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Abstract

Recent studies have shown remarkable advances in 3D

human pose estimation from monocular images, with the

help of large-scale in-door 3D datasets and sophisticated

network architectures. However, the generalizability to dif-

ferent environments remains an elusive goal.

In this work, we propose a geometry-aware 3D repre-

sentation for the human pose to address this limitation by

using multiple views in a simple auto-encoder model at the

training stage and only 2D keypoint information as super-

vision. A view synthesis framework is proposed to learn the

shared 3D representation between viewpoints with synthe-

sizing the human pose from one viewpoint to the other one.

Instead of performing a direct transfer in the raw image-

level, we propose a skeleton-based encoder-decoder mech-

anism to distil only pose-related representation in the latent

space. A learning-based representation consistency con-

straint is further introduced to facilitate the robustness of

latent 3D representation. Since the learnt representation

encodes 3D geometry information, mapping it to 3D pose

will be much easier than conventional frameworks that use

an image or 2D coordinates as the input of 3D pose esti-

mator. We demonstrate our approach on the task of 3D hu-

man pose estimation. Comprehensive experiments on three

popular benchmarks show that our model can significantly

improve the performance of state-of-the-art methods with

simply injecting the representation as a robust 3D prior.

1. Introduction

3D human pose estimation refers to estimating 3D loca-

tions of body parts given an image or a video. This task is
an active research topic in the computer vision community 
for serving as a key step for many applications, e.g., action

recognition, human-computer interaction, and autonomous
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done during the internship at Sense-Time Research. 
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Figure 1: Motivation. Most state-of-the-arts usually directly learn

the 3D poses from monocular images (as shown in (a)), or first es-

timate 2D poses and then lift 2D poses to 3D poses (as shown

in (b)). Both categories require sophisticated deep network ar-

chitectures and abundant annotated training samples. Instead, we

consider learning a geometry representation from multi-view in-

formation with only 2D annotations as supervision. The learnt

representation could map to 3D pose with a shallow network and

less annotated training samples, as shown in (c).

driving. Significant advances in particular datasets have

been achieved in recent years due to the abundant anno-

tations and sophisticated designed deep neural networks.

However, since precise 3D annotation requires large efforts,

and usually subjects to specific conditions in practice, like

motions, environments, and appearances, etc., the bottle-

neck of generalizability still exists.

Weakly-supervised learning provides an alternative

paradigm for learning robust geometry representation with-

out requiring extensive precise 3D annotation. Most of

approaches [42, 27, 25, 38] leverage knowledge transfor-

mation to learn the robustness by training 3D annotations

with abundant 2D annotations in-the-wild. These meth-

ods face the difficulties of large domain shift between con-

strained lab environment for 3D annotations and uncon-

strained in-the-wild environment for 2D annotations. Some

approaches try to represent body shape through multiple

view images acquired by synchronized cameras with the

usage of view-consistency property [27], pre-defined para-

metric 3D model fitting [3, 23, 10], or by sequence with

the usage of time-independent features [13]. Nevertheless,

fitting a pre-defined 3D model or exploiting limited multi-
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view information in a particular dataset can hardly capture

all subtle poses of the human body.

The emergence of approaches for novel view synthesis,

e.g., [8, 31], provides an appealing and succinct solution

for capturing geometry representation with multi-view in-

formation. However, despite the success of this field on

many generic objects, like chairs, cars, and planes, it is non-

trivial to utilize existing frameworks to learn geometry rep-

resentation for the human body, since the human body is

articulated and much more deformable than rigid objects.

The objective of this paper is to devise a simple yet effec-

tive framework that learns a 3D geometry-aware structure

representation of human pose with only accessible 2D an-

notation as supervision. In particular, we use an encoder-

decoder to generate a novel view pose from a given view

pose. The latent code of the encoder-decoder is regarded as

the desired geometry representation. Instead of generating

the novel view pose on image-level [13, 2], we propose the

use of the 2D skeleton map as a compact medium. Con-

cretely, we first map the source and target images into 2D

skeleton maps, then an encoder-decoder is trained to syn-

thesis target skeleton from source skeleton.

Introducing the 2D skeleton as the source/target space of

the encoder-decoder is beneficial for learning a robust ge-

ometry representation. Firstly, 2D skeleton could be easily

obtained from an image with the usage of well-studied 2D

human pose estimator [20, 5, 15], which is accurate and ro-

bust under diverse poses, appearances and environment con-

ditions. This advantage could guarantee body pose and ge-

ometry information are faithfully kept. Secondly, skeleton

representation avoids the variances among datasets, which

could be leveraged to cover pose changes as much as possi-

ble by training existing datasets together and augment sam-

ples on continuous views. Thirdly, the representation in the

latent space could be simply distilled to only pose-related

information without consideration of disentangling shape

with appearance and other unessential nature of encoding

geometry information.

However, the premise of obtaining a robust geometry

representation under an encoder-decoder framework is the

accurate generation of the target view. While, there is no

theoretical assurance for generating the correct one, since

the conventional view synthesis losses (e.g., reconstruction

loss and adversarial loss) do not facilitate semantic infor-

mation. To address the problem, we introduce a representa-

tion consistency loss in latent space to constrain the process

without requiring any other auxiliary information.

We summarize our contributions as follows:

1) We propose a novel weakly-supervised encoder-decoder

framework to learn the geometry-aware 3D representa-

tion for the human pose with multi-view data and only

existing 2D annotation as supervision. To distil the rep-

resentation from unessential factors, and meanwhile in-

crease the training space, a skeleton-based view synthe-

sis is introduced. Our approach allows substantial 3D

pose estimator to generalize well in different conditions.

2) To ensure the robustness of the desired representation,

a representation consistency loss is introduced to con-

strain the learning process of latent space. In contrast to

conventional weakly-supervised methods which require

auxiliary information, our framework is more flexible

and easier to train and implement.

3) A comprehensive quantitative and qualitative evaluation

on public 3D human pose estimation datasets shows the

significant improvements of our model applied on state-

of-the-art methods, which demonstrates the effective-

ness of learnt 3D geometry representation to pose es-

timation task.

2. Related Work

Geometry-Aware Representations. To capture the in-

trinsic structure of objects, existing studies [37, 31, 13, 41]

typically disentangle visual content into multiple predefined

factors like camera viewpoints, appearance and motion.

Some works [36, 40] leverage the correspondence among

intra-object instance category to encode the structure rep-

resentation. [40] discovery landmark structure as an inter-

mediate representation for image autoencoding with several

constraints. Other approaches utilize multiple views to ei-

ther directly learn the geometry representation [30, 39, 9]

with object reconstruction, or take advantage of view syn-

thesis [24] to learn the structure with shared latent repre-

sentation between views. For example, [24] learn 3D hand

pose representation by synthesizing depth maps under dif-

ferent views. [13] conditionally generate an image of the ob-

ject from another one, where the generated image differs by

acquisition time or viewpoint, to encourage representation

distilled to object landmarks. These methods mainly focus

on structure representation of generic objects or hand/face

pose. Whereas, the human body is articulated and much

more deformable. How to capture the geometry represen-

tation of the human body with fewer data and simpler con-

straints is still an open question.

3D Human Pose Estimation. Most of the existing stud-

ies for 3D human pose estimation benefit from the availabil-

ity of large-scale datasets and sophisticated deep-net archi-

tectures. These methods could be roughly categorized into

fully-supervised and weakly-supervised manners.

A vast amount of fully-supervised 3D pose estimation

methods via monocular image exist in the literature [17,

19, 4, 33]. Despite the performance these methods achieve,

modeling 3D mapping from a given dataset limits their gen-

eralizability due to the constrained lab environment, limited
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Figure 2: The framework of learning a geometry representation for 3D human pose in a weakly-supervised manner. There are three

main components. (a)Image-skeleton mapping module is used to obtain 2D skeleton maps from raw images. (b)View synthesis module is

in a position to learn the geometry representation in latent space by generating skeleton map under viewpoint j from skeleton map under

viewpoint i. (c) Since there is no explicit constrain to facilitate the representation to be semantic, a representation consistency constrain

mechanism is proposed to further refine the representation.

motion and inter-dataset variation.1

Several works focus on weakly-supervised learning to

increase the diversity of samples and meanwhile restrain the

usage of labeled 3d annotated data. For example, synthesize

training data by deforming a human template model with

known 3D ground truth [32], or generating various fore-

ground/background [18]. [42] proposes to transform knowl-

edge from 2D pose to 3d pose estimation network with

re-projection constraint to 2D results. A converse strat-

egy is employed in [38] to distil 3D pose structure to un-

constrained domain under an adversarial learning frame-

work. [23] proposes to learn the parameters of the statistical

model SMPL [16] to obtain 3D mesh from image with an

end-to-end network, and regresses 3d coordinates from the

mesh. Other approaches [27, 43] exploit views consistency

with the usage of multiple viewpoints of the same person.

Nevertheless, these methods still rely on a large quantity of

3D training samples or auxiliary annotations, like silhou-

ettes [6] and depth [43] to initialize or constrain the models.

In contrast to above approaches, our framework aims at

discovering a robust geometry-aware 3D representation of

human pose in latent space, with only 2D annotation in

hand. This allows us to train the subsequent monocular 3D

pose estimation network with much less labeled 3D data.

Recently, a concurrent work is published in the community

with similar spirits. In contrast to [26] that can only han-

dle one particular dataset due to the dependency of appear-

ance and inter-frame information during the training pro-

cess, our framework tries to break the gap of inter-dataset

1Inter-dataset variation refers to bias among different datasets on view-

points, environments, the definition of 3D key points, etc.

variation, which permits more practical usages. Moreover,

our framework is complementary to previous 3D pose esti-

mation works, and can use current approaches as the base-

line with the injection of learnt representation as a 3D struc-

ture prior.

3. Weakly-Supervised Geometry Representa-

tion

Recall that our goal is to learn a geometry-aware 3D rep-

resentation G for the human pose, which is expected to be

robust to diverse pose changes and can be learnt with less

effort than conventional weakly-supervised methods. To-

ward this end, we propose to discover the geometry relation

between paired images(Iit , I
j
t ), which are acquired from

synchronized and calibrated cameras, with the only exist-

ing 2D coordinate annotation used for supervision, where i

and j denote different viewpoints, t denotes acquiring time.

The proposed approach is depicted in Figure 2. The frame-

work includes three components: an image-skeleton map-

ping component, a skeleton-based view synthesis compo-

nent, and a representation consistency constraint compo-

nent. The desired representation is encoded in the bottle-

neck of the encoder-decoder on the view synthesis compo-

nent. In the inference phase, the learnt representation will

be obtained by forwarding a single image through the first

two components, as illustrated in Figure 1(c). We will detail

each component in the remainder of this section.

3.1. Image­skeleton mapping

It is habitual to directly feed forward the raw image

to the network to learn geometry representation [13, 31].

However, under the setting of multiple-view with encoder-
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decoder framework, we demonstrate that utilizing only 2D

skeleton information is sufficient and better than raw im-

ages to learn the representation, as shown in the Sec 4.

Consequently, given a pair of raw images (Iit , I
j
t ) with the

size of W ×H under different viewpoints of camera i and

camera j respectively, a pre-trained 2D human pose es-

timator2 is firstly applied to obtain two stacks of K key

point heatmaps Ci
t , and C

j
t . Then, the corresponding 2D

skeleton maps, regarded as a person tree-structured kine-

matic graph, are constructed from the heatmaps with 8 pix-

els width. Consequently, we are given the binary skeleton

maps pair (Si
t , S

j
t ), where S

(·)
t ∈ {0, 1}(K−1)×W×H .

Intuitively, we could sample (i, j) randomly from ex-

isting cameras. However, such a sampling strategy will

lead to two problems in practice. Firstly, the finite samples

limit the diversity of the training set. Secondly, the nonuni-

form distribution3 of viewpoints will increase the difficulty

of network learning. To solve the above problems, it is

straightforward to utilize virtual cameras-based data aug-

mentation. While, conventional methods can only achieve

in-plane rotations due to image-level inputs [13, 26]. In-

stead, we draw on virtual cameras applied in [7] to increase

training pairs on a torus4. Different from [7] that gener-

ate new 2D coordinates-3D coordinates pairs, we randomly

sample 2D skeleton pairs. Thus, we could obtain infinite

training pairs and calculate their relative rotation matrix in

theory. This augmentation strategy facilitates our model to

be robust to different camera configurations.

3.2. Geometry representation via view synthesis

Assume that we are given a training set T =
{(Si

t , S
j
t , Ri→j)}

NT

t=1 containing pairs of two views of pro-

jection of same 3D skeleton (Si
t , S

j
t ) and relative rotation

matrix Ri→j from coordinate system of camera i to j, af-

ter image-skeleton mapping step. We now turn to discover

the geometry representation G. A straightforward way for

learning representation in unsupervised/weakly-supervised

manner is to utilize autoencoding mechanism reconstruct-

ing input image. Then, the latent codes of the auto-encoder

could be regarded as the features that encode compact in-

formation of the input [40, 14]. While, such a represen-

tation neither contains geometry structure information nor

provides more useful information for 3D pose estimation

than 2D coordinates, as demonstrated in Figure 6.

The proposed ‘skeleton-based view synthesis’ step

draws an idea from novel view synthesis methods, which

usually rely on the encoder-decoder framework to generate

image under a new viewpoint of the same object, given an

2We follow previous works [42, 19, 17] to train the 2D estimator on

MPII dataset.
3For example, in Human3.6M dataset [11], four cameras are approxi-

mately located at four corners of a rectangle.
4Please refer to the supplemental materials for detail operation.

SG DG GT

Figure 3: An illustration of the effectiveness of representation

consistency constraint. Compared with only applying the ‘image-

skeleton mapping+view synthesis’(SG), the representation consis-

tency constraint(DG) is able to refine the implausible poses, which

is more similar to the ground-truth poses(GT)(better zoom in).

image under the known viewpoint as input. Without the loss

of generality, the input images are regarded as the source

domain, and the generated ones are regarded as the target

domain. We tailor the process to our problem as follows.

Let Si = {Si
t}

V
i=1 be the source domain, where V de-

notes the amount of viewpoints, and Sj = {Sj
t }

V
j=1 be

the target domain with j 6= i. We are interested in learn-

ing an encoder φ : Si → G that capture the geometry

structure of the human pose. The encoder maps a source

skeleton Si
t ∈ Si into a latent space Gi ∈ G. In order

to learn G, the property of the shared representation be-

tween the source and target domains should be satisfied.

Thus, under the control of relative rotation matrix Ri→j ,

Gi should be decoded back to the target view with a decoder

ψ : Ri→j × G → Sj . Besides, if G is close to the manifold

of 3D pose coordinates, the learning process of subsequent

monocular 3D pose estimation will be simplified and less

labeled 3D data will be needed. So far, it is difficult to

demonstrate whether the learnt Gi satisfy the assumption,

since the framework doesn’t contain any explicit constraint

to Gi. To this end, the dimensional space of G should be

constrained at first. We formulateGi as the set ofm discrete

points on a 3η-dimensional feature space with the form of

a 3η-dimensional and M -length feature vector in practice,

i.e., G = [g1, g2, · · · , gM ]⊤ with gm = (xm, ym, zm). We

adopt L2 reconstruction loss to the learning process:

Lℓ2(φ · ψ, θ) =
1

NT

∑
‖ψ(Ri→j × φ(Si

t))− S
j
t ‖

2. (1)

While the combination of reconstruction loss, adversar-

ial loss and perceptual loss are widely used in synthesis

tasks [2, 35, 34], the rest two losses will introduce artificial

noise to our framework. Since skeleton maps only contain

low-frequency information when regarded as the images.

3.3. Representation consistency constraint

As shown in Figure 3, only applying ‘image-skeleton

mapping+view synthesis’ components may lead to unreal-

istic generation on target pose when there are large self-
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occlusions on source view, which will lead the learnt rep-

resentation G misleading the regression of subsequent 3D

pose estimation task. Since there is no explicit constraint

on latent space to facilitate G to be semantic. To this

end, we propose a representation consistency constraint to

the framework. We assume there exists an inverse map-

ping (one-to-one) between source domain and target do-

main, on the condition of the known relative rotation ma-

trix. Then, we could find an encoder µ : Sj → G maps

target skeleton S
j
t to the latent space G̃j ∈ G, and a de-

coder ν : Rj→i×G→ Si maps the representation G̃j back

to source skeleton Si
t on the condition of Rj→i. Thus, for

paired data (Si
t , S

j
t ), Gi and G̃j should be the same shared

representation on G with different rotation-related coeffi-

cients. We add this relationship, namely representation con-

sistency, to the network explicitly with the formulation as:

lrc = ‖f ×Gi − G̃j‖
2, (2)

where f denotes the rotation-related transformation that

map Gi to G̃j . This loss function is well-defined when

f is known. To release the constraint, we simply assume

f = Ri→j . In practice, we implement the representation

consistency constraint by designing a bidirectional encoder-

decoder framework, which hinges on two encoder-decoder

networks with same architecture, i.e., generator(φ, ψ) and

generator(µ, ν), to perform view synthesis in the two di-

rections simultaneously. Specifically, let Gij be the rotated

Gi on generator(φ, ψ)-branch, we enforce normalizedGij

to be close to normalized G̃j with modified Eqn 2:

lrc =
M∑

m=1

‖gijm − gjm‖22. (3)

The general idea behind the formula is that if the mapping

could be perfectly modeling, the latent codes Gi and G̃j

would be the same geometry representation under world

coordinate system mapping to different camera coordinate

systems. In other words, the consistency constraint enforces

the learnt latent codes containing explicit physical mean-

ings. Thus, features of implausible poses could be distilled.

With more robust representation, subsequent pose estima-

tion results will be improved.

Besides, since the latent codes are formulated as the set

ofm discrete points on a 3η-dimensional feature space, they

could be regarded as 3D point clouds. In Figure 4, we show

both point clouds interpolations with/without proposed rep-

resentation constraint to illustrate the claim qualitatively.

As can be seen from the figure, the linear interpolation re-

sults of the one with representation constraint show more

reasonable coverage of the manifold, and better consistency

between decoded 2D skeleton on the target domain and re-

gressed 3D pose. This phenomenon demonstrates the learnt

Pose_1 Pose_2Interpolations

(a)

(b)

Figure 4: Illustration of point cloud interpolation. Pose 1 and

Pose 2 are two randomly sampled poses under same camera view-

point. (a) and (b) show the interpolation results of the latent codes

learned without/with representation constraint, respectively. There

are two main differences. First, from first rows in (a) and (b), (b)

shows more smooth interpolation results (for example, the change

of arms from the fifth column to the sixth column), than the ones

in (a). Second, the lower part of the body should gradually stand

upright and spraddle from left to right for both 2D skeleton and

3D pose. However, it is inconsistent between the 2D skeleton and

3D pose in (a). Instead, the results in (b) are consistent.

latent codes have extracted better 3D geometry representa-

tions of the human shape with the help of representation

constraint.

We train our bidirectional model in an end-to-end man-

ner, minimizing the following total loss:

L = Lℓ2(φ · ψ, θ) + Lℓ2(µ · ν, ζ) + Lrc(φ, µ, θ), (4)

where θ and ζ denotes the parameters of two encode-

decoder networks, respectively.

3.4. 3D human pose estimation by learnt represen­
tation

Recall that our ultimate goal is to inference 3D human

pose in the form of b = {(xp, yp, zp)}Pp=1 from a monoc-

ular image I , where P denotes the amount of body joint

locations, and b ∈ B. In this section, we discuss how to

find a function F : I → B to learn the pose regression.

Above components first lift the raw image to a 2D skeleton

representation, then the 2D skeleton is lifted to G, which is

a 3D geometry representation for human body. Thus, we

could split function F into three sub-functions: F2D, FG

and Fregression, with:

F(I) = Fregression(FG(F2D(I))) = Fregression(G),
(5)

where F2D denotes the first component, and FG denotes

the second component. Since G ∈ R
3×M and b ∈ R

3×P ,

Fregression(·) could be a linear function to decode G to

b. In practice, we implement the regression part by sim-

ply constructing a two-layers fully-connected neural net-

work. Specifically, we firstly feed forward the raw image
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to the fixed components ‘image-skeleton mapping+φ’ to

obtain G, then G is regarded as the input to Fregression(·)
to regress the final coordinates. Only leveraging a small set

of labeled samples to train the regression part could lead to

satisfied accuracy, as demonstrated in Sec 4.

4. Experiments

Datasets. We evaluate our approach both quantitatively

and qualitatively on popular human pose estimation bench-

marks: Human3.6M [11], MPI-INF-3DHP [18], and MPII

Human Pose [1]. Human3.6M is the largest dataset for

3D human pose estimation, which consists of 3.6 million

poses and corresponding video frames featuring 11 actors

performing 15 daily activities from 4 camera views. MPI-

INF-3DHP is a recently proposed 3D benchmark consists

of both constrained indoor and complex outdoor scenes.

MPII Human Pose dataset is a challenging benchmark for

estimating in-the-wild 2D human pose. Following previous

methods [38, 7, 22, 17], we adopt this dataset for evaluating

the cross-domain generalization qualitatively.

Evaluation Protocols. For Human3.6M dataset, we fol-

low the standard protocol, i.e.,Protocol#1, to use all 4 cam-

era views in subjects 1, 5, 6, 7 and 8 for training, and same

all 4 camera views in 9 and 11 for testing. In some works,

the predictions are further aligned with the ground-truth via

a rigid transformation [38, 7], which is referred as Proto-

col#2. To further validate the robustness of different models

to new subjects and views, we follow [7] to use subjects 1,

5, 6, 7 and 8 in 3 camera views for training, while 9 and

11 in the other camera view for testing. This protocol is re-

ferred as Protocol#3. The evaluation metric is the Mean Per

Joint Position Error (MPJPE), measured in millimeters.

Implementation Details. For ‘image-skeleton map-

ping’ module, we adopt a state-of-the-art 2D pose estima-

tor [20] to perform 2D pose detection. We adopt the net-

work architecture on the U-Net as the backbone of our

generator(·, ·). The skip connections are removed to en-

sure all information can be encoded into the latent codes.

For model acceleration, we also halve the feature channels

and modify the input and output to 15-channel 64×64. The

regression module is a two-layer fully-connected network

of dimensions 1024 and 48, which is referred to as Regres-

sion#1. To further validate the flexibility and complemen-

tarity of our proposed framework to other approaches, we

also try to use state-of-the-art 3D pose estimators [17, 29]

as the regression components. The learnt representation G,

behaves as a 3D structure prior, is injected into their frame-

works. These two configurations are referred to as Regres-

sion#2 and Regression#3 respectively. Note that, in order

to evaluate the robustness and flexibility of the proposed ge-

ometry representation in a straightforward manner, we only

forward the geometry representation G to fully connection

layers to match the feature dimension of baselines, and then
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Figure 5: Evaluation on the Human3.6M using different number

of training data. (a) presents the results under MPJPE metric. (b)

presents the results under PMPJPE metric.

directly do element-wise sum with baselines, instead of de-

signing sophisticated feature fusion mechanism to poten-

tially better fuse the representation with original features.

All the experiments are conducted on Titan X GPUs. Please

refer to the supplemental materials for architecture details.

Results on Human3.6M. We firstly validate the effec-

tiveness of learnt representation G to 3D human pose esti-

mation task, on the condition of using different amount of

3D annotated samples (under Protocol#1) to train the re-

gression module. We adopt Regression#1 as the regressor

with only G as the input. The configuration is referred as

OursShallow. Since only 2D annotation is utilized to learn

G, we also list the performances of directly regressing 3D

pose coordinates from 2D detections with the same regres-

sor, which is referred to Baseline#1. Figure 5 shows the

results. The phenomenon is consistent on both MPJPE and

PMPJPE metrics. Given only about 500 annotated train-

ing samples, our method achieves 17.98% relative improve-

ments than Baseline#1 on MPJPE, and 3.90% on PMPJPE.

The margin becomes larger when more annotated samples

are used for training. Our general improvements over dif-

ferent setting demonstrate the robustness of the learnt rep-

resentation to different amount of 3D training samples. We

also perform above experiments on Regression#2 and Re-

gression#3 to further verify the effectiveness of the learnt

representation to strong baselines (For space saving, the de-

tail results are shown in the supplementary material). Under

fewer amount of training samples, our proposed represen-

tation could help improve the performance of baselines to

comparable results with the one trained on a larger amount

of samples by themselves.

We then evaluate the models under all three protocols to

demonstrate the effectiveness and flexibility of learnt rep-

resentation G as a robust 3D prior to different 3D human

pose estimation methods. Table 1 reports the comparison

with current state-of-the-arts. We draw two key observa-

tions as follows: (1) Directly regressing 3D poses with only

learnt geometry representation G as input and simple 2-

layer fc architecture (Ours+ Regression#1) could achieves

reasonable 3D pose estimation results. (2) As a 3D geome-

try prior, G could easily help improving the performance

of different backbones coherently, achieving state-of-the-
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Protocol #1 Direction Discuss Eat Greet Phone Photo Pose Purchase Sit SitDown Smoke Wait WalkDog Walk WalkT. Avg.

Martinez et al. (ICCV’17) [17] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Fang et al. (AAAI’18) [7] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Sun et al. (ICCV’17) [28] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Yang et al. (CVPR’18) [38] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Pavlakos et al. (CVPR’18) [21] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Sun et al. (ECCV’18) [29] 46.5 48.1 49.9 51.1 47.3 43.2 45.9 57.0 77.6 47.9 54.9 46.9 37.1 49.8 41.2 49.8

Ours + Regression#1 (2 fc layers) 63.9 73.7 70.9 76.1 82.6 69.5 75.1 96.1 120.6 75.4 96.8 78.7 69.1 83.5 72.2 80.2

Ours + Regression#2 ( [17]) 45.9 53.5 50.1 53.2 61.5 72.8 50.7 49.4 68.4 82.1 58.6 53.9 57.6 41.1 46.0 56.9

Ours + Regression#3 ( [29]) 41.1 44.2 44.9 45.9 46.5 39.3 41.6 54.8 73.2 46.2 48.7 42.1 35.8 46.6 38.5 46.3

Protocol #2 Direction Discuss Eat Greet Phone Photo Pose Purchase Sit SitDown Smoke Wait WalkDog Walk WalkT. Avg.

Moreno-Noguer (CVPR’17) [19] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0

Zhou et al. (Arxiv’17) [44] 47.9 48.8 52.7 55.0 56.8 65.5 49.0 45.5 60.8 81.1 53.7 51.6 54.8 50.4 55.9 55.3

Sun et al. (ICCV’17) [28] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

Martinez et al. (ICCV’17) [17] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Fang et al. (AAAI’18) [7] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Sun et al. (ECCV’18) [29] 40.9 41.4 45.0 45.2 42.1 37.6 41.1 52.0 71.4 42.5 47.4 41.6 32.0 42.6 36.9 44.1

Yang et al. (CVPR’18) [38] 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7

Ours + Regression#1 (2 fc layers) 47.0 51.8 53.3 55.3 59.7 48.4 51.7 72.1 90.6 56.6 65.4 55.1 50.2 59.4 53.9 58.2

Ours + Regression#2 ([17]) 36.5 41.0 40.9 43.9 45.6 53.8 38.5 37.3 53.0 65.2 44.6 40.9 44.3 32.0 38.4 44.1

Ours + Regression#3 ([29]) 36.9 39.3 40.5 41.2 42.0 34.9 38.0 51.2 67.5 42.1 42.5 37.5 30.6 40.2 34.2 41.6

Protocol #3 Direction Discuss Eat Greet Phone Photo Pose Purchase Sit SitDown Smoke Wait WalkDog Walk WalkT. Avg.

Pavlakos et al. (CVPR’17) [22] 79.2 85.2 78.3 89.9 86.3 87.9 75.8 81.8 106.4 137.6 86.2 92.3 72.9 82.3 77.5 88.6

Martinez et al. (ICCV’17) [17] 65.7 68.8 92.6 79.9 84.5 100.4 72.3 88.2 109.5 130.8 76.9 81.4 85.5 69.1 68.2 84.9

Zhou et al. (ICCV’17) [42] 61.4 70.7 62.2 76.9 71.0 81.2 67.3 71.6 96.7 126.1 68.1 76.7 63.3 72.1 68.9 75.6

Fang et al. (AAAI’18) [7] 57.5 57.8 81.6 68.8 75.1 85.8 61.6 70.4 95.8 106.9 68.5 70.4 73.89 58.5 59.6 72.8

Sun et al. (ECCV’18) [29] 52.4 50.5 45.0 57.8 49.8 50.3 46.1 57.1 96.3 47.4 56.4 52.1 45.7 53.7 48.7 53.6

Ours + Regression#1 (2 fc layers) 70.8 78.3 84.9 89.2 89.2 78.0 85.6 116.3 142.7 87.0 114.2 88.1 81.5 92.9 80.3 91.4

Ours + Regression#2 ([17]) 60.4 63.6 77.2 69.5 64.8 96.1 64.1 75.0 87.6 111.1 66.6 67.7 70.0 54.8 57.6 71.8

Ours + Regression#3 ([29]) 45.9 48.0 48.6 50.8 48.9 45.1 46.1 57.4 77.3 49.4 54.2 47.2 39.9 49.9 42.9 50.3

Table 1: Quantitative comparisons of Mean Per Joint Position Error (mm) between the estimated pose and the ground-truth on Hu-

man3.6M under Protocol #1,#2 #3. The best score is marked in bold.

art results under all three protocols. Even on the strong

baseline like [29], which is the most state-of-the-art, the

model (Ours+Regression#3) could still have 7% inprove-

ments, achieving 46.3 of mm of error.

Ablation Study. We conduct ablation experiments on

the Human3.6M dataset under Protocol#1 to verify the ef-

fectiveness of different components of our method. The

overall results are shown in Figure 6. The notations and

comparison are as follows:

• BL refers to the 3D pose estimator without learnt rep-

resentation G. We regard this model as the baseline

model of our framework. We train the baseline with

its public implementation [29]. The mean error of the

baseline is 49.8mm.

• BL+I SG refers to the use of raw images to train the

generator(·, ·). We observe a drop of performance

(49.8mm → 52.6mm), which is even worse than

the baseline model. This result suggests that the raw

image-based view synthesis mechanism could not fa-

cilitate the encoding of the representation due to the

lack of the distilling step to distill unnecessary factors

(e.g.,appearance, lighting, and background).

• BL+AE refers to the configuration that the source

and target domain are same during the training of

generator(·, ·). The mean error is 49.9mm, which

is almost the same with the baseline. This result sug-

gests that the latent codes of autoencoding could not

provide more valid information than a pure 2D coor-

49.8

52.6

49.9

48.2

47.4

46.3

42

44

46

48

50

52

54

BL BL+I_SG BL+AE BL+SG BL+SG+AUG BL+DG+AUG

BL BL+I_SG BL+AE BL+SG BL+SG+AUG BL+DG+AUG

Figure 6: Ablation studies on different components in our

method. The evaluation is performed on Human3.6M under Pro-

tocol#1 with MPJPE metric.

dinate information, if there is no special mechanism

incorporated in.

• BL+SG refers to the model that injecting learnt repre-

sentation G to the baseline network as a 3D structure

prior, where G is learnt without representation consis-

tency constraint. Simply adding the learnt G to the

baseline network by concatenation operation instead

of any sophisticated fusion mechanism, the model re-

duces the error by 3.2%(49.8mm → 48.2mm). This

validates the effectiveness and flexibility of our frame-

work to learn the geometry representation in the ar-

ticulated human body. Moreover, comparing with the

results on BL+I SG, BL+SG shows 2D skeleton maps

could provide sufficient information to learn the geom-

etry representation.

• BL+SG+AUG refers to the use of data augmentation

by virtual cameras. The augmentation provides 1.6%
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Figure 7: Qualitative results of our approach on the test split of in-the-wild MPII human pose dataset. Best viewed in color.

lower mean error compared with ‘BL+SG’. In the ab-

lation study that shown in supplemental materials, the

augmentation on other baselines show similar results

of relative improvements.

• BL+DG+AUG refers to the use of representation

consistency constraint. We see a 2.3% error drop

(47.4mm → 46.3mm), showing that our proposed

consistency constraint indeed increase the robust-

ness of the geometry representation G. The con-

straints that conventionally designed in multi-view ap-

proaches, e.g. epipolar divergence [12] and multi-view

consistency [27], require iterative optimization-based

method, like RANSAC, to initialize the process. In

contrast, our representation consistency constraint is

straightforward and purely feed-forward, which is eas-

ier to train and implement.

We further illustrate the ablation study on the configu-

ration of Regression#1 and Regression#2. The observation

is similar to the results shown in Figure 6, while the rel-

ative improvements among different components are more

significant. Please refer to supplemental materials.

Cross-Domain Generalization. Here, we perform three

types of cross-dataset evaluation to further verify some mer-

its of our approaches.

We first demonstrate the generalization ability of the

learnt representation between domains quantitatively. Ta-

ble 2 reports the results of the configuration that train-

ing on Human3.6M and then testing on INF-3DHP. Fol-

lowing [18, 38], we use AUC and PCK as the evalua-

tion metrics. As can be seen from the results, our model

with different regressors present consistent improvements

to their baselines in most cases, which demonstrates the

learnt geometry representation could improve the general-

ization ability of subsequent pose estimator significantly for

its robust to new camera views and unseen poses.

[18] [42] [38] R#1 R#2[17] R#3[29] Ours + R#1 Ours + R#2 Ours + R#3

PCK 64.7 50.1 69.0 41.0 68.0 68.4 61.4 68.7 75.9

AUC 31.7 21.6 32.0 17.1 34.7 29.4 29.4 34.6 36.3

Table 2: Cross-dataset comparison with state-of-the-arts on the

MPI-INF-3DHP dataset with PCK and AUC metrics. R#* indi-

cates Regression#*.

We then demonstrate the generalization ability of our

model to the unconstrained environment qualitatively. Fig-

ure 7 shows the sampled results on the test split of MPII

dataset, where the model is trained on Human3.6M dataset.

As can be seen from the figure, our method is able to accu-

rately predict 3D pose for in-the-wild images.

Finally, we present the benefit of eliminating the inter-

dataset variation to 3D human pose estimation. Since our

framework breaks the gap of inter-dataset variation, differ-

ent 3D human pose benchmarks could be trained together to

increase the diversity. As shown in Figure 8, cross-dataset

training (Human3.6M + MPI-INF-3DHP) shows better ro-

bustness than single-dataset training (Human3.6M) on some

unseen poses of the MPII dataset.

Figure 8: Qualitative comparison on the MPII dataset. The sec-

ond column shows the predictions of training on the Human3.6M

dataset. The third column shows the predictions of cross-dataset

training.

5. Conclusion

We have presented a weakly-supervised method of learn-

ing a geometry-aware representation for 3D human pose es-

timation. Our method is novel in that we take a radically dif-

ferent approach to learn the geometry representation under

multi-view setting. Specifically, we leverage view synthesis

to distill shared representation in the latent space with only

the usage of 2D annotation and simple representation con-

sistency constraint, which provides a new aspect to learn

the representation with fewer annotation efforts and sim-

pler network architecture. Meanwhile, we bridge different

3D human pose datasets by introducing a skeleton-based

encoder-decoder. Experimental results validate the effec-

tiveness and flexibility of the proposed framework on 3D

human pose estimation task.
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