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Abstract

Image segmentation is an important step in medical im-

age processing and has been widely studied and developed

for refinement of clinical analysis and applications. New

models based on deep learning have improved results but

are restricted to pixel-wise tting of the segmentation map.

Our aim was to tackle this limitation by developing a new

model based on deep learning which takes into account the

area inside as well as outside the region of interest as well

as the size of boundaries during learning. Specically, we

propose a new loss function which incorporates area and

size information and integrates this into a dense deep learn-

ing model. We evaluated our approach on a dataset of more

than 2,000 cardiac MRI scans. Our results show that the

proposed loss function outperforms other mainstream loss

function Cross-entropy on two common segmentation net-

works. Our loss function is robust while using different hy-

perparameter λ.

1. Introduction

Image segmentation is a fundamental and challenging

problem in computer vision, with the aim of partitioning

an image in a meaningful way so that objects can be

localized, distinguished and/or measured. In medical imag-

ing, this is vital for further clinical analysis, diagnostics,

treatment planning and measuring disease progression.

High precision is typically required in bio-medical image

segmentation [6, 24]. Recently, segmentation techniques

based on deep convolutional neural networks (CNNs) have

been developed for various medical imaging modalities,

such as MRI, CT and X-ray, showing promising results and

overcoming the limitations of conventional segmentation

Figure 1: Our proposed loss function

methods [17]. During the training process of a CNN

model, its parameters are optimized through gradient

descent approaches based on the errors measured by a loss

function, which compares the prediction and ground truth

images. Loss functions are critical for model optimization.

In terms of classification problems, the L2 norm is also

known as mean squared error (MSE) and cross-entropy

(CE) are commonly used as loss functions [8, 33]. CE

and the Dice coefficient (DC) have typically been used for

segmentation problems [24, 12].

Despite the recent progress of using CNNs for bio-

medical image segmentation, the commonly used loss

functions generally evaluate pixel-wise similarity. For

instance, CE and DC focus on extracted features from

specific regions [28]. While this can result in good clas-

sification and segmentation performance, low resultant

loss function values may not necessarily correspond to

a meaningful segmentation. For example, a noisy result

can add many contours in the background representing

incorrect segmentation, and object boundaries can be fuzzy
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due to the difficulty of classifying pixels near the boundary.

We propose to address these issues by (i) building the

length of the boundary segmentation contour into the loss

function so that this is constrained and (ii) considering the

fitting inside and outside of the estimated boundaries in

order to preserve shape.

According to the WHO, cardiovascular disease (CVD)

is the world’s number one killer, taking 17.9 million lives

per year. The segmentation of Cardiac Magnetic Reso-

nance (CMR) images is important for the assisted diag-

nosis of CVD. However, there are a limited number of

fully-automatic segmentation methods, which is essential

for CVD diagnosis. Our segmentation work is part of the

effort to address this global challenge by developing new

solutions for the accurate and reliable analysis of CMR im-

ages for improved decision making.

1.1. Contributions

To the best of our knowledge, this is the first work which

integrates length and region constraints into the loss func-

tion of CNN-based segmentation, as shown in Figure 1. The

contributions of this work are:

• We develop a new loss function combining contour

length and region information.
• Based on this, we develop a CNN model based on con-

ventional Dense U-Net.
• We evaluate our model in a supervised bio-medical

segmentation setting for CVD diagnosis.

2. Related Work

In this section, conventional and CNN-based segmenta-

tion methods and related to this work briefly reviewed in the

following context.

2.1. Conventional Segmentation Methods

In the past few decades, various models have been pro-

posed ranging from thresholding, edge detection, cluster-

ing, region-growing to more complex active contour mod-

els. Early models such as thresholding and region growing

approaches are able to implement but the performance is

limited due to its nature of using image intensity or texture

information only [7]. Active contour models (ACMs) have

shown more performance as represented by the active con-

tour without edge (ACWE) model [4] and also Mumford-

Shah’ work [21]. In Chan and Vese’s work, level set func-

tions are introduced to formulate the segmentation model

treated as an energy minimization problem solved through

solving partial differential equations (PDEs). Later on, this

model has been extended to multiphase problems and tex-

ture problems [31, 29]. Efficient solvers such as dual pro-

jection and graph cut methods have been introduced to im-

prove the computational efficiency [20]. The common chal-

lenges for these models are time-consuming. On the other

hand, supervised segmentation models based on feature ex-

traction and neural networks or support vector machines

also showed reasonable results. However, these models are

based on hand-craft features for the segmentation thus de-

pendent on the skills and experience of the researchers so

it’s limited applicability and result quality.

2.2. CNN­based Methods for Segmentation

As a class of deep neural networks, CNNs show remark-

able performance in many computer vision tasks, such as

classification, segmentation and registration. One of the

particular strength of CNN based models is that they work

in an end-to-end fashion, which can extract hierarchical and

multi-resolution features during the learning process. CNN

architectures like Alex-Net [14], VGG-Net [25], Google-

Net [26] and Dense-Net [9] have been developed and intro-

duced into various image recognition tasks. Broadly speak-

ing, CNN based segmentation models can be classified into

pixel-based or images-based approaches. The pixel-based

approaches will classify each pixel into different objects as

a classification problem. A patch is often produced for each

pixel (or super-pixel) and the patch is used as input to CNN

models for classification with the label of the pixel used

as the target to train the model [5]. The image-based ap-

proaches, such as U-Net [24], will make an image as input

and output will be the segmentation of the input image (the

size will be the same). U-Net like models have become pop-

ular because of its good performance and simplicity when

compared to pixel-wise approaches [28, 15, 12](Please sort

out these references). However, due to the lack of consider-

ation on outside the target so that small segmented objects

occur around the boundaries. In order to tackle this prob-

lem, a network based on Dense-Net called one hundred lay-

ers Tiramisu was proposed by Jégou et.al [12] making each

layer to connect with others in a feed-forward fashion for

encouraging extracted features to reuse and for strengthen-

ing feature propagation so that Dense-Net can reduce the

influence from outside features of targets. Dense-Net over-

comes this limitation of U-Net in various medical image

applications [15][12]. However, some researchers prove

that developing different loss functions is also able to im-

prove the performance of U-Net during the training process

[18, 27, 1]. Arif et.al [1] address the gap by introducing a

shape-aware term in the segmentation loss function. Their

approach significantly improved the performance of cervi-

cal X-ray images by 12%. Inspired by the recent progress

in loss function, we present a novel loss function borrowed

from the conventional model to further improve the segmen-

tation performance.
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2.3. Loss functions

To train a CNN model, the loss function (or cost func-

tion) plays a significant role. Loss function is a function

to measure the error of prediction or segmentation which

can be back propagated to previous layers in order to up-

date/optimize the weights. Here, we briefly review the

commonly used loss functions. In the following equations,

ground truth image (or expert annotation) and the prediction

(or segmentation) is denoted as T , P ∈ [0, 1]m×n respec-

tively; n indexes each pixel value in image spatial space N ;

the label of each class is written as l in C classes.

Cross-Entropy (CE) Loss: CE is a widely used pixel-wise

measure [24] to evaluate the performance of classification

or segmentation model. For two-class problems, CE loss

function can be expressed as Binary-CE (BCE) loss func-

tion as follows:

LossBCE(T, P )

= − 1

N

N∑

n=1

[
Tn · log(Pn) + (1− Tn) · log(1− Pn)

]

CE loss functions treat the output from softmax layer as a

pixel classification problem to evaluate each pixel. Ron-

neberger et al. [24] pointed out that in order to improve

the performance in cells’ border segmentation from bio-

medical images, CE loss function with weighting scheme

can be as one of the solutions to help U-Net model segments

cells border as accurately as possible. Moreover, there are

numerous studies on CE-based loss functions but merely a

few functions consider the geometric detail of objects [16].

Dice Coefficient (DC) Loss: DC is traditionally used as a

metric for the evaluation of the segmentation performance

and now also demonstrated a good performance as a loss

function [19]. DC measure the degree of overlapping be-

tween the reference and segmentation. This element-wise

measure ranges from 0 to 1 where a DC of 1 denotes per-

fect and complete overlap. DC can be defined as:

DC(T, P ) = 2 ·
∑N

n=1(Tn × Pn)
∑N

n=1(Tn + Pn)
(1)

DC loss is defined in Eq.(2) as it tends to the best segmen-

tation.

LossDC(T, P ) = 1−DC(T, P ) (2)

Even though CE and DC loss functions have achieved a suc-

cess in image segmentation, there are two main limitations:

they are pixel-wised loss functions to measure the similarity

between T and P , but the geometrical information are not

taken into consideration.

2.4. Active Contour Models

In this section, we provide some background knowl-

edge of the ACMs firstly proposed by Kass et al. [13].

ACM models treat segmentation as an energy minimiza-

tion problem where the energy of an active spline/contour

is minimized by PDEs-based methods toward the objects’

boundaries. In classic ACMs, detecting objects’ boundaries

is by image gradients. However, this has one main lim-

itation that it will be stuck at a local minimum. There-

fore, it cannot get satisfactory segmentation results. In

the past two decades, a number of ACMs have been pro-

posed, such as active contour without edge (ACWE) model

and fast global minimization-based active contour model

(FGM-ACM) proposed by Bresson et al. [3].

The ACWE model can be formulated as the following en-

ergy minimization problem:

min
Ωc,c1,c2

{EACWE
1 (Ωc, c1, c2, λ)

=

∫ Length(C)

0

ds

+λ

∫

Ω

(c1 − f(x))2dx

+λ

∫

Ω/Ωc

(c2 − f(x))2dx}, (3)

where ds is the Euclidean element of length, the first term

of Eq.(3) is the length of the curve C, and f is the image to

be segmented, Ωc is a closed subset of the image f domain

Ω. The mean value of f outside and inside are denoted as

c1 and c2, respectively. λ is an arbitrary fixed parameter

(λ > 0) to controls the balance between regularization pro-

cess and c1, c2. The energy EACWE
1 (3) can improve be-

cause it naturally adds more constraints including the con-

tour length than DC and CE loss function. In order to solve

the segmentation formulation, Heaviside function of level

set method and PDEs were introduced to decrease the en-

ergy EACWE
1 . EACWE

1 can be rewritten as follows:

EACWE
2 (Ωc, c1, c2, λ)

=

∫

Ω

∣
∣∇Hǫ(φ)

∣
∣ dx

+λ

∫

Ω

Hǫ(φ)(c1 − f(x))2dx

}

+λ

∫

Ω/Ωc

Hǫ(−φ)(c2 − f(x))2dx

}

(4)

where Hǫ is a smooth approximation of the Heaviside

function. And the gradient descent method minimizing of

EACWE
2 (4) is defined as:

∂tφ = H ′

ǫ(φ)

{

div

( ∇φ

|∇φ|

)

− λr1(x, c1, c2)

}

(5)
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where r1(x, c1, c2) = (c1−f(x))2−(c2−f(x))2 shown in

Eq.(5). However, PDEs-based solutions including ACWE

need to be solved on each individual image, which is time-

consuming. While they can give very good results, this

makes ACWE less suitable for application in clinical set-

tings where fast results, often as short as a few seconds, are

needed. In order to achieve global minimization fast and

stable, a EACWE based on total variation energy TV was

proposed [3] which is defined as in Eq.(6):

EACWE
4 (u, c1, c2, λ) = TVg(u) + λ

∫

Ω

r1(x, c1, c2)udx

(6)

where u is a characteristic function 1Ωc
. TVg(u) is total

variation energy. Eq.(6) can also be written as:

EACWE
4 (u, c1, c2, λ) =

∫ Length(C)

0

g|∇u|ds
︸ ︷︷ ︸

Length

+λ

∫

Ω

((c1 − f(x))2 − (c2 − f(x))2)udx

︸ ︷︷ ︸

Region

(7)

where,u is a characteristic function valued between 0 and 1.

EACWE
4 (7) provides a global minimum for ACWE model.

Moreover, due to the limitation of the previous version

of ACWE model based on Heaviside function and PDEs-

based solutions, it provides a fast and non-stationary so-

lution while u is restricted from 0 and 1. And also, this

minimization problem of ACME to carry out segmentation

task is able to apply into the deep learning field as it is con-

strained and some parameters can be fixed due to super-

vised learning and some parameters can be treated as train-

able parameters to evaluate this minimization equation in an

end-to-end learning fashion. In the §3 we will present more

details of it.

3. Our Method

We propose a loss function inspired by the general idea

of active contour model building in region and length terms

for bio-medical image segmentation by U-Net-like based

deep learning architectures. The work-flow is displayed in

Figure 2. Our loss function denoted as AC, is in §3.1. Our

main CNN Architecture in §3.2 is introduced.

3.1. AC Loss Function

The idea of proposed AC loss is behind the minimization

problem of ACWE model (6) to efficiently find an active

contour which is a global minimization of active contour

energy for automated image segmentation. In the follow-

ing equations, ground truth (reference segmentation) and

the predicted value is denoted as v, u ∈ [0, 1]m×n respec-

tively. A 2-dimensional example of our AC loss function is

defined as follows:

LossAC = Length+ λ ·Region, (8)

in which,

Length =

∫

C

|∇u|ds (9)

Region =

∫

Ω

((c1 − v)2 − (c2 − v)2)udx (10)

Therefore, Length and Area of Eq.(9) and Eq.(10) can be

written into pixel-wised way respectively as follows:

Length =

i=1,j=1
∑

Ω

√
∣
∣(∇uxi,j

)2 + (∇uyi,j
)2
∣
∣+ ǫ (11)

where,x and y from uxi,j
and uyi,j

are horizontal and verti-

cal directions respectively. ǫ (ǫ > 0) is a parameter to avoid

square root is zero in practice.

Region =

∣
∣
∣
∣
∣
∣

i=1,j=1
∑

Ω

ui,j(c1 − vi,j)
2

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

i=1,j=1
∑

Ω

(1− ui,j)(c2 − vi,j)
2

∣
∣
∣
∣
∣
∣

(12)

where, in the ACWE model 3, c1 and c2 are variable and

defined as follows:






c1 =
∫
v · udx/

∫
udx

c2 =
∫
v · (1− u)dx/

∫
(1− u)dx

(13)

due to supervised-learning framework, c1 and c2 are rep-

resented as the energy of inside (foreground) and outside

(background) and can be simply defined as constants in ad-

vance as c1 = 1 and c2 = 0. u and v are represented as

prediction and a given image respectively. In practice, we

set ǫ = 10−6 as a small positive number to avoid the
√
0

issue in Tensorflow initialization. Therefore, we proposed

a new loss function building on the length of the boundary

segmentation contour and considering the region fitting for

not only has the same nature of non-convex from Eq.(7) but

also our new loss function is fit for shape preservation.

3.2. CNN Architecture

In this subsection, we detail and use U-Net [24] and

dense U-Net [24] architectures as our base segmentation

frameworks to evaluate our proposed loss function perfor-

mance. Recently, U-Net is proposed and widely used which

is an end-to-end and encoder-decoder neural network for se-

mantic segmentation with high precise results. As one of the
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Figure 2: Overview of our proposed method which takes the object’s area and length of the boundaries into account during

training.

essential building blocks is skipped connections which are

designed for forwarding feature maps from down-sampling

path to the up-sampling path in order to localize high res-

olution features to generate a segmentation output. In the

down-sampling path, each layer consists of two 3×3 convo-

lution layers, one rectified linear unit (ReLU) and one max

pooling layer. In the up-sampling path, every step includes

one 2×2 up-convolution layer, one concatenation operation

with related feature map by skipped connections and two

3×3 convolution layers. Overall, U-net network has 23 lay-

ers.

As CNNs based segmentation network going deeper, a

"gradient vanish" problem occurs. Therefore, to address

this problem, Dense block based U-Net, namely Dense-Net

[24], was proposed which allows each layer to connect di-

rectly other layers for preserving the feed-forward nature.

And also, parameters and extracted features from the net-

work are more efficient and are able to reuse. In Dense-

Net framework, a dense block layer, transition down and

transition up are introduced. A dense block layer consists

of Batch Normalization (BN), ReLU and a 3×3 convolu-

tion, in which these layers connect densely. The output of a

dense block is the concatenation of the outputs of the above

4 layers. In the down-sampling path, it consists of 38 lay-

ers. There are 15 and 38 layers in the bottleneck and up-

sampling path. In total, Dense-net network has 103 layers.

4. Experiments

We used U-Net and dense U-net as our two-class seg-

mentation CNN architectures and compare the final seg-

mented performance when using commonly used loss func-

tions CE and DC and our proposed AC loss function, re-

spectively.

4.1. Dataset

Therefore, we demonstrate our model on a publicly

available large-scale and multi-centre study cardiac mag-

netic resonance (CMR) images dataset. This dataset was

made available as which from a publicly available dataset:

MICCAI 2017 Automated Cardiac Diagnosis Challenge

(ACDC 2017 Challenge)1. The primary reason for this is

that it is always a challenging task to segment bio-medical

images as there are huge variations between images and

high reliability and accuracy are often required. The sec-

ondary reason for using CMR images is due to the pub-

lically availability which will allow reproducible research.

Third, CMR images play an important role to help patients

with heart disease in diagnosis as well as pre-/post-operative

planning. However, due to labour-consuming and sub-

jective biases suffered by human measurement, computer-

assisted diagnosis is demanded while there are only limited

studies for the development of accurate approaches for the

segmentation of cardiac CMR [28]. In total there are 150

volumetric MR image sequences of patients with cardiomy-

opathy acquired by two different MRI scanners. All the

1,891 Cine MR scans are re-sampled into 256× 256 pixels.

The corresponding ground truth label maps are annotated

by a clinical expert team from the University Hospital of Di-

jon. In which, background, right ventricle, myocardium and

left ventricle for each ground truth image are labelled, re-

spectively. Example images and their corresponding ground

truth are shown in the first left columns of Figure 5. In

our experiment, the dataset is partitioned into three subsets:

training (1193), validation (298) and testing (400).

4.2. Performance Metrics

For quantitative assessment of the segmentation, Haus-

dorff distance (HD) are used for segmentation accuracy as-

sessment (smaller more better). HD is a symmetric measure

1ACDC 2017 Challenge https://acdc.creatis.insa-lyon.fr/

11636



Figure 3: Segmentation results of left ventricle (red), right ventricle (green) and myocardium (blue) of five examples images

using 2D U-Net and 2D Dense-Net with CE and our AC loss functions. From left to right, the example-original MR image,

ground truth, segmentation results by U-Net+CE, U-Net+AC, Dense-Net+CE and Dense-Net+AC are shown respectively.

of distance between two contours and is defined as [23]:

DH(T, P ) = max

{

sup
t∈T

inf
p∈P

d(T, P ), sup
p∈P

inf
t∈T

d(T, P )

}

(14)

where T , P ∈ [0, 1]m×n are the ground truth contour and

the predicted contour respectively, t and p represent pixels

of T and P , d(t, p) is Euclidean distance between t and p.

5. Results

We implemented our networks using Keras 1.1.0 with

Tensorflow_gpu 1.10 as backend. We trained our models

until convergence by using the ADAM optimizer with a
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learning rate of 10−4. All the experiments were performed

using an Intel CPU, and a NVIDIA TitanX GPU. Upon ac-

ceptance of the manuscript, our trained models will be made

available online at https://github.com/xuuuuuuchen/AC-

loss. In Figure 3, segmentation results of left ventricle,

right ventricle and myocardium of five examples images us-

ing 2D U-Net and 2D Dense-Net with CE and our AC loss

functions are displayed respectively.

5.1. Performance

Table.1 showed the comparison results for the segmen-

tation of left ventricle, right ventricle and myocardium

between U-Net and Dense-Net when either CE or our

AC loss function was used. The proposed approaches

U-Net-AC has improved HD than U-Net-CE, so do Dense-

Net+AC. As such we used the results of Dense-Net+AC

for the comparative studies with previous studies. As

shown in Table.1, our AC loss function based on Dense-Net

(Dense-Net+AC) model achieves better results than others

for all the segmentation tasks. The HD is 33.8%, 46.5%

and 37.7% higher for the segmentation of left ventricle,

right ventricle and myocardium respectively.

In Table.2, it presents that comparison with U-Net and

Dense-Net with CE loss function and our AC loss function.

In which, left ventricle, right ventricle and myocardium are

listed at the top respectively. We use DC and HD for eval-

uating the performance. The proposed approaches U-Net-

AC, as well as Dense-Net+AC, are compared against gen-

eral segmentation frameworks: U-Net and Dense-Net with

CE loss function. In Figure 4, the computing time per epoch

for AC is 110s, shorter than CE at 121s, during training for

DenseNet. For UNet, AC takes 15s while CE takes 17s.

For testing, it takes almost the same time when the same

network is used.

Figure 4: Running time per epoch for AC and CE loss func-

tions within different models

5.2. Robustness Analysis

We evaluated the effect of the regularization weight λ
in our AC loss function Eq.(8) by DC score. As shown in

the Figure 5, our DenseNet-based model is robust to the

choice of λ with different λ values. When λ is close to

zero, the DC result tends to be worse because only bound-

ary term contributes to our loss function. We aslo evaluated

the DenseNet-based model with region terms only under the

same conditions compared with Dense-CE model. The per-

formance (Dice Score) for this is 0.9634, worse than AC

(0.9708) but better than CE (0.9442).

Figure 5: Effect of varying the parameter λ on DC score

6. Discussion

Our proposed method AC loss function is able to

take into account geometric information of the areas be

segmented. We present two basic segmentation models

U-Net and Dense-Net as a base to prove that our proposed

loss function is robust in mainstream architectures. Our

results also demonstrate that our model of loss function

performs signicantly better than commonly used loss

functions such as CE and DC when we test on a public MR

ventricle dataset. Our results also demonstrate superior per-

formance when compared to other start-of-art segmentation

approaches. Compare to standard ACWE models which

require iteration in solving PDEs, the use of CNNs have

hugely reduced the computational time on new images

although the training time will be longer.

We tested different values of the regularization weight λ
to show this loss function is robust. In future work, we will

investigate how to make λ can be learned during the train-

ing process. Similar to CE and DC that can be extended to

multi-class segmentation problems [22], the proposed loss

function can also be extended to solve multi-phase segmen-

tation problems as the traditional ACM have demonstrated

[32].
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Table 1: Comparison with two different network: U-Net and Dense-Net on cardiac segmentation followed by CE loss function

and our AC loss function. The three objects from cardiac MR scans (left ventricle, right ventricle and myocardium) are listed

respectively. We use HD for evaluating the performance of segmentation. The proposed approaches U-Net-AC and Dense-

Net+AC are compared against state-of-the-art segmentation U-Net and Dense-Net with CE loss function. Standard deviation

is presented in the buckets respectively.

Objects left ventricle right ventricle myocardium

Methods
Hausdorff Dist.

(mm)

Hausdorff Dist.

(mm)

Hausdorff Dist.

(mm)

U-Net-CE 18.29 (2.04) 23.76 (2.52) 18.04 (1.97)

U-Net-AC 17.36 (2.76) 22.94 (2.48) 16.60 (2.05)

DenseNet+CE 5.43 (1.81) 6.21 (1.05) 6.34 (1.56)

DenseNet+AC 4.73 (1.35) 5.95 (0.99) 5.42 (1.10)

Table 2: Comparison with previous approaches on cardiac segmentation. In the top of table, the three objects (left ventricle,

right ventricle and myocardium) are listed respectively. The accuracy is evaluated in terms of mean Dice Coefficient (DC)

score and Hausdorff distance (HD). The proposed approach (Dense-Net+AC) is compared against state-of-the-art cardiac

segmentation models: Wolterink et al. [30], Baumgartner et al. [2], Yeonggul Janget al. [11] and Isensee et al. [10]. Standard

deviation is presented in the buckets respectively.

Objects left ventricle right ventricle myocardium

Methods
Dice Score

(%)

Hausdorff Dist.

(mm)

Dice Score

(%)

Hausdorff Dist.

(mm)

Dice Score

(%)

Hausdorff Dist.

(mm)

Wolterink et al. 0.930 8.68 (4.51) 0.880 14.21 (6.04) 0.870 11.31 (5.62)

Baumgartner et al. 0.950 N/A 0.893 N/A 0.899 N/A

Yeonggul Jang et al. 0.938 7.27 (4.83) 0.890 13.69 (4.83) 0.879 9.76 (0.04)

Isensee et al. 0.950 7.14 (N/A) 0.923 11.13 (N/A) 0.911 8.69 (N/A)

Dense-Net+AC 0.986 4.73 (1.35) 0.940 5.95 (0.99) 0.969 5.42 (1.10)

7. Conclusion

In this paper, we introduced a new AC loss function that

was inspired by ACMs for the segmentation tasks. The

advantage of this new loss function is that it can seam-

lessly combine the geometrical information (e.g. bound-

ary length) with region similarity thus leading to more pre-

cise segmentation. After implementation, we applied it to

a large-scale CMR dataset and the results showed that the

proposed approach outperforms state-of-the-art approaches.

It is believed that this new development will be readily ap-

plied to other challenging segmentation tasks posed by var-

ious real applications.
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