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Abstract

Image segmentation is an important step in medical im-
age processing and has been widely studied and developed
for refinement of clinical analysis and applications. New
models based on deep learning have improved results but
are restricted to pixel-wise tting of the segmentation map.
Our aim was to tackle this limitation by developing a new
model based on deep learning which takes into account the
area inside as well as outside the region of interest as well
as the size of boundaries during learning. Specically, we
propose a new loss function which incorporates area and
size information and integrates this into a dense deep learn-
ing model. We evaluated our approach on a dataset of more
than 2,000 cardiac MRI scans. Our results show that the
proposed loss function outperforms other mainstream loss
function Cross-entropy on two common segmentation net-
works. Our loss function is robust while using different hy-
perparameter \.

1. Introduction

Image segmentation is a fundamental and challenging
problem in computer vision, with the aim of partitioning
an image in a meaningful way so that objects can be
localized, distinguished and/or measured. In medical imag-
ing, this is vital for further clinical analysis, diagnostics,
treatment planning and measuring disease progression.
High precision is typically required in bio-medical image
segmentation [6, 24]. Recently, segmentation techniques
based on deep convolutional neural networks (CNNs) have
been developed for various medical imaging modalities,
such as MRI, CT and X-ray, showing promising results and
overcoming the limitations of conventional segmentation
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Figure 1: Our proposed loss function

methods [17]. During the training process of a CNN
model, its parameters are optimized through gradient
descent approaches based on the errors measured by a loss
function, which compares the prediction and ground truth
images. Loss functions are critical for model optimization.
In terms of classification problems, the L2 norm is also
known as mean squared error (MSE) and cross-entropy
(CE) are commonly used as loss functions [8, 33]. CE
and the Dice coefficient (DC) have typically been used for
segmentation problems [24, 12].

Despite the recent progress of using CNNs for bio-
medical image segmentation, the commonly used loss
functions generally evaluate pixel-wise similarity. For
instance, CE and DC focus on extracted features from
specific regions [28]. While this can result in good clas-
sification and segmentation performance, low resultant
loss function values may not necessarily correspond to
a meaningful segmentation. For example, a noisy result
can add many contours in the background representing
incorrect segmentation, and object boundaries can be fuzzy
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due to the difficulty of classifying pixels near the boundary.
We propose to address these issues by (i) building the
length of the boundary segmentation contour into the loss
function so that this is constrained and (ii) considering the
fitting inside and outside of the estimated boundaries in
order to preserve shape.

According to the WHO, cardiovascular disease (CVD)
is the world’s number one killer, taking 17.9 million lives
per year. The segmentation of Cardiac Magnetic Reso-
nance (CMR) images is important for the assisted diag-
nosis of CVD. However, there are a limited number of
fully-automatic segmentation methods, which is essential
for CVD diagnosis. Our segmentation work is part of the
effort to address this global challenge by developing new
solutions for the accurate and reliable analysis of CMR im-
ages for improved decision making.

1.1. Contributions

To the best of our knowledge, this is the first work which
integrates length and region constraints into the loss func-
tion of CNN-based segmentation, as shown in Figure 1. The
contributions of this work are:

e We develop a new loss function combining contour
length and region information.

e Based on this, we develop a CNN model based on con-
ventional Dense U-Net.

e We evaluate our model in a supervised bio-medical
segmentation setting for CVD diagnosis.

2. Related Work

In this section, conventional and CNN-based segmenta-
tion methods and related to this work briefly reviewed in the
following context.

2.1. Conventional Segmentation Methods

In the past few decades, various models have been pro-
posed ranging from thresholding, edge detection, cluster-
ing, region-growing to more complex active contour mod-
els. Early models such as thresholding and region growing
approaches are able to implement but the performance is
limited due to its nature of using image intensity or texture
information only [7]. Active contour models (ACMs) have
shown more performance as represented by the active con-
tour without edge (ACWE) model [4] and also Mumford-
Shah’ work [21]. In Chan and Vese’s work, level set func-
tions are introduced to formulate the segmentation model
treated as an energy minimization problem solved through
solving partial differential equations (PDEs). Later on, this
model has been extended to multiphase problems and tex-
ture problems [31, 29]. Efficient solvers such as dual pro-
jection and graph cut methods have been introduced to im-

prove the computational efficiency [20]. The common chal-
lenges for these models are time-consuming. On the other
hand, supervised segmentation models based on feature ex-
traction and neural networks or support vector machines
also showed reasonable results. However, these models are
based on hand-craft features for the segmentation thus de-
pendent on the skills and experience of the researchers so
it’s limited applicability and result quality.

2.2. CNN-based Methods for Segmentation

As a class of deep neural networks, CNNs show remark-
able performance in many computer vision tasks, such as
classification, segmentation and registration. One of the
particular strength of CNN based models is that they work
in an end-to-end fashion, which can extract hierarchical and
multi-resolution features during the learning process. CNN
architectures like Alex-Net [14], VGG-Net [25], Google-
Net [26] and Dense-Net [9] have been developed and intro-
duced into various image recognition tasks. Broadly speak-
ing, CNN based segmentation models can be classified into
pixel-based or images-based approaches. The pixel-based
approaches will classify each pixel into different objects as
a classification problem. A patch is often produced for each
pixel (or super-pixel) and the patch is used as input to CNN
models for classification with the label of the pixel used
as the target to train the model [5]. The image-based ap-
proaches, such as U-Net [24], will make an image as input
and output will be the segmentation of the input image (the
size will be the same). U-Net like models have become pop-
ular because of its good performance and simplicity when
compared to pixel-wise approaches [28, 15, 12](Please sort
out these references). However, due to the lack of consider-
ation on outside the target so that small segmented objects
occur around the boundaries. In order to tackle this prob-
lem, a network based on Dense-Net called one hundred lay-
ers Tiramisu was proposed by Jégou et.al [12] making each
layer to connect with others in a feed-forward fashion for
encouraging extracted features to reuse and for strengthen-
ing feature propagation so that Dense-Net can reduce the
influence from outside features of targets. Dense-Net over-
comes this limitation of U-Net in various medical image
applications [15][12]. However, some researchers prove
that developing different loss functions is also able to im-
prove the performance of U-Net during the training process
[18, 27, 1]. Arif et.al [1] address the gap by introducing a
shape-aware term in the segmentation loss function. Their
approach significantly improved the performance of cervi-
cal X-ray images by 12%. Inspired by the recent progress
in loss function, we present a novel loss function borrowed
from the conventional model to further improve the segmen-
tation performance.
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2.3. Loss functions

To train a CNN model, the loss function (or cost func-
tion) plays a significant role. Loss function is a function
to measure the error of prediction or segmentation which
can be back propagated to previous layers in order to up-
date/optimize the weights. Here, we briefly review the
commonly used loss functions. In the following equations,
ground truth image (or expert annotation) and the prediction
(or segmentation) is denoted as T', P € [0, 1]™*" respec-
tively; n indexes each pixel value in image spatial space V;
the label of each class is written as [ in C classes.

Cross-Entropy (CE) Loss: CE is a widely used pixel-wise
measure [24] to evaluate the performance of classification
or segmentation model. For two-class problems, CE loss
function can be expressed as Binary-CE (BCE) loss func-
tion as follows:

Losspcogr(T,
1

HMZ “U

W log(Py) + (1=T,) -log(1 — P,)]

CE loss functions treat the output from softmax layer as a
pixel classification problem to evaluate each pixel. Ron-
neberger et al. [24] pointed out that in order to improve
the performance in cells’ border segmentation from bio-
medical images, CE loss function with weighting scheme
can be as one of the solutions to help U-Net model segments
cells border as accurately as possible. Moreover, there are
numerous studies on CE-based loss functions but merely a
few functions consider the geometric detail of objects [16].

Dice Coefficient (DC) Loss: DC is traditionally used as a
metric for the evaluation of the segmentation performance
and now also demonstrated a good performance as a loss
function [19]. DC measure the degree of overlapping be-
tween the reference and segmentation. This element-wise
measure ranges from O to 1 where a DC of 1 denotes per-
fect and complete overlap. DC can be defined as:

N
T, x P,
DT, Py = 2. 2zn=tTn X o) (1)
Zn:l(T’ﬂ + P’ﬂ)
DC loss is defined in Eq.(2) as it tends to the best segmen-
tation.

Losspc(T,P) =1—- DC(T, P) (2)

Even though CE and DC loss functions have achieved a suc-
cess in image segmentation, there are two main limitations:
they are pixel-wised loss functions to measure the similarity
between 1" and P, but the geometrical information are not
taken into consideration.

2.4. Active Contour Models

In this section, we provide some background knowl-
edge of the ACMs firstly proposed by Kass et al. [13].
ACM models treat segmentation as an energy minimiza-
tion problem where the energy of an active spline/contour
is minimized by PDEs-based methods toward the objects’
boundaries. In classic ACMs, detecting objects’ boundaries
is by image gradients. However, this has one main lim-
itation that it will be stuck at a local minimum. There-
fore, it cannot get satisfactory segmentation results. In
the past two decades, a number of ACMs have been pro-
posed, such as active contour without edge (ACWE) model
and fast global minimization-based active contour model
(FGM-ACM) proposed by Bresson et al. [3].

The ACWE model can be formulated as the following en-
ergy minimization problem:

min {ELACVE(Q, e, c0, )
Qc,c1,c2

Length(C)
= / ds
0

+/\/Q(c1 _ f(2))2da

+A (c2 — f(x))*dzx}, 3)

Q/Q.

where ds is the Euclidean element of length, the first term
of Eq.(3) is the length of the curve C, and f is the image to
be segmented, €, is a closed subset of the image f domain
Q). The mean value of f outside and inside are denoted as
c1 and ca, respectively. A is an arbitrary fixed parameter
(A > 0) to controls the balance between regularization pro-
cess and ¢y, co. The energy E{*“W¥ (3) can improve be-
cause it naturally adds more constraints including the con-
tour length than DC and CE loss function. In order to solve
the segmentation formulation, Heaviside function of level
set method and PDEs were introduced to decrease the en-
ergy E{{CWE  EACWE can be rewritten as follows:

acwn
E; (Qe,c1,62,N)

/ |VH ()| dux
3 [ Hio)er — so)Pac

+A H(—¢)(co — f(:z:))zdx} 4)

Q/Q.

where H. is a smooth approximation of the Heaviside
function. And the gradient descent method minimizing of
E4'CWE (4) is defined as:

8 = H.(¢) {dw (;Z) — /\7'1(37701»02)} ®)
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where 71 (2, ¢1,¢2) = (c1 — f(2))? — (co — f(x))? shown in
Eq.(5). However, PDEs-based solutions including ACWE
need to be solved on each individual image, which is time-
consuming. While they can give very good results, this
makes ACWE less suitable for application in clinical set-
tings where fast results, often as short as a few seconds, are
needed. In order to achieve global minimization fast and
stable, a FACYWE based on total variation energy 7'V was
proposed [3] which is defined as in Eq.(6):

ELCWE (y eq 0, \) = TV, (u) + )\/ ri(, c1, c2)udz

Q
(6)
where v is a characteristic function 1q,. TV, (u) is total
variation energy. Eq.(6) can also be written as:

Length(C)
EfCWE(u7 1,2, \) = / g|Vul|ds
0

Length

A / ((e1 = f(2))? = (2 — f(@)))ude (T)

Region

where,u is a characteristic function valued between 0 and 1.
EACWE(T) provides a global minimum for ACWE model.
Moreover, due to the limitation of the previous version
of ACWE model based on Heaviside function and PDEs-
based solutions, it provides a fast and non-stationary so-
lution while w is restricted from 0 and 1. And also, this
minimization problem of ACME to carry out segmentation
task is able to apply into the deep learning field as it is con-
strained and some parameters can be fixed due to super-
vised learning and some parameters can be treated as train-
able parameters to evaluate this minimization equation in an
end-to-end learning fashion. In the §3 we will present more
details of it.

3. Our Method

We propose a loss function inspired by the general idea
of active contour model building in region and length terms
for bio-medical image segmentation by U-Net-like based
deep learning architectures. The work-flow is displayed in
Figure 2. Our loss function denoted as AC, is in §3.1. Our
main CNN Architecture in §3.2 is introduced.

3.1. AC Loss Function

The idea of proposed AC loss is behind the minimization
problem of ACWE model (6) to efficiently find an active
contour which is a global minimization of active contour
energy for automated image segmentation. In the follow-
ing equations, ground truth (reference segmentation) and

the predicted value is denoted as v, u € [0, 1]™*™ respec-
tively. A 2-dimensional example of our AC loss function is
defined as follows:

Losspc = Length + A - Region, (8)

in which,
Length:/ |Vulds )
c

Region = / ((c1 — v)* = (c2 — v)?)udx (10)
Q
Therefore, Length and Area of Eq.(9) and Eq.(10) can be

written into pixel-wised way respectively as follows:

i=1,j=1

Length = Z

Q

(Vs )2+ (Vuy, )2 +e (1)

where,z and y from u,, ; and u,, , are horizontal and verti-
cal directions respectively. € (¢ > 0) is a parameter to avoid
square root is zero in practice.

i=1,j=1
> wijler —vij)?
Q

Region =

1,5=1
+ (1 —uyj)(c2 — Ui,j)2 (12)
Q
where, in the ACWE model 3, ¢; and ¢y are variable and
defined as follows:

c1 = [v-udzx/ [udzx
(13)
co=[v-(1—w)dz/ [(1—u)dx

due to supervised-learning framework, c; and co are rep-
resented as the energy of inside (foreground) and outside
(background) and can be simply defined as constants in ad-
vance as ¢; = 1 and ca = 0. u and v are represented as
prediction and a given image respectively. In practice, we
set € = 1079 as a small positive number to avoid the /0
issue in Tensorflow initialization. Therefore, we proposed
a new loss function building on the length of the boundary
segmentation contour and considering the region fitting for
not only has the same nature of non-convex from Eq.(7) but
also our new loss function is fit for shape preservation.

3.2. CNN Architecture

In this subsection, we detail and use U-Net [24] and
dense U-Net [24] architectures as our base segmentation
frameworks to evaluate our proposed loss function perfor-
mance. Recently, U-Net is proposed and widely used which
is an end-to-end and encoder-decoder neural network for se-
mantic segmentation with high precise results. As one of the
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Figure 2: Overview of our proposed method which takes the object’s area and length of the boundaries into account during

training.

essential building blocks is skipped connections which are
designed for forwarding feature maps from down-sampling
path to the up-sampling path in order to localize high res-
olution features to generate a segmentation output. In the
down-sampling path, each layer consists of two 33 convo-
lution layers, one rectified linear unit (ReLU) and one max
pooling layer. In the up-sampling path, every step includes
one 22 up-convolution layer, one concatenation operation
with related feature map by skipped connections and two
33 convolution layers. Overall, U-net network has 23 lay-
ers.

As CNNs based segmentation network going deeper, a
"gradient vanish" problem occurs. Therefore, to address
this problem, Dense block based U-Net, namely Dense-Net
[24], was proposed which allows each layer to connect di-
rectly other layers for preserving the feed-forward nature.
And also, parameters and extracted features from the net-
work are more efficient and are able to reuse. In Dense-
Net framework, a dense block layer, transition down and
transition up are introduced. A dense block layer consists
of Batch Normalization (BN), ReLU and a 3x3 convolu-
tion, in which these layers connect densely. The output of a
dense block is the concatenation of the outputs of the above
4 layers. In the down-sampling path, it consists of 38 lay-
ers. There are 15 and 38 layers in the bottleneck and up-
sampling path. In total, Dense-net network has 103 layers.

4. Experiments

We used U-Net and dense U-net as our two-class seg-
mentation CNN architectures and compare the final seg-
mented performance when using commonly used loss func-
tions CE and DC and our proposed AC loss function, re-
spectively.

4.1. Dataset

Therefore, we demonstrate our model on a publicly
available large-scale and multi-centre study cardiac mag-
netic resonance (CMR) images dataset. This dataset was
made available as which from a publicly available dataset:
MICCAI 2017 Automated Cardiac Diagnosis Challenge
(ACDC 2017 Challenge)'. The primary reason for this is
that it is always a challenging task to segment bio-medical
images as there are huge variations between images and
high reliability and accuracy are often required. The sec-
ondary reason for using CMR images is due to the pub-
lically availability which will allow reproducible research.
Third, CMR images play an important role to help patients
with heart disease in diagnosis as well as pre-/post-operative
planning. However, due to labour-consuming and sub-
jective biases suffered by human measurement, computer-
assisted diagnosis is demanded while there are only limited
studies for the development of accurate approaches for the
segmentation of cardiac CMR [28]. In total there are 150
volumetric MR image sequences of patients with cardiomy-
opathy acquired by two different MRI scanners. All the
1,891 Cine MR scans are re-sampled into 256 x 256 pixels.
The corresponding ground truth label maps are annotated
by a clinical expert team from the University Hospital of Di-
jon. In which, background, right ventricle, myocardium and
left ventricle for each ground truth image are labelled, re-
spectively. Example images and their corresponding ground
truth are shown in the first left columns of Figure 5. In
our experiment, the dataset is partitioned into three subsets:
training (1193), validation (298) and testing (400).

4.2. Performance Metrics

For quantitative assessment of the segmentation, Haus-
dorff distance (HD) are used for segmentation accuracy as-
sessment (smaller more better). HD is a symmetric measure

'ACDC 2017 Challenge https://acdc.creatis.insa-lyon.fr/
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Figure 3: Segmentation results of left ventricle (red), right ventricle (green) and myocardium (blue) of five examples images
using 2D U-Net and 2D Dense-Net with CE and our AC loss functions. From left to right, the example-original MR image,
ground truth, segmentation results by U-Net+CE, U-Net+AC, Dense-Net+CE and Dense-Net+AC are shown respectively.

of distance between two contours and is defined as [23]:

Dy (T, P) = max {sup inf d(T, P), sup tin:fr d(T, P)

teT PEP peP t€
(14)
where T', P € [0, 1]™>™ are the ground truth contour and
the predicted contour respectively, ¢ and p represent pixels

of T and P, d(t, p) is Euclidean distance between ¢ and p.

5. Results

We implemented our networks using Keras 1.1.0 with
Tensorflow_gpu 1.10 as backend. We trained our models
until convergence by using the ADAM optimizer with a

11637



learning rate of 10~%. All the experiments were performed
using an Intel CPU, and a NVIDIA TitanX GPU. Upon ac-
ceptance of the manuscript, our trained models will be made
available online at https://github.com/xuuuuuuchen/AC-
loss. In Figure 3, segmentation results of left ventricle,
right ventricle and myocardium of five examples images us-
ing 2D U-Net and 2D Dense-Net with CE and our AC loss
functions are displayed respectively.

5.1. Performance

Table.1 showed the comparison results for the segmen-
tation of left ventricle, right ventricle and myocardium
between U-Net and Dense-Net when either CE or our
AC loss function was used. The proposed approaches
U-Net-AC has improved HD than U-Net-CE, so do Dense-
Net+AC. As such we used the results of Dense-Net+AC
for the comparative studies with previous studies. As
shown in Table.1, our AC loss function based on Dense-Net
(Dense-Net+AC) model achieves better results than others
for all the segmentation tasks. The HD is 33.8%, 46.5%
and 37.7% higher for the segmentation of left ventricle,
right ventricle and myocardium respectively.

In Table.2, it presents that comparison with U-Net and
Dense-Net with CE loss function and our AC loss function.
In which, left ventricle, right ventricle and myocardium are
listed at the top respectively. We use DC and HD for eval-
uating the performance. The proposed approaches U-Net-
AC, as well as Dense-Net+AC, are compared against gen-
eral segmentation frameworks: U-Net and Dense-Net with
CE loss function. In Figure 4, the computing time per epoch
for AC is 110s, shorter than CE at 121s, during training for
DenseNet. For UNet, AC takes 15s while CE takes 17s.
For testing, it takes almost the same time when the same
network is used.

Figure 4: Running time per epoch for AC and CE loss func-
tions within different models

5.2. Robustness Analysis

We evaluated the effect of the regularization weight A
in our AC loss function Eq.(8) by DC score. As shown in
the Figure 5, our DenseNet-based model is robust to the
choice of A with different A values. When A is close to
zero, the DC result tends to be worse because only bound-
ary term contributes to our loss function. We aslo evaluated
the DenseNet-based model with region terms only under the
same conditions compared with Dense-CE model. The per-
formance (Dice Score) for this is 0.9634, worse than AC
(0.9708) but better than CE (0.9442).

Figure 5: Effect of varying the parameter A on DC score

6. Discussion

Our proposed method AC loss function is able to
take into account geometric information of the areas be
segmented. We present two basic segmentation models
U-Net and Dense-Net as a base to prove that our proposed
loss function is robust in mainstream architectures. Our
results also demonstrate that our model of loss function
performs signicantly better than commonly used loss
functions such as CE and DC when we test on a public MR
ventricle dataset. Our results also demonstrate superior per-
formance when compared to other start-of-art segmentation
approaches. Compare to standard ACWE models which
require iteration in solving PDEs, the use of CNNs have
hugely reduced the computational time on new images
although the training time will be longer.

We tested different values of the regularization weight A
to show this loss function is robust. In future work, we will
investigate how to make A can be learned during the train-
ing process. Similar to CE and DC that can be extended to
multi-class segmentation problems [22], the proposed loss
function can also be extended to solve multi-phase segmen-
tation problems as the traditional ACM have demonstrated
[32].
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