampled from novel classes

and Igallery still from base classes.

Two branches, ANET and BNET, are used to parse

Iprobe and Igallery , respectively. Each of them is a residual

network [10] without fully-connected layers. The outputs

of ANET and BNET are then concatenated to be fed into a

fully-connected layer, which produces a 9-D weight vector

w. As shown in Figure 2, we evenly divide the images into

3×3 patches. The deformed image is thus simply generated

as a linearly weighted combination of Iprobe and Igallery on

the patch level. That is, for the qth patch, we have

Isyn,q = wqIprobe,q + (1− wq) Igallery,q. (1)

We assign the class label yprobe to the synthesized

deformed image Isyn. For any probe image I
i
probe,

we sample naug gallery images from the correspond-

ing pool and produce naug synthesized deformed im-

ages. We thus obtain an augmented support set S̃ =
{

(

I
i
probe, y

i
probe

)

,
{(

I
i,j
syn, y

i,j
probe

)}naug

j=1

}N×m

i=1

.

4.2. Embedding Subnetwork

The embedding sub-network fθemb
(·) consists of a deep

convolutional network for feature extraction and a non-

parametric one-shot classifier. Given an input image I, we

use a residual network [10] to produce its feature represen-

tation fθemb
(I). To facilitate the training process, we intro-

duce an additional softmax classifier, i.e., a fully-connected

layer on top of the embedding sub-network with a cross-

entropy loss (CELoss), that outputs |Cbase| scores.

4.3. OneShot Classifier

Due to its superior performance, we use the non-

parametric prototype classifier [22] as the one-shot classi-

fier. During each episode, given the sampled S, Q, and G,

the deformation sub-network produces the augmented sup-
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Figure 2. The overall architecture of our image deformation meta-network (IDeMe-Net).

port set S̃. Following [22], we calculate the prototype vector

pcθ for each class c in S̃ as

pcθ =
1

Z

∑

(Ii,yi)∈S̃

fθemb
(Ii) · Jyi = cK , (2)

where Z = Σ(Ii,yi)∈S̃ Jyi = cK is the normalization factor.

J·K is the Iverson’s bracket notation: JxK = 1 if x is true, and

0 otherwise. Given any query image Ii ∈ Q, its probability

of belonging to class c is computed as

Pθ (yi = c|Ii) =
exp (−‖fθemb

(Ii)− pc
θ‖)

∑N

j=1 exp
(

−
∥

∥

∥
fθemb

(Ii)− pjθ

∥

∥

∥

) , (3)

where ‖ · ‖ indicates the Euclidean distance. The one-shot

classifier P thus predicts the class label of Ii as the highest

probability over N classes.

5. Training Strategy of IDeMe-Net

5.1. Training Loss

Training the entire IDeMe-Net includes two subtasks:

(1) training the deformation sub-network which maximally

improves the one-shot classification accuracy; (2) building

the robust embedding sub-network which effectively deals

with various synthesized deformed images. Note that our

one-shot classifier has no parameters, which does not need

to be trained. We use the prototype loss and the cross-

entropy loss to train these two sub-networks, respectively.

Update the deformation sub-network. We optimize the

following prototype loss function to endow the deformation

sub-network with the desired one-shot classification ability:

minθEL∼Dbase
ES,G,Q∼L





∑

(Ii,yi)∈Q

−logPθ (yi | Ii)



 , (4)

where Pθ (yi | Ii) is the one-shot classifier in Eq. (3). Using

the prototype loss encourages the deformation sub-network

to generate diverse instances to augment the support set.

Update the embedding sub-network. We use the cross-

entropy loss to train the embedding sub-network to directly

classify the augmented support set S̃. Note that with the

Algorithm 1 Meta-training procedure of our IDeMe-Net

fθ. G is the fixed gallery constructed from Cbase.

1: procedure META-TRAIN EPISODE

2: The procedure of one meta-training episode

3: L← randomly sample N classes from Cbase
4: S ← randomly sample instances belonging to L
5: //sample the support set

6: Q← randomly sample instances belonging to L
7: //sample the query set

8: train the prototype classifier P from fθemb
(S)

9: S̃ ← S ⊲ initialize the augment support set

10: for c in L do ⊲ enumerate the chosen classes

11: pool←use P to select ǫ% images in G that have

the highest class probability of c
12: for (Iprob, c) in Sc do

13: for j = 1 to naug do

14: Igallery ← randomly sample instances

from pool
15: Isyn ← fθdef (Iprob, Igallery)

16: S̃ ← S̃ ∪ (Isyn, c)
17: end for

18: end for

19: end for

20: train the prototype classifier P̃ from fθemb
(S̃)

21: use P̃ to classify fθemb
(Q) and obtain the prototype

loss

22: use the softmax classifier to classify fθemb
(S̃) and

obtain the CELoss

23: update θemb with the CELoss

24: update θdef with the prototype loss

25: end procedure

augmented support set S̃, we have relatively more training

instances to train this sub-network and the cross-entropy

loss is the standard loss function in training a supervised

classification network. Empirically, we find that using the

cross-entropy loss speeds up the convergence and improves

the recognition performance than using the prototype loss

only.
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5.2. Training Strategy

We summarize the entire training procedure of our

IDeMe-Net on the base dataset Dbase in Algorithm 1. We

have access to the same, predefined gallery G from Dbase

for both meta-training and meta-testing. During meta-

training, we sample the N -way-m-shot training episode to

produce S and Q from Dbase. The embedding sub-network

learns an initial one-shot classifier on S using Eq. (3). Given

a probe image Iprobe, we then sample the gallery images

Igallery ∼ G and train the deformation sub-network to gen-

erate the augmented support set S̃ using Eq. (1). S̃ is fur-

ther used to update the embedding sub-network and learn

a better one-shot classifier. We then conduct the final one-

shot classification on the query set Q and back-propagate

the prediction error to update the entire network. During

meta-testing, we sample the N -way-m-shot testing episode

to produce S and Q from the novel dataset Dnovel.

6. Experiments

Our IDeMe-Net is evaluated on two standard bench-

marks: miniImageNet [28] and ImageNet 1K Challenge [9]

datasets. miniImageNet is a widely used benchmark in one-

shot learning, which includes 600 images per class and has

100 classes in total. Following the data split in [17], we use

64, 16, 20 classes as the base, validation, and novel category

set, respectively. The hyper-parameters are cross-validated

on the validation set. Consistent with [28, 17], we evaluate

our model in 5-way-5-shot and 5-way-1-shot settings.

For the large-scale ImageNet 1K dataset, we divide the

original 1K categories into 389 base (Dbase) and 611 novel

(Dnovel) classes following the data split in [9]. The base

classes are further divided into two disjoint subsets: base

validation set Dcv
base (193 classes) and evaluation set Dfin

base

(196 classes) and the novel classes are divided into two sub-

sets as well: novel validation set Dcv
novel (300 classes) and

evaluation set Dfin
novel (311 classes). We use the base/novel

validation set Dcv for cross-validating hyper-parameters

and use the base/novel evaluation set Dfin to conduct the fi-

nal experiments. The same experimental setup is used in [9]

and the reported results are averaged over 5 trails. Here we

focus on synthesizing novel instances and we thus evaluate

the performance primarily on novel classes, i.e., 331-way-

m-shot settings, which is also consistent with most of the

contemporary work [28, 22, 17].

6.1. Results on ImageNet 1K Challenge

Setup. We use ResNet-10 architectures for ANET and

BNET (i.e., the deformation sub-network). For a fair com-

parison with [9, 30], we evaluate the performance of using

ResNet-10 (Table 1) and ResNet-50 (Table 2) for the em-

bedding sub-network. Stochastic gradient descent (SGD)

is used to train IDeMe-Net in an end-to-end manner. It

gets converged over 100 epochs. The initial learning rates

of ANET, BNET, and the embedding sub-network are set

as 3 × 10−3, 3 × 10−3, and 10−1, respectively, and de-

creased by 1/10 every 30 epochs. The batch size is set as

32. We randomly sample 10 images per base category to

construct the gallery G and we set ǫ as 2. Note that G is

fixed during the entire experiments. ANET, BNET, and the

embedding sub-network are trained from scratch on Dbase.

Our model is evaluated on Dnovel. naug is cross-validated

as 8, which balances between the computational cost and

the augmented training data scale. In practice, we perform

stage-wise training to overcome potential negative influence

caused by misleading training images synthesized by the

initial deformation sub-network. Specifically, in the first

20 epochs, we fix the deformation sub-network and train

the embedding sub-network with only real images to ob-

tain good initial classifiers. In the next 20 epochs, we fix

the embedding sub-network and learn the deformation sub-

network to reduce the discrepancy between synthesized and

real images. Finally, we train the embedding and defor-

mation sub-networks jointly (i.e., the entire IDeMe-Net) to

allow them to cooperate with each other.

Baselines and Competitors. We compare against several

baselines and competitors as follows. (1) We directly train a

ResNet-10 feature extractor on Dbase and use it to compute

features on Dnovel. We then train standard supervised clas-

sifiers on Dnovel, including neural network, support vec-

tor machine (SVM), logistic regression (LR), and prototype

classifiers. The neural network classifier consists of a fully-

connected layer and a softmax layer. (2) We compare with

state-of-the-art approaches to one-shot learning, such as

matching networks [28], generation SGM [9], prototypical

networks [22], Cosine Classifier & Att. Weight Gen (Cos

& Att.) [8], CP-ANN [6], PMN, and PMN w/ H [30]. (3)

The data augmentation methods are also compared — flip-

ping: the input image is flipped from left to right; Gaussian

noise: cross-validated Gaussian noise N (0, 10) is added

to each pixel of the input image; Gaussian noise (feature

level): cross-validated Gaussian noise N (0, 0.3) is added

to each dimension of the ResNet feature for each image;

Mixup: using mixup [36] to combine probe and gallery im-

ages. For fair comparisons, all theses augmentation meth-

ods use the prototype classifier as the one-shot classifier.

Results. Tables 1 and 2 summarize the results of using

ResNet-10 and ResNet-50 as the embedding sub-network,

respectively. For example, using ResNet-10, the top-5 accu-

racy of IDeMe-Net in Table 1 is superior to the prototypical

network by 7% when m = 1, 2, 5, showing the sample effi-

ciency of IDeMe-Net for one-shot learning. With more data

(e.g., m = 10, 20), while the plain prototype classifier base-

line performs worse than other baselines (e.g., PMN), our

deformed images coupled with the prototype classifier still
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Method m = 1 2 5 10 20

Baselines

Softmax – /16.3 – /35.9 – /57.4 - / 67.3 – /72.1

LR 18.3/42.8 26.0/54.7 35.8/66.1 41.1/71.3 44.9/74.8

SVM 15.9/36.6 22.7/48.4 31.5/61.2 37.9/69.2 43.9/74.6

Prototype Classifier 17.1/39.2 24.3/51.1 33.8/63.9 38.4/69.9 44.1/74.7

Competitors

Matching Network [28] – / 43.0 – / 54.1 – / 64.4 – / 68.5 – / 72.8

Prototypical Network [22] 16.9/41.7 24.0/53.6 33.5/63.7 37.7/68.2 42.7/72.3

Generation-SGM [9] – / 34.3 – / 48.9 – / 64.1 – / 70.5 – /74.6

PMN [30] – / 43.3 – / 55.7 – / 68.4 – / 74.0 – / 77.0

PMN w/ H [30] – / 45.8 – / 57.8 – / 69.0 – / 74.3 – / 77.4

Cos & Att. [8] – / 46.0 – / 57.5 – / 69.1 – / 74.8 – / 78.1

CP-AAN [6] – / 48.4 – / 59.3 – / 70.2 – / 76.5 – / 79.3

Augmentation

Flipping 17.4/39.6 24.7/51.2 33.7/64.1 38.7/70.2 44.2/74.5

Gaussian Noise 16.8/39.0 24.0/51.2 33.9/63.7 38.0/69.7 43.8/74.5

Gaussian Noise (feature level) 16.7/39.1 24.2/51.4 33.4/63.3 38.2/69.5 44.0/74.2

Mixup [36] 15.8/38.7 24.6/51.4 32.0/61.1 38.5/69.2 42.1/72.9

Ours IDeMe-Net 23.1/51.0 30.1/60.9 39.3/70.4 42.7/73.4 45.0/75.1

Table 1. Top-1 / Top-5 accuracy (%) on novel classes of the ImageNet 1K Challenge dataset. We use ResNet-10 as the embedding

sub-network. m indicates the number of training examples per class. Our IDeMe-Net consistently achieves the best performance.

Method m = 1 2 5 10

Softmax – /28.2 – /51.0 – / 71.0 – /78.4

SVM 20.1/41.6 29.4/57.7 42.6/72.8 49.9/79.1

LR 22.9/47.9 32.3/61.3 44.3/73.6 50.9/78.8

Proto-Clsf 20.8/43.1 29.9/58.1 42.4/72.3 49.5/79.0

G-SGM [9] – /47.3 – /60.9 – /73.7 – /79.5

PMN [30] – / 53.3 – / 65.2 – / 75.9 – / 80.1

PMN w/ H [30] – / 54.7 – / 66.8 – / 77.4 – / 81.4

IDeMe-Net (Ours) 30.3/60.1 39.7/69.6 47.5/77.4 51.3/80.2

Table 2. Top-1 / Top-5 accuracy (%) on novel classes of the Im-

agenet 1K Challenge dataset. We use ResNet-50 as the embed-

ding sub-network. m indicates the number of training examples

per class. Proto-Clsf and G-SGM denote the prototype classifier

and generation SGM [9], respectively.

have significant effect (e.g., 3.5 point boost when m = 10).

The top-1 accuracy demonstrates the similar trend. Using

ResNet-50 as the embedding sub-network, the performance

of all the approaches improves and our IDeMe-Net consis-

tently achieves the best performance, as shown in Table 2.

Figure 3(a) further highlights that our IDeMe-Net consis-

tently outperforms all the baselines by large margins.

6.2. Ablation Study on ImageNet 1K Challenge

We conduct extensive ablation study to evaluate the con-

tribution of each component in our model.

Variants of IDeMe-Net. We consider seven different vari-

ants of our IDeMe-Net, as shown in Figure 3(b) and Ta-

ble 3. (1) ‘IDeMe-Net - CELoss’: the IDeMe-Net is trained

using only the prototype loss without the cross-entropy loss

(CELoss). (2) ‘IDeMe-Net - Proto Loss’: the IdeMe-Net is

trained using only the cross-entropy loss without the pro-

totype loss. (3) ‘IDeMe-Net - Predict’: the gallery im-

ages are randomly chosen in IDeMe-Net without predict-

ing their class probability. (4) ‘IDeMe-Net - Aug. Testing’:

the deformed images are not produced in the meta-testing

phase. (5) ‘IDeMe-Net - Def. Network’: the combination

weights in Eq. (1) are randomly generated instead of us-

ing the learned deformation sub-network. (6) ‘IDeMe-Net -

Gallery’: the gallery images are directly sampled from the

support set instead of constructing an additional Gallery. (7)

‘IDeMe-Net - Deform’: we simply use the gallery images to

serve as the deformed images. As shown in Figure 3(b), our

full IDeMe-Net model outperforms all these variants, show-

ing that each component is essential and complementary to

each other.

We note that (1) Using CELoss and prototype loss to

update the embedding and deformation sub-networks,

respectively, achieves the best result. As shown in

Figure 3(b), the accuracy of ‘IDeMe-Net - CELoss’ is

marginally lower than IDeMe-Net but still higher than the

prototype classifier baseline, while ‘IDeMe-Net - Proto

Loss’ underperforms the baseline. (2) Our strategy for

selecting the gallery images is the key to diversify the

deformed images. Randomly choosing the gallery im-

ages (‘IDeMe-Net - Predict’) or sampling the gallery im-

ages from the support set (‘IDeMe-Net - Gallery’) obtains

no performance improvement. One potential explanation

is that they only introduce noise or redundancy and do not

bring in useful information. (3) Our improved perfor-

mance mainly comes from the diversified deformed im-

ages, rather than the embedding sub-network. Without

producing the deformed images in the meta-testing phase

(‘IDeMe-Net - Aug. Testing’), the performance is close

to the baseline, suggesting that training on the deformed

images does not obviously benefit from the embedding
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Method m = 1 2 5 10 20

Baselines
LR 18.3/42.8 26.0/54.7 35.8/66.1 41.1/71.3 44.9/74.8

Prototype Classifier 17.1/39.2 24.3/51.1 33.8/63.9 38.4/69.9 44.1/74.7

Variants

IDeMe-Net - CELoss 21.3/50.0 28.0/58.3 37.7/69.4 41.3/71.6 44.3/74.3

IDeMe-Net - Proto Loss 15.3/36.7 21.4/50.4 31.7/62.0 37.9/69.0 43.7/73.7

IDeMe-Net - Predict 17.0/39.3 24.0/50.7 33.6/63.5 38.0/69.2 43.7/73.8

IDeMe-Net - Aug. Testing 17.0/39.1 24.30/51.3 33.5/63.8 38.0/69.1 43.8/74.5

IDeMe-Net - Def. Network 15.9/38.0 24.1/50.1 32.6/63.3 38.2/68.9 42.4/73.1

IDeMe-Net - Gallery 17.5/39.4 24.2/51.4 33.5/63.7 38.7/70.3 44.4/74.5

IDeMe-Net - Deform 15.7/37.8 22.7/49.8 31.9/62.6 38.0/68.7 43.5/73.8

Patch Size

IDeMe-Net (1× 1) 16.2/39.3 24.4/52.1 32.9/63.0 38.8/69.5 42.7/73.2

IDeMe-Net (5× 5) 24.1/51.7 30.3/61.2 39.6/70.4 42.4/73.2 44.3/74.6

IDeMe-Net (7× 7) 23.8/52.1 30.2/61.3 39.1/70.2 42.7/73.1 44.5/74.7

IDeMe-Net (pixel level) 17.3/39.0 23.8/51.2 34.1/63.7 38.5/70.2 43.9/74.5

Ours IDeMe-Net 23.1/51.0 30.4/60.9 39.3/70.4 42.7/73.4 45.0/75.1

Table 3. Top-1 / Top-5 accuracy (%) of the ablation study on novel classes of the ImageNet 1K Challenge dataset. We use ResNet-10

as the embedding sub-network. m indicates the number of training examples per class. Our full model achieves the best performance.

sub-network. (4) Our meta-learned deformation sub-

network effectively exploits the complementarity and in-

teraction between the probe and gallery image patches,

producing the key information in the deformed images.

To show this point, we investigate two deformation strate-

gies: randomly generating the weight vector w (‘IDeMe-

Net - Def. Network’) and setting all the weights to be 0

(‘IDeMe-Net - Deform’); in the latter case, it is equiva-

lent to purely using the gallery images to serve as the de-

formed images. Both strategies perform worse than the

prototype classifier baseline, indicating the importance of

meta-learning a deformation strategy.

Different division schemes. In the deformation sub-

network and Eq. (1), we evenly split the image into 3 × 3
patches. Some alternative division schemes are compared in

Table 3 and Figure 3(c). Specifically, we consider the 1×1,

5×5, 7×7, and pixel-level division schemes and report the

results as IDeMe-Net (1× 1), IDeMe-Net (5× 5), IDeMe-

Net (7× 7), and IDeMe-Net (pixel level), respectively. The

experimental results suggest the patch-level fusion, rather

than image-level or pixel-level fusion in our IDeMe-Net.

The image-level division (1 × 1) ignores the local image

structures and deforms through a global combination, thus

decreasing the diversity. The pixel-level division is particu-

larly subject to the disarray of the local information, while

the patch-level division (3 × 3, 5 × 5, and 7 × 7) consid-

ers image patches as the basic unit to maintain some local

information. In addition, the results show that using a fine-

grained patch size (e.g., 5 × 5 division and 7 × 7 division)

may achieve slightly better results than our 3×3 division. In

brief, our patch-level division not only maintains the critical

region information but also increases diversity.

Number of synthesized deformed images. We also show

how the top-5 accuracy changes with respect to the number

(a) (b)

(c) (d)

Figure 3. Ablation study on ImageNet 1K Challenge dataset:

(a) highlights the comparison with several competitors; (b) shows

the impact of different components on our IDeMe-Net; (c) ana-

lyzes the impact of different division schemes; (d) shows how the

performance changes with respect to the number of synthesized

deformed images. Best viewed in color with zoom.

of synthesized deformed images in Figure 3(d). Specifi-

cally, we change the number of synthesized deformed im-

ages naug in the deformation sub-network, and plot the 5-

shot top-5 accuracy on the Imagenet 1K Challenge dataset.

It shows that when naug is changed from 0 to 8, the per-

formance of our IDeMe-Net is gradually improved. The

performance saturates when enough deformed images are

generated (naug > 8).

Visualization of deformed images in feature space. Fig-
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(a) Gaussian Baseline (b) IDeMe-Net - Deform (c) IDeMe-Net

Figure 4. t-SNE visualization of 5 novel classes. Dots, stars,

and triangles represent the real examples, the probe images, and

the synthesized deformed images, respectively. (a) Synthesis by

adding Gaussian noise. (b) Synthesis by directly using the gallery

images. (c) Synthesis by our IDeMe-Net. Best viewed in color

with zoom.

Figure 5. Examples of the deformed images during meta-testing.

1st row: probe images of novel classes. 2nd: gallery im-

ages of base classes. 3rd: synthesized images. The probe-

gallery image pairs from left to right: vase–jellyfish, vase–

oboe, vase–garbage bin, vase–soup pot, golden retriever–poodle,

golden retriever–walker hound, golden retriever–walker hound,

and golden retriever–poodle. Best viewed in color with zoom.

ure 4 shows the t-SNE [26] visualization of 5 novel classes

from our IDeMe-Net, the Gaussian noise baseline, and the

‘IDeMe-Net - Deform’ variant. For the Gaussian noise

baseline, the synthesized images are heavily clustered and

close to the probe images. By contrast, the synthesized

deformed images of our IDeMe-Net scatter widely in the

class manifold and tend to locate more around the class

boundaries. For ‘IDeMe-Net - Deform’, the synthesized

images are the same as the gallery images and occasionally

fall into manifolds of other classes. Interesting, comparing

Figure 4(b) and Figure 4(c), our IDeMe-Net effectively de-

forms those misleading gallery images back to the correct

class manifold.

Visualization of deformed images in image space. Here

we show some examples of our deformed images on novel

classes in Figure 5. We can observe that the deformed im-

ages (in the third row) are visually different from the probe

images (in the first row) and the gallery images (in the sec-

ond row). For novel classes (e.g., vase and golden retriever),

our method learns to find visual samples that are similar

in shape and geometry (e.g., jelly fish, garbage bin, and

soup pot) or similar in appearance (e.g., poodle and walker

hound). By doing so, the deformed images preserve im-

portant visual content from the probe images and introduce

new visual contents from the gallery images, thus diversify-

Method
miniImageNet (%)

1-shot 5-shot

MAML [5] 48.70±1.84 63.11±0.92

Meta-SGD [13] 50.47±1.87 64.03±0.94

Matching Network [28] 43.56±0.84 55.31±0.73

Prototypical Network [22] 49.42±0.78 68.20±0.66

Relation Network [23] 57.02±0.92 71.07±0.69

SNAIL [14] 55.71±0.99 68.88±0.92

Delta-Encoder [21] 58.7 73.6

Cos & Att. [8] 55.45±0.89 70.13 ±0.68

Prototype Classifier 52.54±0.81 72.71±0.73

IDeMe-Net (Ours) 59.14±0.86 74.63±0.74

Table 4. Top-1 accuracy (%) on novel classes of the

miniImageNet dataset. “±” indicates 95% confidence intervals

over tasks.

ing and augmenting the training images in a way that max-

imizes the one-shot classification accuracy.

6.3. Results on miniImageNet

Setup and Competitors. We use a ResNet-18 architecture

as the embedding sub-network. We randomly sample 30

images per base category to construct the gallery G. Other

settings are the same as those on the ImageNet 1k Challenge

dataset. As summarized in Table 4, we mainly focus on

three groups of competitors: (1) meta-learning algorithms,

such as MAML [5] and Meta-SGD [13]; (2) metric learning

algorithms, including matching networks [28], prototypical

networks [22], relation networks [23], SNAIL [14], delta-

encoder [21], and Cosine Classifier & Att. Weight Gen (Cos

& Att.) [8].

Results. We report the results in Table 4. Impressively,

our IDeMe-Net consistently outperforms all these state-of-

the-art competitors. This further validates the general effec-

tiveness of our proposed approach in addressing one-shot

learning tasks.

7. Conclusion

In this paper, we propose a conceptually simple yet

powerful approach to address one-shot learning that uses a

trained image deformation network to generate additional

examples. Our deformation network leverages unsuper-

vised gallery images to synthesize deformed images, which

was trained end-to-end by meta-learning. The extensive ex-

periments demonstrate that our approach achieves state-of-

the-art performance on multiple one-shot learning bench-

marks, surpassing the competing methods by large margins.
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