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Abstract

Compositing a realistic image is a challenging task and

usually requires considerable human supervision using pro-

fessional image editing software. In this work we propose a

generative adversarial network (GAN) architecture for au-

tomatic image compositing. The proposed model consists

of four sub-networks: a transformation network that im-

proves the geometric and color consistency of the compos-

ite image, a refinement network that polishes the boundary

of the composite image, and a pair of discriminator network

and a segmentation network for adversarial learning. Ex-

perimental results on both synthesized images and real im-

ages show that our model, Geometrically and Color Consis-

tent GANs (GCC-GANs), can automatically generate real-

istic composite images compared to several state-of-the-art

methods, and does not require any manual effort.

1. Introduction

Image compositing aims to create a realistic-looking im-

age by taking the foreground object of one image and com-

bining it with the background from another image (see Fig-

ure 1). In order to make the composite image look realistic,

many factors need to be considered, such as scene geometry,

object appearance, and semantic layout. It is a challenging

task and usually requires a human expert carefully adjust-

ing details including geometry and color using professional

image editing software such as PhotoShop [1] to create a

single composition.

Many previous works [4, 27, 18, 14, 32, 19, 35, 30] try

to alleviate this manual burden by creating algorithms that

can automatically adjust the appearance of the foreground

image and make it fit into the background naturally. While

this may work in some cases, many of these approaches still

require human supervision to help with tasks such as deter-

mining the appropriate location and size of the foreground

object or capturing the lighting conditions of the scene.

* Work done during internship at Verizon Media Group.

Figure 1. The goal of image composition is to create a realistic

image by combining a foreground object with a background im-

age. The x-axis corresponds to increasing color consistency in

the composite image, while the y-axis corresponds to increasing

geometric consistency. However, the composite image only looks

realistic when both geometry and color consistency are considered

(i.e. image in the red box). (Best viewed in color)

Recently generative adversarial networks (GANs) have

been shown to have the ability to generate realistic looking

images [7, 11, 3, 33, 31, 36, 5, 28] by learning to deceive an

adversarially trained discriminator network. However, im-

age composition is a different task from image generation

because the composite image must maintain details from

the input images and apply only slight changes to improve

the realism of the composition. Recent work [21] modified

the GAN framework by restricting the range of the genera-

tor to a geometric manifold using a spatial transformer net-
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work [12] in order to generate realistic composite images

that are geometrically consistent. However, such a model

only works if the foreground appearance is already consis-

tent with the background image. If the domain of the fore-

ground and the background images are different, geometric

transformation alone does not have the ability to generate

a natural-looking composite image. As shown in Figure 1,

for a composite image to be realistic, the model needs to ac-

count for both geometric and color consistency. However, it

is not trivial to combine previous works to automatically ad-

just both color and geometry since these two properties are

interdependent: geometric correction relies on color consis-

tency while color correction also relies on geometric consis-

tency.

To address the above issue, we propose a novel GAN ar-

chitecture called Geometrically and Color Consistent GAN

(GCC-GAN) for image compositing that simultaneously

learns both geometric and color correction with adversarial

learning. GCC-GAN contains four sub-networks: a trans-

formation network, a refinement network, a discriminator

network, and a segmentation network. The transformation

and refinement networks act together as the generative com-

positing model, which aim to generate a realistic compos-

ite image while considering geometric, color, and boundary

consistency. At the same time, the discriminator and seg-

mentation networks help to increase the realism of the com-

posite image through adversarial learning. In particular, the

discriminator network learns to separate composite images

from real images while the segmentation network learns

to separate the foreground object from the background in

the composite images. GCC-GANs are trained end-to-end

with a geometric loss, an appearance loss, an adversarial

loss, and an adversarial segmentation loss. Unlike previous

works that restrict the generator to geometric transforma-

tions, our model can apply both geometric and color cor-

rection as well as boundary refinement to generate a com-

posite image. Experimental results show that our model can

generate geometrically and color consistent images in both

synthetic and real-world datasets.

The contributions of this paper include: (1) demonstrat-

ing the need for both geometric and color consistency for

the image compositing task, (2) proposing a novel end-to-

end model that creates realistic composite images based

on the generative adversarial network framework, and (3)

extensive evaluations including human perception experi-

ments showing the ability of the proposed model to gener-

ate realistic composite images compared to different state-

of-the-art methods.

2. Related Work

Image Compositing models combine a foreground im-

age with a background image seamlessly. Many prior works

focus on how to modify the appearance of the foreground

image to better fit into the background based on color gra-

dients [4, 27] or color statistics [18, 14, 32]. Agarwala et

al. [2] provide a system to combine multiple source im-

ages taken in the same scene with the help of user inputs.

Lalonde et al. [19] develop an interactive system to cre-

ate composite images by selecting foreground objects from

a large database. With the advancement of deep learning

research in computer vision, various deep learning mod-

els [35, 30, 21, 29] were also introduced for image com-

positing. Similar to our approach, Zhu et al. [35] use a

discriminative model to estimate the realism of composite

images. However, their discriminative model is fixed dur-

ing the image compositing process and cannot be improved

for better composition. Tsai et al. [30] introduced an end-to-

end encoder-decoder network for image harmonization. Al-

though these methods can generate realistic compositions,

they still rely on a human for tasks such as deciding the lo-

cation and size of the foreground objects. Most recently,

Tan et al. [29] propose to use deep neural networks to learn

the location and size of the foreground object for composit-

ing human into background image; Lin et al. [21] use gen-

erative adversarial networks (GANs) with a spatial trans-

former network [12] to learn the correct geometry transfor-

mation of the foreground object. These works consider geo-

metric consistency in image compositing, but they can only

work when the domain of the foreground and background

images are similar. Our work extends previous works by

providing a unified end-to-end framework that learns to ad-

just both the geometry and appearance consistently, which

allows our model to automatically composite images from

different sources.

3D Synthesis There have been many works that combine

synthetic 3D objects with images [6, 15, 16, 9, 8]. However,

these methods require explicitly reconstructing the scene

geometry and environment illumination in order to render

the 3D object. On the other hand, our model can directly

take the rendered object as input for composition.

Generative adversarial networks [7] have been utilized

for many different image generation tasks [23, 3, 26, 11,

36, 10, 33, 20]. Conditional GANs [23] provide a way to

generate images from different classes given different in-

puts. Isola et al. [11] provide a framework that translates

an image from one domain to another, given pairs of train-

ing images. Zhu et al. [36] further extend the framework

to work over unpaired training images using cycle consis-

tency. However, these frameworks cannot be directly ap-

plied to the image composition task since the composed im-

ages need to retain the fine details of both the foreground

and background images in a consistent manner. Instead of

direct image generation, our model utilizes the adversarial

learning process to learn geometric and color corrections

for realistic composition.
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Figure 2. Overview of the proposed network architecture. (a) Given an input triplet consisting of a foreground object, a foreground

mask, and a background image, the generative compositing model (consisting of transformation and refinement networks) learns to create

a realistic composite image, in order to fool both the discriminator network and the segmentation network. (b) Given an image, the

discriminator network learns to predict real vs fake while the segmentation network learns to segment the foreground from background.

3. Proposed Method

3.1. System Overview

Figure 2 shows an overview of the proposed network

architecture. The model consists of four sub-networks: a

transformation network, a refinement network, a discrim-

inator network, and a segmentation network. The trans-

formation network and refinement network act together as

the generative compositing model and is described in Sec-

tion 3.2. The discriminator network and the segmentation

network improve the generative model through adversarial

learning and is described in Section 3.3. Given an input

triplet consisting of a background image, a foreground im-

age, and an object mask, the compositing model learns to

composite realistic images while the discriminator network

learns to distinguish composite images from real images.

In addition, the segmentation network tries to separate the

foreground object from the background in the composite

image. The model is trained to optimize the min-max ob-

jective function described in section 3.4.

3.2. Generative Compositing Model

Given a foreground image with N pixels If ∈ [0, 1]N×3

with a foreground mask α ∈ {0, 1}N and a background

image Ib ∈ [0, 1]N×3 as inputs I = {If , Ib, α}, the process

of image compositing can be formulated as follows:

Ic = G(I; θG)

= A(I) ◦ F (I) + (1−A(I)) ◦ Ib, (1)

where ◦ is the Hadamard product, G is the compositing

model which combines the foreground region of If indi-

cated by the mask α and the background image Ib; θG is

the model parameters. F (I) ∈ [0, 1]N×3 is the transformed

foreground and A(I) ∈ [0, 1]N is the alpha mask. Un-

der this formulation, a simple alpha composition model can

then be described as identity functions: A(I) = α;F (I) =
If .

If only the geometric correction is considered as in [21],

the model becomes:

A(I) = H(α, Th(I; θG)) (2)

F (I) = H(If , Th(I; θG)), (3)

where H(·) is the geometric transformation function, such

as homography, affine or similarity transform, and Th(·) the

transformation matrix. We use the spatial transformer net-

work [12] to predict the transformation parameters.

On the other hand, if we assume foreground/background

geometry is consistent and only consider the color correc-

tion, F (I) becomes a color transformation function F (I) =
C(If , Tc(I; θG)) which adjusts the appearance of the fore-

ground image. We use a linear brightness and contrast

model as in [35]:

C(If , Tc(I; θG)) =
[

If 1
]









λ1 0 0
0 λ2 0
0 0 λ3

β1 β2 β3









, (4)

where Tc(I; θG) = (λ1, λ2, λ3, β1, β2, β3) is a transforma-

tion network that predicts the contrast and brightness pa-

rameters.

To apply both geometric and color correction to the com-

posite image, we can then combine Equations 3 and 4:

F (I) = C
(

H(If , Th(I; θG)), Tc(I; θG)
)

. (5)
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Note that we can use a single network to predict both color

and geometric transformation parameters at the same time,

so that T (I; θG) = [Th(I; θG);Tc(I; θG)] and simplify

Equation 5 as:

F (I) = (C ◦H)(If , T (I; θG)). (6)

Equations 2 and 6 together describe our compositing model

Ic = G(I; θG). However, the composite image might still

contain some boundary artifacts. To address this issue, we

introduce a refinement network R with an encoder-decoder

architecture that further refines the composite image. So the

final composition model can be described as:

Ic = G(I; θG)

= R(A(I) ◦ F (I) + (1−A(I)) ◦ Ib). (7)

3.3. Adversarial Learning

Equation 7 describes our compositing model Ic =
G(I; θG) incorporating a transformation network and re-

finement network. We adopt a similar procedure described

as in [7] to train a discriminator network D(x; θD) with ad-

versarial learning. Adversarial learning maximizes the fol-

lowing adversarial loss La to distinguish natural image Ib
from the composite image Ic:

La(D,G) = EIb

[

logD(Ib)
]

+EIc

[

log(1−D(Ic))
]

. (8)

We use a basic three-layer convolutional network for the

discriminator network and adopt spectral normalization

[24] to stabilize the training process. To reduce the discrep-

ancy between foreground and background in the composite

image, we propose to train an additional segmentation net-

work S that learns to separate the foreground object from

the background in the composite image. This network is

trained with adversarial segmentation loss:

Ls(S,G) =
∑

s∈fg

EIc

[

log(1−Ds(Ic))
]

+
∑

s∈bg

EIc

[

log(Ds(Ic)
]

, (9)

where s ∈ {fg ∪ bg} indicate different spatial locations,

and fg, bg are sets of foreground and background spatial

locations in the composite image. The segmentation net-

work S detects the foreground region by generating fore-

ground/background probabilities for each spatial location.

3.4. Geometric and Color Consistent GAN (GCC
GAN)

Following [7], we optimize the composition model de-

scribed in Equation 7 by minimizing a min-max objective:

min
θG

max
θD,θS

La(D,G) + λLs(S,G). (10)

Additional constraints are needed since directly minimiz-

ing the above objective will usually lead to the trivial so-

lution where the compositing model simply removes the

foreground in the composite image using geometric trans-

formations. Therefore, we add a geometric loss term to our

objective function:

Lg = EI

[

‖T (I; θG)‖
2

2
+ λmaske

−k
‖A(I)‖1

N

]

(11)

The first term in Equation 11 penalizes large transforma-

tions, similar to the update loss in [21]; the second term is

an exponential loss that directly penalizes the size of the

foreground mask if it is too small. For data with ground-

truth geometric transformation parameters, we directly use

mean square error between the predicted parameters and the

ground-truth parameters as our geometric loss.

Finally, we use a pixel-wise L1 loss Lc to anchor the

transformed foreground image to the original foreground

image:

Lc = EI

[

‖
(

H(If , T (I; θ))− F (I)
)

◦A(I)‖1

‖A(I)‖1

]

. (12)

Combining the above three loss terms, the final loss func-

tion for our GCC-GAN becomes:

min
θG

max
θD

λaLa + λsLs + λgLg + λcLc, (13)

where λa, λs, λg , and λc are hyper-parameters that control

the weights between different loss terms.

3.5. Implementation Details

We implemented GCC-GAN with PyTorch [25] and

trained on the Nvidia GTX 1080TI GPUs. The input is re-

sized to 128× 128 for the experiments on synthesized data

and 256 × 256 for the experiments on COCO. We use the

Adam [17] optimizer with an initial learning rate of 0.0002

and (λa, λs, λg , and λc) are set to (0.01, 0.01, 1, 1) to em-

pirically balancing the loss terms. We use a batch size of 1

for both experiments, and train the model for 200 epochs for

the synthesized dataset and 5 epochs for the COCO experi-

ment. Lastly, we use affine transformations as our geomet-

ric transformation function, and we adopt the architecture in

[13] for both the refinement network and the segmentation

network.

4. Experiments

4.1. Image Compositing with Synthesized Objects

We first validate our model in a simplified artificial set-

ting with a synthesized dataset. We use the Panda3D game

engine1 to render images containing a table and a soda can.

1https://www.panda3d.org/
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Figure 3. Experiments on synthesized data. (a) Through geomet-

ric and color transformations, our model learns the relationship be-

tween the soda can and the table, and successfully generates com-

posite images with the soda can placed on the table. (b) Without

color transformation, the model cannot learn the correct transfor-

mation because geometric transformations alone cannot move the

composite image on to the manifold of the training data.
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Figure 4. Training data generation process. For a given image

and its object mask, we first select an auxiliary object mask from a

different image in the dataset with the same semantic category. We

use morphological operations to remove the boundary in the fore-

ground object and background image. We then combine the object

mask with the auxiliary ones to simulate the boundary mismatch

during testing. Finally, we apply geometric and color perturbation

to simulate the inconsistency during testing.

We render three images for each 3D configuration, includ-

ing a foreground image with a soda can, a background im-

age with a table, and a ground-truth composite image with

a soda can on the table. We then apply random geometric

and color perturbations to the foreground and learn a model

to composite the perturbed foreground into the background

image. Since the synthesized images have a perfect seg-

mentation mask, there will be no boundary artifact in the

composite image. As a result, we omit the refinement net-

work and segmentation network in our model for the exper-

iment. We train our model on 15,000 synthesized training

triplets with 200 epochs. Figure 3 (a) shows some example

results where the first row is the initial composition with

foreground perturbation, the second row is the output of our

model, and the third row is the ground truth composite im-

age. Our model is able to correct the geometry and color

of the foreground object and generate a plausible composite

image.

Importance of Color Consistency. To demonstrate the im-

portance of color consistency in the composite image, we

also train a model with only the geometric transformation

network similar to [21]. Figure 3 (b) shows the result of the

model applying only geometric corrections. The model fails

to generate plausible composite images because geometric

transformation alone cannot move the composite image on

to the manifold of the training data.

4.2. Image Compositing with Common Objects

We use the Common Object in Context (COCO) [22]

dataset for our compositing experiments. COCO consists

of 330K images with segmentation masks of 80 common

object categories.

Training Data Generation. Our goal is to generate a com-

posite image by inserting an object from a foreground image

into a new background image. However, we do not have

training data with realistic composite images, which re-

quires intensive human annotation with professional image-

editing software. Instead, we automatically generate train-

ing data by perturbing the input images. Figure 4 shows the

process of training data generation. For each input image

with corresponding object mask, we first select an auxiliary

object mask from another image in the dataset with same

object category. We then use morphological operations and

combine the object mask with auxiliary mask to remove

the boundaries from the image, simulating the boundary

mismatch during testing. Finally, we apply geometric and

color distortion to the foreground to simulate the geometric

and color mismatch during testing. For each input image

I , we generate a background image Ib, a foreground im-

age If and an object mask α as input to our model. Our

model then tries to composite the foreground object into the

background and generate a realistic composite image. We

select object segments that occupy between 5% to 50% of

the whole image for our experiments. For each segment,

we select 5 auxiliary object masks with the largest intersec-

tion over union with the original object mask, resulting in

516,070 training triplets. During testing, we simply remove

an object from the background image, and composite an-

other foreground object with the background. Note that our

goal is to evaluate image compositing algorithms, therefore

we use the ground-truth object mask to segment the objects,

however, we can also use semantic segmentation to segment

objects for image compositing.

Compared Baselines. We compare our model with the fol-

lowing baselines:

• Alpha Composition: a linear combination of the fore-

ground and background using the alpha mask.

• Poisson Blending [27]: a gradient based method that

minimizes gradient changes in the composite image.

• Deep Harmonization [30]: an end-to-end encoder-

decoder network with semantic segmentation.
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Figure 5. Qualitative results of different algorithms. The first column is the original image and the second column is the foreground

object mask. The remaining columns show the outputs of different algorithms. Note that since the baseline methods do not account for

geometric consistency, for fair comparison, we select foreground objects best matching the background to ensure geometric consistency.

• Pix2Pix [11]: an image-to-image translation network

with adversarial loss.

Figure 5 shows some qualitative results of the proposed

method compared to baselines. Note that since the baselines

do not account for geometric consistency, for fair compar-

ison, we select a foreground object that best matches the

background, and adjust the geometry to match the fore-

ground and background mask before input to the baselines.

Even without geometric mismatch, our model can automat-

ically generate competitive or more realistic composite im-

age compared to all baseline methods. Pix2Pix can generate

images of similar quality compared to the proposed method,

however, in the following section, we show that when there

is geometric inconsistency between foreground and back-

ground, Pix2Pix fails to generate plausible composite im-

age since their model does not incorporate geometric losses

(c.f. Figure 7).

Importance of Geometric consistency. Figure 6 shows the

process of geometric correction of the proposed model with

some examples. The first column is the background image

and the second column is the foreground object with mask.

The third column shows initial alpha composition with a

simple copy-paste operation. Notice that the foreground and

background in this initial composition is geometrically in-

consistent. In the fourth column, our model first transforms

the foreground to make the composite image geometrically

consistent using the spatial transformer network. Finally,

the last column shows the result of the refinement network

which makes the boundary more realistic and achieves more

realistic image compositing. Figure 7 shows comparison

between our model and the Pix2Pix model which does not

incorporate geometric correction. Compared to the com-

posite image generated by Pix2Pix, our model is able to

perform geometric transformation to the foreground image

and thereby generate a plausible composite image.

Human Perceptual Experiments. We also conducted hu-

man perceptual experiments to quantitatively evaluate our

model. In the first experiment, we want to verify how well

our composite image can fool a human subject under close

examination compared to baseline method. We randomly

select ten images from each of the 80 categories in the

COCO dataset with a total of 800 images. For each image,

8420



Original Foreground
Alpha

Composition
Geometric

Transformation GCC-GAN

Figure 6. Geometric correction of GCC-GAN. The first and sec-

ond column show the original image and foreground object. The

third column shows the composite image using alpha composi-

tion, where the geometry is inconsistent between foreground and

background. The fourth column shows the composite image after

geometric transformation, and the last column shows the output of

GCC-GAN with the final refinement network.

Background Foreground Pix2Pix GCC-GAN (Ours) Original

Figure 7. Comparison between Pix2Pix and GCC-GAN when the

input geometry is inconsistent. GCC-GAN is able to correct the

geometric error and generate more plausible composite images

compared to Pix2Pix.

we generate five composite images using the baseline al-

gorithms mentioned earlier. We show the composite image

as well as original real image to the annotator with random

order and ask them to check if there is any unusual arti-

fact in the image and obtained a total of 4,800 annotations.

Table 1 shows the results of the experiment. Even though

the input image does not require any geometric correction,

Method % Real

Alpha composition 4.1%

Poisson blending [27] 10.0%

Deep harmonization [30] 8.6%

Pix2Pix [11] 10.2%

GCC-GAN (Ours) 11.0%

Real image 73.8%

Table 1. Human perceptual experiment with a single image. We

ask the annotator to check if there is any unusual artifact in the im-

age. GCC-GAN can fool the annotator 11% of the time compared

to baselines. Note that for fair comparison, we ensure geomet-

ric consistency by selecting foreground object best matching the

background.

Method GCC-GAN Performs Better

Alpha composition 82.5%

Poisson Blending [27] 67.3%

Deep Harmonization [30] 71.4%

Pix2pix [11] 56.7%

Table 2. Human perceptual experiment with pairs of images.

Given two images, we ask the annotator to select the more realistic

image from the pair. The output of GCC-GAN is selected more

than half of the time compare to all other baselines.

our model still outperforms all baselines in term of human

perception, which demonstrates the effectiveness of the ad-

versarial learning process with segmentation network. Note

that 26.2% of real images were actually annotated as fake,

which shows the annotator is very strict and inspect image

meticulously.

In the second experiment, we want to directly compare

our algorithm with baselines. We randomly collect five im-

ages from each category from COCO, for a total of 400 im-

ages. We show the annotator two composite images. One

image is generated by our model while the other is gen-

erated with one of the baseline methods. To ensure fair

comparison, both images are generated with the same fore-

ground and background, with the matching object mask to

ensure the composite image is geometrically consistent, and

is shown to the annotator in no particular order. Table 2

shows the results of the experiment and again, even without

geometric correction, our model can outperform all baseline

method and generates better composite image.

Qualitative results and failure cases. Figure 8 shows com-

posite images generated by our model along with the origi-

nal image for different object categories. GCC-GAN is able

to generate realistic composition. Figure 9 show some fail-

ure cases our model. In the first example, our model does

not have any pose information and was not able to consider

semantic layout of the street scene. Therefore, the model

generates a composite of the car with an inconsistent pose.

In the second example, the foreground segmentation mask

is imperfect (i.e. the wheel of the bike), so the model gen-
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Figure 8. Qualitative results. The first and the third rows show the

original images and the second and fourth rows shows the output

of GCC-GAN.

erate a composite image with inconsistent appearance. In

third example, we insert a color train into a black and white

background. Since most of our training data consists of

color images, the model did not learn to change the appear-

ance of foreground into black and white. In the last ex-

ample, we show the failure case of genearting a composite

image with an animal. Our model works better with rigid

objects, and has difficulty modeling animals with diverse

poses.

Image Manipulation Detection. In this experiment, we

want to see how well the composite image generated by our

model can fool an image manipulation detection algorithm.

To this end, we utilize a well-trained state-of-the-art image

manipulation detection model, RGB-N [34], which uses a

two-stream faster-rcnn network to detect different types of

image manipulation. We randomly selected 50 images out-

put by each of the baseline algorithms and pass them to the

RGB-N model to generate manipulation scores. Table 3

shows the average manipulation scores of different com-

positing algorithms. Our model obtains the lowest RGB-

N score, which indicates that the RGB-N model considers

composite images generated by our GCC-GAN model are

more realistic compared to baselines.

5. Conclusion

We proposed GCC-GAN for image compositing which

considers geometric, color, and boundary consistency.

Based on experiments with synthesized data as well as real-

world data, we show that both geometric and color consis-

Method Average RGB-N Score

Alpha composition 75.4%

Poisson blending [27] 75.8%

Deep harmonization [30] 77.0%

Pix2Pix [11] 69.1%

GCC-GAN (Ours) 63.7%

Real image 57.8%

Table 3. Average manipulation score for different compositing

algorithms. The score is generated by a state-of-the-art manip-

ulation detection algorithm [34] where a higher score indicates a

higher possibility that the image is manipulated. GCC-GAN is

able to generate more realistic images that fool the manipulation

detection algorithm. Note that Poisson blending and deep har-

monization perform worse than alpha composition probably be-

cause the compositing process introduces additional artifacts that

are captured by the manipulation detection algorithm.

Figure 9. Failure cases. (1) GCC-GAN does not incorporate pose

information and does not learn the semantic layout of the street.

Therefore, the composite image contains a car with unrealistic

pose. (2) GCC-GAN generates an unrealistic image due to seg-

mentation error and motion blur, which is not accounted for. (3)

Since most of our training data are color images, GCC-GAN com-

posites a color train into a black and white background. (4) GCC-

GAN performs better with rigid objects and has difficulty com-

positing object with diverse poses such as animals.

tency are crucial for generating realistic-looking compos-

ite images. We also show that GCC-GAN yields better re-

sults compared to several state-of-the-art baselines for ex-

periments involving human perception and image manip-

ulation detection. Despite the promising results, we also

show the limitations of GCC-GAN, such as failing to deal

with objects with diverse poses. Future work includes in-

corporating pose information into our image compositing

framework and using GCC-GAN to improve image manip-

ulation detection algorithms.
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