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Abstract

In this paper, we raise a new problem, namely cross

model face recognition (CMFR), which has considerable

economic and social significance. The core of this problem

is to make features extracted from different models compa-

rable. However, the diversity, mainly caused by different

application scenarios, frequent version updating, and all

sorts of service platforms, obstructs interaction among dif-

ferent models and poses a great challenge. To solve this

problem, from the perspective of Bayesian modelling, we

propose R3 Adversarial Network (R3AN) which consists of

three paths: Reconstruction, Representation and Regres-

sion. We also introduce adversarial learning into the re-

construction path for better performance. Comprehensive

experiments on public datasets demonstrate the feasibility

of interaction among different models with the proposed

framework. When updating the gallery, R3AN conducts the

feature transformation nearly 10 times faster than ResNet-

101. Meanwhile, the transformed feature distribution is

very close to that of target model, and its error rate is in-

credibly reduced by approximately 75% compared with a

naive transformation model. Furthermore, we show that

face feature can be deciphered into original face image

roughly by the reconstruction path, which may give valu-

able hints for improving the original face recognition mod-

els.

1. Introduction

Face recognition models, due to their superior perfor-

mance, have been widely applied in practical applications.

Currently, face recognition approaches generally learn face

representations through a cascade of blocks of several pro-

cessing units for feature extraction [27, 25, 28, 26, 29, 24].

The trained systems successfully obtain generalization abil-

ity by embedding the input images into a feature space,

where features are clustered in a sufficiently low intra-

subject variation as well as high inter-subject variation.

∗Contributed equally to this work.

Figure 1: The application of cross model face recognition.

Meanwhile, pursuing interaction between information

collected from various terminals is a new trend. Our daily

life quality would be greatly heightened and safety in so-

ciety would be ensured if practical connections among the

images obtained from different scenarios, such as mobile

devices, entrance guards and video surveillance, can be es-

tablished, as shown in Fig. 1. This new kind of application

has brought forth a new problem called cross model face

recognition (CMFR), which is defined as recognizing fea-

ture extracted from one model with another model’s gallery.

On the other hand, feature space is highly related to the

corresponding model. As shown in Fig. 2, features learned

by different systems often lie in diverse distributions, caus-

ing boundaries between different models that obstruct the

interaction of their features. Therefore, as the feature distri-

bution varies a lot, direct CMFR usually makes no sense.

Uploading all the captured face images to the server and

using an unified model to extract features seems to be an

alternative solution. However, following reasons reject this

method:

• Single model lacks the ability to achieve satisfactory

performance when various domains, applications and

response time requirement are taken into account.

• It violates privacy policy in common sense. Uploading

and storing user’s face images are generally forbidden

in industrial community.

Another solution is to model a mapping function from

one model’s feature space to another. However this map-
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Figure 2: The feature distributions of two typical face

recognition models.(a), (b) and (c) are feature distribution

of source model, transformation model and target model,

respectively.

ping function is difficult to build, especially when consid-

ering the diversity of face recognition models, including

structure, parameter amount, application scenarios, and etc.

Additionally, another challenge lies in the requirement that

the mapping operation should be fast enough to conduct the

transformation of millions of features within a short period.

A slow model would be pointless as it shows no superi-

ority comparing with extracting features via target model

directly.

Based on the above discussion, we propose R3 Adversar-

ial Network (R3AN) to solve this problem. R3AN consists

of three paths: reconstruction, representation and regres-

sion. Adversarial learning is introduced into the reconstruc-

tion path for better performance. To evaluate the proposed

method, we conduct systematic experiments of R3AN on

a wide range of typical and efficient deep neural networks.

R3AN allows us to query feature extracted by source model

in target system meaningfully, and vice versa. Comprehen-

sive experiments on public datasets demonstrate the feasi-

bility of interaction among different models with the pro-

posed framework. When updating the gallery, R3AN con-

ducts the feature transformation nearly 10 times faster than

ResNet-101 [9]. Meanwhile, the transformed feature distri-

bution is very close to that of target model, and its error rate

is incredibly reduced by approximately 75% compared with

a naive transformation model.

Utilizing R3AN to overcome such obstacles is meaning-

ful in practical applications and reasons are listed as below.

First, R3AN enables us to break the boundaries of different

models from various terminals, for example, querying in

one system with the feature that is extracted from another

system. Second, for the sake of privacy protection, original

images may not be stored in gallery. Gathering the set of

images again is prohibitive when updating models. How-

ever, R3AN merely updates features, which avoids storing

face images. Third, constructing feature gallery from raw

images is time consuming when updating is required, and

storing images also requires huge storage cost. In contrast,

R3AN only transforms features from old to new with little

cost, and storage of features is much more efficient.

Our contribution lies in three aspects:

• We raise the CMFR problem for the first time, which

possesses considerable economic and social signifi-

cance.

• To address this issue, we propose R3AN, which has

the capability of transforming feature distribution of

source model into its counterpart of target model.

R3AN is super fast and valid when solving this prob-

lem.

• We illustrate that face feature can be roughly decoded

into original image. Adversarial learning greatly im-

proves the performance of R3AN and recovers higher

quality face image, which may give valuable hints for

improving the original face recognition models.

2. Related Works

2.1. Transfer Learning

The essential of CMFR problem is to transform the fea-

ture distribution of the source model to that of the target

model, which can be considered as a typical transfer learn-

ing problem [19, 31, 12, 22, 3, 15, 18]. In many real-

world applications, the training and future data are usually

drawn from different distributions. Transfer learning has

emerged as a learning framework to bridge the gap between

them. According to [19], approaches to transfer learning

can be summarized into four cases: instance-transfer ap-

proach [31, 12], feature-representation-transfer approach

[22, 3], parameter-transfer approach [15], and relational-

knowledge-transfer [18].

Although these works can transform the model from

the source domain to the target domain and successfully

boost the performance, most of them concentrate on learn-

ing a well-performed model on a different target data dis-

tribution from a trained one of source domain. Whereas

in our problem, it is required to learn an effective feature

transformation between two different feature spaces with-

out affecting original distribution. Feature-representation-

transfer approach [22, 3] is closest to our problem. How-

ever, it aims at finding common feature representation be-

tween two domains, different from our goal of finding a

mapping from source model to target model.

2.2. Generative Adversarial Nets

Generative Adversarial Net (GAN) is firstly proposed in

[6], which consists of two models: a generative model G
and a discriminative model D. G manages to transform in-

put data into a verisimilar sample, while D estimates the

probability that a sample came from real world rather than

generated by G. A minimax two-player game is the essen-

tial of GAN. One typical application of GAN is to transform
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Figure 3: The architecture of R3AN is shown. Reconstruction path, within the blue frame, is supervised by a L2 Loss (LRec)

and Adversarial Loss (LAdv), and transforms source features into a face image. Representation path, encompassed by green

box in figure, extracts features from images, no matter from real world or generated, and a L2 Loss (LRep). Regression path

shares weights with the other two paths and a L2 Loss (LReg) is adopted to allow the whole system to acquire the ability of

transforming source features to target features.

a 1-D vector into a 2-D image. Besides, there are many

other brilliant works [21, 7, 2, 17] derive from [6].

However, the input of these models are usually random

vectors without unique encoding, i.e. there exists no strict

one-to-one mapping constraint between the input and the

output image. In our reconstruction path, we investigate the

feasibility of generating the original face image from the

corresponding extracted feature. Recently, Zachary et al.

[16] show that generator’s output can be inverted to original

latent space. This research reveals the feasibility of trans-

formation between feature and image, and gives inspiration

to the design of reconstruction path in our work to some

extent.

3. Rationale

3.1. Basic Model

The cross model face recognition (CMFR) problem is

defined as recognizing feature extracted from one model

with another model’s gallery. The core to solve the CMFR

problem is to make features extracted from different mod-

els comparable. Ideally, features extracted by two models

are the same. In order to achieve this target, transforming

the space of the source model to that of the target feature

is a natural scheme. In this way, if we denote X , Y as

the source and target feature, the goal of our system is to

find a mapping function to maximize the conditional prob-

ability P (Y |X). From this perspective, we could map X

to Y in one-dimensional space directly by a naive model

like a multi-layer perception (MLP). However, this basic

model yields unsatisfactory results, which will be illustrated

in Section 5.

3.2. Bayesian based Model

We further model our problem from the view of

Bayesian, to make it more reasonable and effective. By in-

troducing a class of latent variables h ∈ H = {h1, ...hK},
P (Y |X) can be expressed as follows:

P (Y |X) =
∑

h∈H

P (h|X)P (Y |X, h). (1)

From the head-to-tail view of Bayesian modeling, X and

Y is conditionally independent when h is given. Therefore,

Eq. 1 can be simplified as:

P (Y |X) =
∑

h∈H

P (h|X)P (Y |h). (2)

In our problem, h should be a latent variable independent

of models. So, the original image I is a good choice. Then,

Eq. 2 can be rewritten as:

P (Y |X) = P (I|X)P (Y |I) (3)

Based on the theorem above, we propose a novel frame-

work, R3AN, to transform face representations between dif-

ferent feature spaces.

4. R3 Adversarial Network

In order to keep consistency with Eq. 3, R3AN is de-

signed to consists of three paths, i.e., Reconstruction, Rep-

resentation and Regression respectively, as shown in Fig. 3.

Reconstruction corresponds to P (I|X) in Eq. 3, which is

used to recover the original image, while Representation
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corresponds to P (Y |I), which is adopted to extract fea-

ture from latent face images. Regression views reconstruc-

tion and representation as a unified problem, and is used to

jointly optimize the whole model. In the following, we will

elaborate the framework.

4.1. Reconstruction Path

In order to maximize the conditional probability

P (I|X) in Eq. 3, we design a reconstruction path to re-

cover the original images. As this module aims to restore

original face images from extracted features, it can be re-

garded as a generator (G).

For fast transformation, we adopt a lightweight architec-

ture based on the fractional-strided convolutions, as shown

in the upper part of Tab. 1. The topology is inspired from the

one in [21]. First, the normalized high level representation

is reshaped into a tensor of 4 dimensions, which are batch,

channel, height and width, respectively. In other words, nor-

malized input feature would be copied into the channel di-

mension of a tensor, whose height and width dimensions are

left to be 1. Then a cascade of fractional-strided convolution

layers upsample this high level representation to generate a

restored face image.

The reconstruction path is optimized by the ground truth

of corresponding face images. There are two modes of re-

construction mode in this paper, named as naive reconstruc-

tion and adversarial reconstruction.

Naive Reconstruction In order to recover the original

face images as real as possible, we evaluate similarity of

the generated face images and the real ones in a traditional

manner by L2 loss. So, the reconstruction loss can be for-

mulated as follows:

LRec(G) = EX,I [||I −G (X)||2] , (4)

However, as we all know, it is tough to recover an im-

age with sufficient detail from small-scale feature because

much trivial information is dropped during the representa-

tion learning process. Thus, demanding the generated im-

age to be as close to the real ones as possible may result in

a blurry averaged image, which lacks of many significant

details of face. To alleviate this difficult problem, we could

resort to adversarial reconstruction.

Adversarial Reconstruction In face representation

learning task, the identity knowledge is embedded in the

distribution of images. To recover these primary informa-

tion, we enhance the reconstruction path by introducing ad-

versarial learning. The method of adversarial learning, first

proposed in [6], is powerful to model complex data dis-

tributions. It is applied to learn the distribution of images

from uniform distribution in [21] and transform pictures to

a specific distribution in [13]. Inspired by these works, we

adopt this method to encourage the generator G to learn the

Module Layer Operator Output Size

Generator

Input – 256× 1× 1

fConv1 ConvTranspose2d 512× 4× 4

fConv2 ConvTranspose2d 128× 7× 7

fConv3 ConvTranspose2d 32×14×14

fConv4 ConvTranspose2d 8×28×28

fConv5 ConvTranspose2d 3×56×56

Extractor

Conv1 bottleneck 32×28×28

Conv2 bottleneck 64×14×14

Conv3 bottleneck 96×14×14

Conv4 bottleneck 160× 7× 7

Conv5 bottleneck 320× 7× 7

Conv6 Conv2d 1×1 1280× 7× 7

Pooling AvgPool2d 1280× 1× 1

FC Fully Connection 256× 1× 1

Discriminator

Conv1 Conv2d 4×28×28

Conv2 Conv2d 8×14×14

Conv3 Conv2d 16×7×7

Conv4 Conv2d 32×4×4

Conv5 Conv2d 64×2×2

Conv6 Conv2d 128×1×1

FC Fully Connection 1

Table 1: Architerture of the generator, extractor and dis-

criminator. The output sizes are described in channels ×
height × width. The ConvTranspose2d means fractional-

strided convolution, and bottleneck represents convolutional

bottleneck block in [23].

particular characteristics of face images from feature rep-

resentation. In this work, we construct a discriminator D,

whose structure is shown in Tab. 1, to distinguish the gen-

erated images from real faces, while G tries to confuse D
by producing images with higher quality. Learning in this

case, the loss function for adversarial learning is logistic

likelihood:

LD(G,D) =EI [log (D (I))]

+ EX [log (1−D (G (X)))] (5)

LAdv(G,D) =− EX [log (1−D (G (X)))] . (6)

By merging the Eq. 4 and 6, the overall loss is

LG(G,D) =λRecLRec(G) + λAdvLAdv(G,D). (7)

4.2. Representation Path

Representation path is used to maximize P (Y |I) of

Eq. 3. In the ideal case, the reconstructed images are in-

finitely close to the real images. Therefore, based on this

assumption, representation path acts as an feature extractor,
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denoted as E. It takes the original face images as input and

learns representation of the target model.

Taking the time costs and computational resources into

account, we adopt the convolution-based inverted residual

structure [23]. Knowledge is gathered through stack of

convolutional blocks and the final high-level representation

of input face image is formed at the top of the extraction

module, as shown in the lower part of Tab. 1.

As Y denotes the feature of the target model. The rep-

resentation path can be also considered as a knowledge dis-

tiller, which can transfer the knowledge of the target model

to the feature extractor module. For a teacher-student based

knowledge distillation framework, many sophisticated loss

functions have been proposed [10, 1]. Considering the gen-

eralization of our method, we adopt the simple L2 distance

loss to supervise the training process of this module as fol-

lows:

LRep(E) = EI,Y [||Y − E (I)||2] . (8)

4.3. Regression Path

Practically, the original face image I , as a latent variable

of Eq. 3, can not be fully recovered by G. Therefore, it

is necessary to synchronize the G and E in our feature-to-

feature learning framework. The regression path, shown in

Fig. 3, combines reconstruction and representation together

into a unified framework, and is used to jointly optimize the

above two path. Since the ultimate problem to be settled is

to map one feature to another, the regression loss exists in a

simple form of L2 distance and can be expressed as:

LReg(G,E) = EX,Y [||Y − E (G (X))||2] . (9)

4.4. Optimization

Considering all of above, the final optimization goal of

the whole system is:

(G∗,E∗) = argmin
G,E

max
D

[λRecLRec(G) + λAdvLAdv(G,D)

+ λRegLReg(G,E)] + λRepLRep(E). (10)

For better performance, we optimize the framework in

an iterative process, as shown in Algorithm 1. The training

procedure can be divided into three stages. First, with joint

loss of naive and adversarial reconstruction, G is optimized

by playing the minimax game with D. Then, we train the E
via a typical representation learning process, while taking

real images I as input and target feature Y as ground truth.

Finally, we take advantage of joint training to complete the

global optimization for G and E. To be emphasized, after

the system optimized, the G and E can be later reused for

representation mapping.

Algorithm 1 R3AN Optimization

Input: Dataset (x,y) ∈ (X,Y ), i ∈ I , randomly initial-

ized the generator G , extractor E and discriminator D
parameterized by θg, θe, θd

Output: the optimized G, E and D parameterized by

θ̂g, θ̂e, θ̂d
1: Random initialize G, E and D
2: repeat

3: for number of training epochs do

4: for number of mini-batches do

5: // for discriminator D

6: θd ← θd − µ
∂LD(X,I;θg,θd)

∂θd

7: // for generator G

8: θg ← θg − µ
∂LG(X,I;θg,θd)

∂θg

9: // for extractor E

10: θe ← θe − µ
∂LRep(I,Y ;θe)

∂θe
11: // for generator G and extractor E

12: (θg, θe)← (θg, θe)− µ
∂LReg(X,Y ;θg,θe)

∂(θg,θe)

13: end for

14: end for

15: until convergence, got θ̂g = θg , θ̂e = θe, θ̂d = θd
16: return θ̂g, θ̂e, θ̂d

5. Experiments

To confirm the advantages of our framework, we de-

sign experiments on CMFR, where probe features from one

model are taken to query in the gallery features from another

model by a one-to-many mode. We first train several typical

networks to learn face representation as prior models. Then

we set pairs of source-target models from the prior models

and train the transformation model to break the boundary

within those pairs. Finally, we evaluate our R3AN in vari-

ous conditions of sub-modules, prior models and datasets to

systematically study its performance. All experiments are

implemented on the platform of PyTorch [20] with batch

size 512 for all cases. Besides, we test the speed of R3AN

on Nvidia Tesla V100 and find it is 10 times faster than

ResNet-101.

5.1. Experiments on Prior Models

We establish baselines of face recognition on several ad-

vanced and effective architectures [9, 32, 11, 23], as prior

models, based on the criterion of ArcFace [5] with m = 0.5.

All input RGB face images are cropped in the size of

110×110 and resized to 224×224, except for PolyNet as

235 × 235, while each pixel is normalized to [−1.6, 1.6].
Outputs before the last classifier, which are taken as face

representation for the following CMFR experiments, keep

the dimension of 256. The learning rate is started from

0.1 and divided by 10 at the 100k, 140k, 160k iterations,
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while momentum is 0.9 and weight decay is 5e−4. The

training is terminated at the iteration of 200k. Based on

the above settings, we implement experiments on training

datasets of MS-Celeb-1M [8] and VGG2-Face [4] and eval-

uate on MegaFace [14]. Finally, we evaluate models’ identi-

fication capability by querying between their own probe and

gallery feature sets. The results of evaluation are presented

in Tab. 2.

Networks Abbreviation Top1 Acc

MobileNetV2(T=6) [23] Mb-6 92.84

MobileNetV2(T=10) [23] Mb-10 93.94

MobileNetV2(T=16) [23] Mb-16 94.29

ResNet-50 [9] Res50 97.48

ResNet-101 [9] Res101 98.12

DenseNet121 [11] Dns121 97.45

DenseNet161 [11] Dns161 97.70

PolyNetE [32] Poly 98.46

Table 2: Identification results of different models on

MegaFace dataset. ‘Top1 Acc’ refers to the top-1 face iden-

tification accuracy rate with 1M distractors.

5.2. Experiments on Cross Model Face Recognition

To explore the capability for boundary breaking of the

proposed R3AN framework, we implement CMFR experi-

ments between prior models. First, we select a pair of prior

models as source and target. Meanwhile, their face repre-

sentations are taken as input and ground truth, respectively.

Besides, the corresponding original face images are taken as

supervised signals to guide the reconstruction path. How-

ever, different from input images of prior models, these im-

ages are resized to 56 × 56 to make it easier for reconstruc-

tion. Then, we train the R3AN with learning rate starting

from 0.08 and divided by 10 at the 60k, 100k ,140k itera-

tions. The training, with momentum of 0.9 and weight de-

cay of 1e−3, is terminated at the iteration of 200k. Finally,

we evaluate the performance by taking R3AN to transform

the probe set of source model to a new distribution and

query in the gallery set of target model, if not specifically

stated.

Effects on different paths in R3AN Since there are 3

paths in architecture of a complete R3AN, we need to verify

the effectiveness of paths. Taking MobileNetV2 as source

model and ResNet-101 as target model, we design differ-

ent topologies with various combination of paths to con-

duct the feature transformation. The results on CMFR ex-

periment are listed in Tab. 3. First, we find that the per-

formance of ‘Arch3’ is much better than both ‘Arch1’ and

‘Arch2’, which are composed of reconstruction and repre-

sentation paths. This phenomenon shows the necessity of

Architecture
Rec

Adv

Rec

L2

Rep

L2

Reg

L2

Top1

Accuracy

FC × × × × 83.92

Arch1 × X X × 85.65

Arch2 X × X × 83.41

Arch3 × × × X 94.05

Arch4 × X × X 94.21

Arch5 × X X X 94.93

Arch6 X × × X 94.80

Arch7 × × X X NAN

R3AN X X X X 95.97

Table 3: Identification results of CMFR between Mo-

bileNetV2 (T=6) and ResNet-101 based on different archi-

tectures. Each row in this table is an architecture, and each

column means a specific training process. The ‘X’ and ‘×’

represent for whether the architecture contains the process

or not. ‘Rec:Adv’ and ‘Rec:L2’ means optimizing the gen-

erator by adversarial loss or L2 loss; ‘Rep:L2’ is extrac-

tor’s optimization; ‘Reg:L2’ represents the regression path.

‘Top1 Accuracy’ refers to the top-1 face identification ac-

curacy rate with 1M distractors.

synchronizing the other two paths, as the original face im-

age cannot be completely recoverd. Second, it can be seen

that by introducing naive reconstruction path to ‘Arch4’ is

slightly elevated. By further introducing the representation

path, the accuracy is heightened again, reaching 94.93%

at this time (‘Arch5’). Moreover, given the great success

of adversarial learning, we integrate it into the framework,

and this combination increases the top1 accuracy to 94.80%

(‘Arch6’ in Tab. 3). Finally, when all the three paths are

employed, R3AN’s capability reaches its summit in our ex-

periments. The highest top1 accuracy of R3AN is 95.97%,

outperforming all the architetures mentioned above.

It should be mentioned that we find that the network is

hard to converge (‘Arch7’), if we only adopt representation

and regression path in the system. We conjecture that the

distributions learned by the two parts are quite different if

there is no constrains on the mid-level supervision of origi-

nal images. Therefore, it is of great importance to integrate

the reconstruction path into the system.

Comparison with naive model As mentioned in Sec-

tion 3.1, naive transformation model such as MLP can be

used conduct feature transformation as well. Results of an

MLP (FC) with equivalent number of parameters to R3AN

is shown in Tab. 3. The comparison between them evidently

verify the superiority of R3AN, which can reduce the error

rate by 75%.

Performance on different prior models Source and tar-

get prior model pairs can be mainly divided into four cate-

gories by model size, which are small-to-small, small-to-
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Src Tgt Training Set Src Tgt FC|Tgt R3AN|Tgt

Mb-6 Mb-16
MS1M&VGG2 92.84 94.29 83.54 94.18

IMDB 92.84 94.29 80.02 93.78

Mb-6 Res101
MS1M&VGG2 92.84 98.12 83.92 95.97

IMDB 92.84 98.12 81.57 94.84

Poly Mb-6
MS1M&VGG2 98.46 92.84 88.51 98.34

IMDB 98.46 92.84 84.66 98.13

Res50 Poly
MS1M&VGG2 97.48 98.46 87.24 98.29

IMDB 97.48 98.46 83.71 98.16

Table 4: Results of CMFR with R3AN trained on extra dataset. We use proposed models to map distribution of ‘Src’ (source

model) to the distribution ‘Tgt’ (target model). The evaluation is established by taking the learned representation from the

left model of ‘|’ as probe and right model’s output as gallery. ‘FC’ and ‘R3AN’ refers to the architecture in the first and last

row of Tab. 3. Results are the top-1 face identification accuracy rates with 1M distractors.

large, large-to-small and large-to-large, as shown in Tab. 5.

In order to evaluate the effectiveness and generalization of

R3AN, we designed a series of experiments on different

cases. First, with the help of three paths, R3AN performs

better than base architecture in all cases, and average im-

provements from base model are 10.50%, 12.45%, 9.99%,

and 9.58% respectively. Second, when querying generated

features in target gallery, the results are not inferior to the

results of querying features generated by target model. The

superiority is obvious on all pairs of source and target mod-

els regardless their scales, confirming the generalization

ability of R3AN.

The second and the last parts in Tab. 5 are quite close to

practical application, so it is worthwhile to elaborate them.

The first part matches the scenario of cloud-query. Trans-

forming the feature on local devices with R3AN and query-

ing on the cloud is able to decrease 64% error rate at most,

compared with directly querying on local devices. On the

other hand, the last part imitates large models updating. In

this case, R3AN performs well that the results of transfor-

mation are lower than the results of normal model updat-

ing with only 0.03% on average. Besides, we find that

huge structure difference between source model and target

model, e.g. ResNet-50 and PolyNetE, never negatively af-

fect the performance of R3AN.

Effects on the domain of training samples We discuss

whether R3AN is senstitive to the domain of training sam-

ples. We train R3AN with IMDb-Face [30] dataset rather

than MS-Celeb-1M and VGG2-Face and evaluate in the

same way as the above experiment. From the results in

Tab. 4, we can see that though trained on datasets of dif-

ferent domains, R3AN can also perform well in CMFR.

This conclusion demonstrate that it is convenient for off-

site training with our method.

Feasibility of gallery transformation Except for the

transformation of probe sets, gallery updating also has

broad application and practical value. Therefore, we evalu-

ate R3AN on CMFR experiments with gallery distribution

transformed to that of the target model. From Tab. 6, we

Src Tgt Src Tgt FC|Tgt R3AN|Tgt

Mb-6 Mb-10 92.84 93.94 83.66 94.36

Mb-10 Mb-6 93.94 92.84 84.17 94.69

Mb-6 Mb-16 92.84 94.29 83.54 94.18

Mb-10 Mb-16 93.94 94.29 84.19 94.33

Mb-6 Res50 92.84 97.48 83.78 94.48

Mb-6 Res101 92.84 98.12 83.92 95.97

Mb-6 Poly 92.84 98.46 82.92 97.44

Mb-6 Dns161 92.84 97.70 82.95 95.66

Res50 Mb-6 97.48 92.84 87.49 97.60

Res101 Mb-6 98.12 92.84 88.17 98.19

Poly Mb-6 98.46 92.84 88.51 98.34

Dns161 Mb-6 97.70 92.84 87.63 97.64

Res50 Res101 97.48 98.12 89.29 97.69

Res101 Res50 98.12 97.48 89.38 97.86

Dns121 Dns161 97.45 97.70 87.41 97.81

Res50 Poly 97.48 98.46 87.24 98.29

Table 5: Results of CMFR among different prior mod-

els. We use proposed models to map distribution of ‘Src’

(source model) to the distribution ‘Tgt’ (target model). The

evaluation is established by taking the learned representa-

tion from the left model of ‘|’ as probe and right model’s

output as gallery. ‘FC’ and ‘R3AN’ refers to the architec-

ture in the first and last row of Tab. 3. Results are the top-1

face identification accuracy rates with 1M distractors.

can see that R3AN can even achieve higher accuracy than

target models by about 1.3% when transform PolyNetE to

MobileNetV2. And for the other three experiments, R3AN

can transform the source model to the target with almost no

accuracy decline. Considering that the gallery usually con-

tains millioins of people, it would take much less time to

update the gallery with R3AN (10 times faster than ResNet-

101), compared with the original target model.

9874



Src Tgt Src Tgt Tgt|FC Tgt|R3AN

Mb-6 Mb-16 92.84 94.29 84.17 94.23

Mb-6 Res101 92.84 98.12 88.38 97.37

Poly Mb-6 98.46 92.84 80.79 94.16

Res50 Poly 97.48 98.46 88.67 98.40

Table 6: Results of CMFR with gallery transformation. We

use proposed models to map distribution of ‘Source Model’

to the distribution ‘Target Model’. The evaluation is es-

tablished by taking the learned representation from the left

model of ‘|’ as probe and right model’s output as gallery.

‘FC’ and ‘R3AN’ refers to the architecture in the first and

last row of Tab. 3. Results are the top-1 face identification

accuracy rates with 1M distractors.

5.3. Visualization

In addition to numerical results, we also display the pair

of real images and reconstructed face images from genera-

tor in R3AN, as shown in Fig. 4. From Fig. 4a, it can be

seen that the generator can almost recover the original face

from specific feature. Though the generated images may be

blurry, they contain plenty of knowledge for face identifi-

(a) Normal

(b) Same person

(c) Occlusion

(d) Lighting

Figure 4: The visualization of real faces and generated im-

ages from generator. Real faces are on the left, and gener-

ated images are on the right.

cation. For the same identity, though face photos differ in

pose, brightness, expression and hair style, we can generate

almost same images, as shown in Fig. 4b. To our surprise,

except for retaining essential face representations the gener-

ator can even remove interference information, such as the

images in Fig. 4c. Besides, though images in Fig. 4d are in

abnormal illumination, generated images are adjusted to a

natural hue.

Furthermore, to visualize the feature distribution of

source, target and transformation models, we randomly se-

lect 10 classes of subjects and plot their feature in 2D plain.

In Fig. 5, source, transformation and target model are plot-

ted from left to right in each rows. It can be seen, the R3AN

maps feature distribution from source model to the target

model.

MobileNetV2(T=6) R3AN PolyNetE

MobileNetV2(T=6)R3ANPolyNetE

MobileNetV2(T=10)R3ANMobileNetV2(T=6)

ResNet-50 R3AN PolyNetE

Figure 5: The visualization of feature distribution. From

left to right in each row, images of distribution are from

source model, R3AN and target model, respectively.

6. Conclusion

In this paper, we raise a new challenging problem called

cross model face recognition (CMFR), which is defined as

making features extracted from different models compara-

ble. To solve this problem, from the perspective of Bayesian

modelling, we propose R3 Adversarial Network, which can

transform the feature distribution of source model to that

of target model. Experimental results on public datasets

demonstrate the feasibility of interaction between different

models.
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