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Abstract

Neural Architecture Search (NAS) is an important yet

challenging task in network design due to its high compu-

tational consumption. To address this issue, we propose the

Reinforced Evolutionary Neural Architecture Search (RE-

NAS), which is an evolutionary method with reinforced mu-

tation for NAS. Our method integrates reinforced mutation

into an evolution algorithm for neural architecture explo-

ration, in which a mutation controller is introduced to learn

the effects of slight modifications and make mutation ac-

tions. The reinforced mutation controller guides the model

population to evolve efficiently. Furthermore, as child mod-

els can inherit parameters from their parents during evo-

lution, our method requires very limited computational re-

sources. In experiments, we conduct the proposed search

method on CIFAR-10 and obtain a powerful network archi-

tecture, RENASNet. This architecture achieves a competi-

tive result on CIFAR-10. The explored network architecture

is transferable to ImageNet and achieves a new state-of-the-

art accuracy, i.e., 75.7% top-1 accuracy with 5.36M param-

eters on mobile ImageNet. We further test its performance

on semantic segmentation with DeepLabv3 on the PASCAL

VOC. RENASNet outperforms MobileNet-v1, MobileNet-v2

and NASNet. It achieves 75.83% mIOU without being pre-

trained on COCO.

1. Introduction

Recent several years have witnessed the great success

of neural networks [34, 14, 35, 33, 17] in tackling various

challenging tasks, e.g., image classification, object detec-

tion and semantic segmentation. However, designing hand-

crafted neural networks is still a laborious task due to the

heavy reliance on expert experience and large amount of

trials. For example, hundreds of experts in academia and

industry have made great efforts to optimize the architec-

tures of neural networks that increase the top-5 accuracy

to 96.43% on the ImageNet challenge from AlexNet [20],

VGG [31], Inception [34] to ResNet [14].

Techniques in automated network architecture design

have attracted increasing research interests. Many neural

architecture search methods have been proposed and proven

to be capable of yielding high-performance models. A

large portion of these methods are based on Reinforcement

Learning (RL) [41, 3, 40]. Typical RL-based NAS methods

construct networks sequentially, e.g., by using a RNN con-

troller [41, 27, 40] to determine a sequence of operator and

connection tokens. In addition to RL, Evolution Algorithm

(EA) is also employed in many works [28, 32, 29, 25, 36].

In EA-based NAS methods, a population of architectures

are initialized first and then evolved with their validation

accuracies as fitnesses.

EA and RL have achieved the state-of-the-art perfor-

mance in the task of NAS. However, both of them have

limitations respectively: 1) For EA-based NAS, it tends

to evolve a population of architectures that guarantees the

diversity of potential results. However, as the evolution

progress relies heavily on random uncontrollable mutation,

the efficiency of EA has no guarantee. For instance, Amoe-

baNet [28] is searched by an EA-based method and has bet-

ter final results than its RL counterpart, NASNet [41]. But

in the same search space, AmoebaNet [28] uses more com-

putational resources than NASNet [41] (3150 GPU days vs

2000 GPU days). 2) For RL-based NAS, it relies on hyper-

parameters to guarantee stability. But when determining an

architecture layer by layer, RL controller needs to try tens

of actions to get a positive reward as a supervisory signal.

This makes the training process inefficient.

In this paper, we propose the Reinforced Evolutionary
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Figure 1. The evolutionary neural architecture search framework and the structure of the reinfored mutation controller.

Neural Architecture Search (RENAS), which integrates RL

into the evolution framework to address the above issues.

Our method introduces a reinforced mutation controller to

help the efficient exploration of the search space. Thanks to

the nature of EA, the child model could inherit most param-

eters from its parent, which in turn makes the search more

efficient. Our main contributions are summarized as below:

- A novel neural architecture search framework is pro-

posed with EA and RL integrated. This framework in-

tegrates the advantages of both of them and ensures the

search efficiency.

- We design a reinforced mutation controller to learn

the effects of slight modifications and make actions to

guide the evolution. This technique helps the popula-

tion evolve to a better status in fewer iterations.

- A powerful neural architecture, RENASNet, is discov-

ered. It achieves a competitive accuracy on CIFAR-10,

i.e., 2.88% ± 0.02 and a new state-of-the-art on mo-

bile ImageNet with 75.7% top-1 accuracy and 5.36M

parameters. We further test its performance on seman-

tic segmentation with DeepLabv3 [5] on the PASCAL

VOC 2012 [11]. RENASNet outperforms the state-of-

the-art networks and achieves 75.83% mIOU without

being pretrained on COCO [21].

2. Related Work

2.1. RL­based NAS

Reinforcement learning gains much research attention in

recent works [41, 3, 40, 1]. In NAS [40], neural networks

are specified by variable-length strings which are generated

by a RNN controller. The network specified by a string is

then trained to return a validation accuracy. In turn, the

controller is updated with policy gradient using the accu-

racy as reward. In this framework, networks specified by

strings are generated layer by layer. The success reported by

NAS [40] inspires many other valuable works, but the ex-

pensive computational cost (28 days with 800 GPUs) limits

its wide application, since training and evaluating a single

model is time-consuming.

2.2. EA­based NAS

Evolution process in the nature is intuitively similar to

NAS. Thus, many early automatic architecture search meth-

ods [26, 37, 32, 29, 25, 36] adopt EA to evolve a popu-

lation of models. For instance, the large scale evolution-

ary method [29] explores a CNN search space with neuro-

evolution algorithm, which returns networks matching the

human-designed models. The framework of our paper is

based on AmoebaNets [28], in which a common evolution-

ary algorithm, tournament selection strategy, matches or

even outperforms its RL baseline [41] in speed and accu-

racy. However, evolution process is slow due to the random

mutation. To address this issue, we introduce a controller

for mutation to guide the evolution process.

2.3. Efficient NAS

Difficulties of NAS mainly come from the extremely

large search space and the time-consuming model evalu-

ation. In NASNet [41], computational cost is saved with

cell-wise search space, which is adopted by the following

works [28, 27, 22]. Instead of exploring the whole net-

work architecture, NASNet [41] centers on learning cell

structures which are then stacked multiple times into a com-

plete network, making the output networks scalable for var-

ious datasets and tasks. In addition, a variety of techniques

on accelerating evaluation have proven effective: Block-

QNN [39] improves the search speed with an early-stop

strategy. ENAS [27] utilizes parameter sharing among child

models instead of training from scratch. EAS [3] utilizes the

Net2Net transformation [6] to reuse parameters. Accuracy

prediction, used in this work [2], is also a novel technique

to save computational resources, although the accuracy pre-

dictor might not always be accurate enough.

2.4. Integration of EA and RL

RL has shown its capacity of accelerating evolutionary

progress via Baldwinian or Lamarckian mechanisms [9].

The idea of Integration RL and EA has been previously in-

vestigated, but our method is distinctly different from pre-

vious works. In [10], RL is used to enhance standard tree-

based genetic programming in maze problems. In [18], in-

tegration of EA and RL is used to improve the adaption ac-

tions of a real robot. In [15], EA is integrated into a multi-
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Figure 2. (a) Architectures employed for CIFAR-10 and ImageNet datasets respectively. During searching, the network structure is specified

by the cell structure. The image size in ImageNet (224x224) is much larger than that in CIFAR-10 (32x32). So there are additional reduction

cells and convolution 3x3 with stride 2 in ImageNet architectures to downsample feature maps. (b) Each cell consists of #B blocks. Each

block takes in two inputs {i1, i2}, apply specific operations {o1, o2} to them respectively and then combine them with element-wise

addition to generate a feature map Ob. We search for {i1, i2, o1, o2} for #B blocks to construct a reasonable cell structure, which in turn

constitutes a network.

agent Q-learning to shrink the search space.

In our method, a mutation controller is integrated into the

evolution framework to learn the effects of modifications

and make reasonable mutation actions. Compared to only

RL methods and only EA methods, this integration brings

us the following benefits:

1) RL training becomes more efficient. Because mak-

ing modifications to a network needs much fewer actions to

make than constructing a model layer by layer. As the child

model is modified from the parent model, the mutation con-

troller is easy to learn the effects of slight differences.

2) The evolution process becomes more efficient and

stable with the help of the reinforced mutation controller.

Model architectures and their fitnesses (validation accura-

cies) are previously neglected but valuable hints generated

during evolution. We reuse these useful supervisory signals

to train the mutation controller. It in turn eliminates the ac-

cumulation of harmful mutation.

3. Search Space

Rather than designing the entire convolutional network,

we adopt the idea that learning cell structures [41]. In this

section, we introduce the search space by factorizing each

network into cells and blocks. The architecture frames and

the inner block are illustrated in Fig. 2.

3.1. Block

Each block maps two inputs into one output feature map

as shown in Fig. 2 (b). It takes two input feature maps

{i1, i2}, applies two operators {o1, o2} to them respectively

and then combines them into an output O via element-wise

addition A. For this reason, each block could be specified

by a string of length 4, {i1, i2, o1, o2}. {i1, i2} are selected

from {Oc
1
, Oc

2
, ..., Oc

b−1
, Oc−1

B
, Oc−2

B
}, where Oc

1
, ..., Oc

b−1

are outputs of previous blocks in the current cell. Oc−1

B

and Oc−2

B
are outputs of the first and second previous cells.

Operation choices for {o1, o2} are selected from a set of

6 functions: 3x3 depth-wise separable convolution, 5x5

depthwise-separable convolution, 7x7 depth-wise separable

convolution, 3x3 avg pooling, 3x3 max pooling, identity.

3.2. Cell

Each cell can be represented as a directed acyclic graph

which consists of #B blocks. Assume there is an input fea-

ture map with shape h × w × f , where h and w denote

the height and width of the feature and f means the chan-

nel number. Cells with stride 2 output features with shape
h

2
× w

2
× 2f while cells with stride 1 keep the shape of fea-

ture maps. Each cell consist of #B blocks. Therefore, we

search for the structure of each block and how they connect

together to build a cell.

3.3. Network

Each network could be specified with three factors: the

cell structure, #N the number of cells to be stacked and #F

the number of filters in the first layer. As we fix #N and #F

during search, our search space is constrained to all possi-

ble cell structures. Once search finished, models are con-

structed with different sizes to fit various tasks or datasets.

We adjust the number of cells repeated #N and the num-

ber of filters in the first layer to control the depth and width

of networks. As illustrated in Fig. 2 (a), the architecture

for ImageNet has two more cells with stride 2 and a deeper

steam. Because the image size in ImageNet (224x224) is

much larger than that in CIFAR-10 (32x32), it needs more

downsample operations.

Each network therefore is specified with 5#B tokens,

4#B of which are variable during search. Because each

cell consists of #B blocks and each block is specified by
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Algorithm 1: The framework of RENAS

input : num blocks each cell #B, max num epochs

#E, num filters in first layer #F, num cells in

model #N, population size #P, sample size

#S, training set Dtrain, validation set Dval

output: a population of models P
1 P (0) ← initialize(#F, #N, #P)

2 for i=1:#E do

3 S(i) ← sample(P (i−1)
, #S)

4 B,W ← select(S(i)
)

5 C, ωB ← reinforced-mutate(B)

6 ωC ← finetune(C, ωB
, Dtrain)

7 fC ← evaluate(C, ωC
, Dval)

8 P (i) ← push-pop(P (i−1)
, C, fC, W)

9 end

5 tokens: two inputs {i1, i2}, two operations {o1, o2} and

a combination operation A that is fixed as addition. There-

fore, searching network architecture is converted to search

for 4#B variables. This search space is smaller than NAS-

Net search space [41]. We use only one cell type and re-

duce the feature map size using cells with stride 2. Besides

we use 6 candidate functions and fix combiners as element-

wise addition. The complexity of the search space can be

estimated with ease. Each block consists of 2 nodes. For

each node we need to select its input from b + 1 possible

indexes and its operator from these 6 functions. As we set

#B=5, there are (65 × (5 + 1)!)2 = 3.1 × 1013 possible

networks, which is still an extremely large space.

4. Search Strategy

4.1. Evolution Framework

To search for architectures with high performance auto-

matically, a population of models P is initialized randomly.

Each individual of P is trained on the training set Dtrain

and evaluated on the validation set Dval. Its fitness f is de-

fined as the validation accuracy. At each evolutionary step,

a subset S is randomly sampled from P. According to their

fitnesses, the best individual B and the worst individual W

are selected among S. W is excluded from P and B be-

comes a parent to produce a child C with mutation. C is

then trained and evaluated to measure its fitness fC . Af-

terwards C is put into P. This scheme actually belongs to

tournament selection [12], repeating competitions in ran-

dom samples. The procedure is formulated in Algorithm 1.

4.2. Reinforced Mutation

The reinforced mutation is implemented with a muta-

tion controller to learn the effects of slight modifications

and make mutation actions. Fig. 1 shows the framework

of our controller, which implements a mechanism of atten-

tion. The controller takes a string of 5#B length which rep-

resents the given cell architecture. Specifically, our con-

troller consists of 4 parts: (1) an Encoder (Enc) following

an embedding layer to learn the effect of each part of the

cell, (2) a Mutation-router (Mut-rt) to choose one from

i1, i2, o1, o2 of the block, (3) an Input-mutator (IN-mut)

to change node’s input with a new input inew (4) an OP-

mutator (OP-mut) to change node’s operator with a new

operator onew .

Encoder Enc is a bidirectional recurrent network with an

input embedding layer. Hidden states learned by Enc indi-

cate the effect of a local part on the whole network. For

block b in Enc, its hidden states are {Hb
i1
, Hb

i2
, Hb

o1
, Hb

o2
}

where Hb
o1

represents the effect of block b’s o1 on the whole

network. As each model is specified by 5#B numbers, Enc

generates 5#B hidden states each step. Besides, we ini-

tialize two begin states, Hc−1, Hc−2, which represent the

information of the first and second previous cells.

For block b, the controller makes two decisions sequen-

tially. At first, depending on Hb
i1
, Hb

i2
, Hb

o1
, Hb

o2
, Mut-rt

decides which one of i1, i2, o1, o2 in block b needs to be

modified. It is sampled with a mechanism of attention via

softmax classifiers. If one of input indexes, i1 or i2, is

chosen, the IN-mut would be activated to pick one from

{Oc
1
, ..., Oc

b−1
, Oc−1

B
, Oc−2

B
}. Otherwise OP-mut would

choose a new operator from that 6 operation choices. As

there are B blocks in each cell, this process would be re-

peated for B times to modify a given architecture. Thus it

makes 2#B modification actions for each model. We de-

scribe the implementation details in the following.

Mutation-router Mut-rt is designed to find which in-

gredient of each block needs modification. For each

block, Mut-rt’s inputs are a subset of Enc’s outputs

Hb
i1
, Hb

i2
, Hb

o1
, Hb

o2
and its output is one of i1, i2, o1, o2, an

ID to mutate. We apply a fully connected layer to each hid-

den state use softmax to compute the modification proba-

bility of each ingredient P b
i1
, P b

i2
, P b

o1
, P b

o2
and sample one

from i1, i2, o1, o2 with these probabilities.

IN-mutator IN-mut chooses a new input for the node,

if ID ∈ (i1, i2). Its inputs include the chosen ID’s hid-

den state Hb
ID

, the hidden states of all previous block’s

outputs [H1

A
, ..., Hb−1

A
], and the hidden states of previ-

ous and previous-previous cells Hc−1, Hc−2. We concat

[H1

A
, ..., Hb−1

A
, Hc−1, Hc−2] with Hb

ID
and apply a fully

connected layer to them. Similar to Mut-rt, we use

softmax to compute the probability of replacing the orig-

inal input with each substitute and then we determine inew
by choosing from 1, ..., b-1, c-1, c-2 with these probabilities.

OP-mutator OP-mut outputs an new operator onew de-

pending on the input Hb
ID

. This process is simple and sim-

ilar to Mut-rt.
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Algorithm 2: Mutation generated by Controller

input : num blocks each cell #B, a sequence a of

4#B number specifying a cell

output: a sequence of mutation actions m
1 Hc−1, Hc−2← Enc.begin()

2 H1, ..., HB ← Enc(Hc−1, a)
3 for b=1:#B do

4 Hb
i1
, Hb

i2
, Hb

o1
, Hb

o2
, Hb

A ← Hb

5 ID ← Mut-rt([Hb
i1
, Hb

i2
, Hb

o1
, Hb

o2
])

6 if ID ∈ (i1, i2) then

7 inew ← IN-mut

(Hb

ID, [H1
A, ..., H

b−1
A

, Hc−1, Hc−2])
8 m(b) ← (ID, inew)

9 else

10 onew ← OP-mut (Hb

ID)

11 m(b) ← (ID, onew)

12 end

13 end

4.3. Search Details

Controller At each evolution step, the controller makes a

sequence of mutation actions. Then a child model C is pro-

duced with the parent model modified. Then the validation

accuracy fC is computed with parameter inheriting which

is introduced in the following paragraph. The reward γ is a

nonlinear function [3] of fC , i.e., γ = tan(fC · π

2
), since

the gain of improving accuracy should be larger while the

validation accuracy of its parent is higher. The controller

parameters θ is updated via policy gradient.

Child Models Child models are trained and evaluated

with its parameters inherited from their parents. For each

alive model B in the population, we store its architecture

string, its fitness fB and its learnable parameters ωB . As

each child model C is generated from its parent model with

slight modifications, differences between them only exist in

the mutated layers. Therefore the child could inherit most

parameters from the parent B. ωC are classified into inheri-

table parameters ωC

inh
and new initialized parameters ωC

new.

And its fitness (validation accuracy) fC could be evaluated

with fine-tuning instead of training from scratch. During

fine-tuning, we train ωC on a whole pass through Dtrain

with the learning rate of ωC
new 10 times large as that of ωC

inh
.

In the experiments, the learning rate of ωC
new equals to 0.01.

Deriving Architectures During search, we set each cell

contains #B=5 blocks, and #F=24 filters in the first con-

volution cell and we unroll the cells for #N=2. After the

maximum number of epochs #E is reached, we only retrain

the models in the population from scratch and then take the

model with highest accuracy. It is possible to improve our

results by retraining more sampled models from scratch as

done by other works [41, 40], but it is unfair to prove the

performance of our controller. In the experiments, the pop-

ulation size #P is set as 20. For better comparison, we set

#F and #N same to NASNets [41].

5. Experimental Results

In this section, we first show our implementation details.

Then, we compare our searched architecture RENASNet (as

illustrated in Fig. 3) with both state-of-the-art hand-design

networks and other searched models on CIFAR-10 and Im-

ageNet datasets. Ablation studies are made to show the

search efficiency of RENAS. Further experiments show that

RENASNet can be successfully transferred to achieve the

semantic segmentation task.

5.1. Implementation Details

5.1.1 Datasets Details

CIFAR-10 CIFAR-10 [19] consists of 50,000 training

images and 10,000 test images. 5,000 images are parti-

tioned from the training set as a validation set. All im-

ages are whitened with the channel mean subtracted and the

channel standard deviation divided. Then, we crop 32 x

32 patches from images and pad them to 40 x 40. These

patches are also randomly fliped horizontally for data aug-

mentation. When retraining the result architecture, we also

use the cutout augmentation [8].

ImageNet For data augmentation on ImageNet [7],

we resize the original input images with its shorter side

randomly sampled in [256, 480] for scale augmenta-

tion [31]. 224 × 224 patches are randomly cropped from

images. Other standard operations, i.e., horizontal flip,

mean pixel subtraction and the standard color augmenta-

tion in Alexnet [20], are also conducted [20]. For the last

20 epochs, we withdraw most augmentations and only keep

crop and flip augumentations for fine-tuning.

5.1.2 Training details

CIFAR-10 When training models on CIFAR-10, we use

standard SGD optimizer with momentum rate set to 0.9,

auxiliary classifier located at 2

3
of the maximum depth

weighted by 0.4, weight decay 3 × 10−4, and dropout of

0.5 in the final softmax layer. In addition, we drop each

path with probability 0.5 for regularization. Our batch size

is 64 on each GPU and 2 GPUs are used. The learning rate

initially is set to 0.05 and later decays with a cosine restart

schedule for 630 epochs.

ImageNet When training models on ImageNet, we train

each model for 200 epochs, using standard SGD optimizer

with momentum rate set to 0.9, auxiliary classifier located

at 2

3
of the maximum depth weighted by 0.4, weight decay

4 × 10−5. Our batch size is 64 on each GPU and 4 GPUs
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Table 1. CIFAR-10 results. The top section presents the top hand-design networks, the middle section presents other architecture search

results and the bottom section shows our results. #Params means the number of free parameters.

Model Cutout GPUs Days #Params Error(%) Method

DenseNet-BC [17] - - - 25.6M 3.46 -

PNASNet-5 [22] - 100 1.5 3.2M 3.41 ± 0.09 SMBO

NASNet-A + cutout [41] X 500 4 3.3M 2.65 RL

AmoebaNet-B + cutout [28] X 450 7 2.8M 2.55 ± 0.05 EA

ENAS + cutout [27] X 1 0.5 4.6M 2.89 RL

DARTS (first order) + cutout [23] X 1 1.5 2.9M 2.94 Gradient

DARTS (second order) + cutout [23] X 1 4 3.4M 2.83 ± 0.06 Gradient

RENASNet (6, 32) + cutout X 4 1.5 3.5M 2.88 ± 0.02 EA&RL

Table 2. ImageNet classification results in the mobile setting. The results of hand-design models are in the top section, other NAS results

are presented in the middle section and the result of our model is in the bottom section.

Model #Params #Mult-Adds Top-1/Top-5 Acc(%) Method

MobileNet-v1 [16] 4.2M 569M 70.6 / 89.5 -

MobileNet-v2 (1.4)[30] 6.9M 585M 74.7 / - -

ShuffleNet-v1 2x [38] ≈ 5M 524M 73.7 / - -

ShuffleNet-v2 2x (with SE) [24] ≈ 5M 597M 75.4 / - -

NASNet-A [41] 5.3M 564M 74.0 / 91.6 RL

NASNet-B [41] 5.3M 488M 72.8 / 91.3 RL

NASNet-C [41] 4.9M 558M 72.5 / 91.0 RL

AmoebaNet-A [28] 5.1M 555M 74.5 / 92.0 EA

AmoebaNet-B [28] 5.3M 555M 74.0 / 91.5 EA

AmoebaNet-C [28] 5.1M 535M 75.1 / 92.1 EA

AmoebaNet-C (more filters) [28] 6.35M 570M 75.7 / 92.4 EA

PNASNet-5 [22] 5.1M 588M 74.2 / 91.9 SMBO

ENAS [27]∗ 5.1M 523M 74.3 / 91.9 RL

DARTS [23] 4.9M 595M 73.1 / 91.0 Gradient

RENASNet (4, 44) 5.36M 580M 75.7 / 92.6 EA&RL

* The result of ENAS was obtained by training with our setup, as it is not reported [27].

are used. The learning rate is initially set to 0.1 and later

decays in a polynomial schedule.

5.1.3 Details of the Controller

For our controller, we use an LSTM with an embedding

layer. The embedding size and the hidden state size of

LSTM are both 100. The parameters of our controller are

initialized with random values sampled from a normal dis-

tribution with a mean of zero and standard deviation of 0.01

and trained with Adam at a learning rate of 0.001. We apply

a tanh constant of 2.5 and a temperature of 5.0 to the logits

of the controller, and add the entropy of the controller to the

reward with 0.1 weighted.

5.1.4 Details of architecture search space

For fair comparison, some details of our search space follow

the NASNet search space:

(1) All convolutions follow an ordering of ReLU, convo-

lution and batch normalization.

(2) Each separable convolution is applied twice sequen-

tially to the input feature map.

(3) To match shapes in convolutional cells, 1x1 convolu-

tions are applied as necessary.

(4) Separable convolutions do not employ batch normal-

ization or ReLU between depthwise and pointwise

convolutions.

5.2. Image Classification

5.2.1 Results on CIFAR-10

Here we report the performance of our searched model, RE-

NASNet, and make comparisons to other state-of-the-art

models in Table 1 on CIFAR-10. After the cell structures

are fixed, we construct the entire networks same to the struc-

ture setting of NASNet[41] and train them with the details

mentioned before. The simple notation (6, 32) denotes cell

unroll for N = 6 times and F = 32 filters in the first cell.

The CIFAR-10 results are presented in Table 1. RENASNet

achieves a competitive result to other state-of-the-art mod-
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Figure 3. The searched cell structure by RENAS. The full outer

architectures for CIFAR and ImageNet are shown in Fig. 2 (a).

els. Only NASNet-A and AmoebaNet have stable better

performances than RENASNet while they use much more

computational resources (2000 GPU days and 3150 GPU

days) than ours. ENAS is more efficient than our method,

but our model has less parameters with better accuracy.

5.2.2 Results on ImageNet

State-of-the-art image classifiers on ImageNet is shown in

Table 2. We conduct the comparison in the mobile setting

where the image size is 224x224 and the multi-add opera-

tion numbers of models are under 600M. Note that as the

accuracy of ENAS[27] on ImageNet is not reported in the

original paper, we trained it with all hyper-parameters and

settings exactly same to RENASNet.

The results on ImageNet are more convincing because

CIFAR-10 is small and easy to be over-fitting. The re-

sults on ImageNet are shown in Table 2. RENASNet sur-

passes both the manually designed models, including Mo-

bileNets [16, 30] and ShuffleNets [38, 24], and the other

state-of-the-art NAS models. Especially for NASNet [41]

and AmoebaNet [28], they are representative RL-based

and EA-based methods respectively and spend much more

GPUs and days than ours. In Table 1 and Table 2, we also

compare with DARTS [23], which is a novel and gradient-

based method. RENASNet is similar to DARTS [23] on

CIFAR-10, but outperforms it on ImageNet.

Figure 4. Efficiency Comparison under the same search space (uni-

fied Cell and 6 operation choices).

5.3. Search Efficiency

Honestly speaking, although the computation cost of

RENAS is much less than NASNet and AmoebaNet, it can

not reflect a fair comparison of search efficiency to RL-

based and EA-based NAS methods. As stated in Section 3,

the search space used in our experiments is smaller than the

original NASNet search space. We have not distinguished

Normal Cell and Reduction Cell and there are 6 operation

choices. Thus, the efficiency of RENAS also comes from

the search space.

In this section, we make a fair ablation study to com-

pare the efficiency of RENAS to EA and RL under the

same search space (unified Cell and 6 operation choices)

as in Fig. 4. For the compared methods, we keep track of

the searched models for every 500 iterations. All searched

models are evaluated with 20 epochs training from scratch.

EA and RENAS are evaluated by the accuracy mean and

variance of models in the population. EA is conduct with

the same settings to RENAS, except that mutation actions

are made randomly. RL is evaluated on the best model

over time. Random is a model randomly picked from the

search space. As shown in the Fig. 4, RENAS achieves bet-

ter efficiency than EA and RL. The speedup of RENAS over

RL/EA is around 1.5 - 2.0 times.

We also make an additional comparison. As mentioned

in Section 4.2, the controller is equipped with a bidirec-

tional recurrent network to have a better capacity in archi-

tecture encoding. We compare RENAS to a counterpart

with common recurrent network, RENAS (non-bi). It has

exact same settings to RENAS, except the recurrent net-

work. Fig. 4 shows the inferiority of RENAS (non-bi).

5.4. Semantic Segmentation

In this section, we make further experiments on seman-

tic segmentation with DeepLabv3 [5]. All our experiments

and comparison methods use Atrous Spatial Pyramid Pool-

ing module (ASPP) [4] that contains three 3x3 convolutions
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Table 3. Semantic Segmentation: DeepLabv3 on the PASCAL

VOC 2012 validation set.
Model Pretrain #Params mIOU(%)

MobileNet-v1 [16] COCO 11.15M 75.29

MobileNet-v2 [30] COCO 4.52M 75.70

MobileNet-v1 [16] ImageNet 11.14M 68.79

MobileNet-v2 [30] ImageNet 4.51M 70.02

NASNet-A [41] ImageNet 12.39M 73.68

RENASNet ImageNet 11.63M 75.83

with different atrous rates. The output stride is 16 that is the

ratio of input image spatial resolution to final output res-

olution. We do not use Multi-scale and left-right Flipped

inputs (MF), which is employed by some other works [30]

for boosting the performance. Following our comparison

methods, we conduct the experiments on the PASCAL VOC

2012 dataset [11] and standard extra annotated images from

[13] with evaluation metric as mIOU.

We compare RENASNet with three other mobile

networks, MobileNet-v1 [16], MobileNet-v2 [30] and

NASNet-A [41] and summarize the results in Table 3. The

results of models pretrained on COCO [21] are reported

in [30]. Models pretrained on ImageNet are implemented

by ourselves using exactly same hyper-parameters and set-

tings. From the results, we have observed that: 1) The

performance of this task relies heavily on pretrained mod-

els. Without being pretrained on COCO, MobileNet-v1

and MobileNet-v2 suffer from severe performance decay.

2) In terms of mIOU, RENASNet outperforms MobileNet-

v1, MobileNet-v2 and NASNet-A [16] at the same set-

tings. Moreover, RENASNet (75.83%) pretrained on Im-

ageNet even performs better than MobileNet-v1 (75.29%)

and MobileNet-v2 (75.70%) that pretrained on COCO. The

segmentation results are visualized in Fig. 5.

6. Conclusion

In this paper, we have proposed a method for neural ar-

chitecture search by integrating evolution algorithm and re-

inforcement learning into a unified framework. Inspired

by the procedure of designing networks manually, we use

a controller to learn the effects of modifications and make

better mutation actions. The searched architecture, i.e., RE-

NASNet, achieves competitive performance on CIFAR-10

and outperforms other state-of-the-art models on ImageNet

(75.7% top-1 accuracy with 5.36M parameters). In addi-

tion, RENASNet also demonstrate its high performance on

the semantic segmentation task. RENASNet outperforms

other mobile size networks and achieves 75.83% mIOU

without being pretrained on COCO. It shows that RENAS-

Net can be transferred to other computer vision tasks in ad-

dition to image classification. In future, we will try to con-

duct NAS on other tasks, e.g., object detection.
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