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Abstract

We propose a new learning paradigm, Local to Global

Learning (LGL), for Deep Neural Networks (DNNs) to im-

prove the performance of classification problems. The core

of LGL is to learn a DNN model from fewer categories (lo-

cal) to more categories (global) gradually within the entire

training set. LGL is most related to the Self-Paced Learning

(SPL) algorithm but its formulation is different from SPL.

SPL trains its data from simple to complex, while LGL from

local to global. In this paper, we incorporate the idea of

LGL into the learning objective of DNNs and explain why

LGL works better from an information-theoretic perspec-

tive. Experiments on the toy data, CIFAR-10, CIFAR-100,

and ImageNet dataset show that LGL outperforms the base-

line and SPL-based algorithms.

1. Introduction

Researchers have spent decades to develop the theory

and techniques of Deep Neural Networks (DNNs). Now

DNNs are very popular in many areas including speech

recognition [9], computer vision [16, 20], natural language

processing [30] etc. Some techniques have been proved to

be effective, such as data augmentation [32, 29] and iden-

tity mapping between layers [10, 11]. Recently, some re-

searchers have focused on how to improve the performance

of DNNs by selecting training data in a certain order, such

as curriculum learning [3] and self-paced learning [17].

Curriculum learning (CL) was first introduced in 2009

by Bengio et al [3]. CL is inspired by human and animal

learning which suggests that a model should learn samples

gradually from a simple level to a complex level. However,

the curriculum often involves prior man-made knowledge

that is independent of the subsequent learning process. To

alleviate the issues of CL, Self-Paced Learning (SPL) [17]
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Figure 1. An illustration of the difference between transfer learn-

ing and LGL. A,B and C denote three classes in the training set.

was proposed to automatically generate the curriculum dur-

ing the training process. SPL assigns a binary weight to

each training sample. Whether or not to choose a sample

is decided based on the sample’s loss at each iteration of

training. Since [17], many modifications of the basic SPL

algorithm have emerged. Moreover, [13] introduces a new

regularization term incorporating both easiness and diver-

sity in learning. [12] designs soft weighting (instead of bi-

nary weight) methods such as linear soft weighting and log-

arithmic soft weighting. [14] proposes a framework called

self-paced curriculum learning (SPCL) which can exploit

both prior knowledge before the training and information

extracted dynamically during the training.

However, some SPL-based challenges still remain: 1) It

is hard to define simple and complex levels. CL defines

these levels according to prior knowledge, which needs to

be annotated by human. This process is extremely com-

plicated and time-consuming, especially when the number

of categories is large. Another solution is to choose sim-

ple samples according to the loss like SPL. However, the

samples’ losses are related to the choice of different mod-

els and hyper-parameters, since it is likely that the loss of a

sample is large for one model but small for another; 2) SPL-
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based algorithms always bring additional hyper-parameters.

One must tune hyper-parameters very carefully to generate

a good curriculum, which increases the difficulty of training

the model.

To address the above two problems, we propose a new

learning paradigm called Local to Global Learning (LGL).

LGL learns the neural network model from fewer categories

(local) to more categories (global) gradually within the en-

tire training set, which brings only one hyper-parameter (

inverse proportional to how many classes to add at each

time) to DNN. This new hyper-parameter is also easy to be

tuned. Generally, we can improve the performance of DNN

by increasing the value of the new hyper-parameter.

The intuition behind LGL is that the network is usually

better to memorize fewer categories1 and then gradually

learns from more categories, which is consistent with the

way people learn. The formulation of LGL can be better

understood by comparing it with transfer learning shown in

Figure 1. In transfer learning, the initial weights of DNNs

are transferred from another dataset. But in LGL, the ini-

tial weights of DNNs are transferred from the self-domain

without knowledge of other datasets. The traditional meth-

ods randomly initialize the weights, which do not consider

the distributions of the training data and may end up with

a bad local minimum; whereas LGL initializes the weights

which capture the distributions of the trained data. So LGL

can be also seen as an initialization strategy of DNNs. In

this paper, we explain the methodology of LGL from the

mathematical formulation in detail. Instead of concentrat-

ing on sample loss (as in SPL), we pay attention to training

DNN effectively by continually adding a new class to DNN.

There are three main contributions from this paper:

• We propose a new learning paradigm called Local to

Global Learning (LGL) and incorporate the idea of

LGL into the learning objective of DNN. Unlike SPL,

LGL guides DNN to learn from fewer categories (lo-

cal) to more categories (global) gradually within the

entire training set.

• From an information-theoretic perspective (condi-

tional entropy), we confirm that LGL can make DNN

more stable to train from the beginning.

• We perform the LGL algorithm on the toy data,

CIFAR-10, CIFAR-100, and ImageNet dataset. The

experiments on toy data show that the loss curve of

LGL is more stable and the algorithm converges faster

than the SPL algorithm when the model or data distri-

butions vary. The experiments on CIFAR-10, CIFAR-

100 and ImageNet show that the classification accu-

racy of LGL outperforms the baseline and SPL-based

algorithms.

1This means that a higher classification performance is achieved com-

pared to classifying more categories.

2. Related Work

SPL has been applied to many research fields. [24] uses

SPL for long-term tracking problems to automatically select

right frames for the model to learn. [28] integrates the SPL

method into multiple instances learning framework for se-

lecting efficient training samples. [27] proposes multi-view

SPL for clustering which overcomes the drawback of stuck

in bad local minima during the optimization. [31] intro-

duces a new matrix factorization framework by incorporat-

ing SPL methodology with traditional factorization meth-

ods. [8] proposes a framework named self-paced sparse

coding by incorporating self-paced learning methodology

with sparse coding as well as manifold regularization. The

proposed method can effectively relieve the effect of non-

convexity. [21] designs a new co-training algorithm called

self-paced co-training. The proposed algorithm differs from

the standard co-training algorithm that does not remove

false labelled instances from training. [18] brings the idea

of SPL into multi-task learning and proposes a framework

that learns the tasks by simultaneously taking into consider-

ation the complexity of both tasks and instances per task.

Recently, some researchers have combined SPL with

modern DNNs. [19] proposes self-paced convolutional net-

work (SPCN) which improves CNNs with SPL for enhanc-

ing the learning robustness. In SPCN, each sample is as-

signed a weight to reflect the easiness of the sample. A

dynamic self-paced function is incorporated into the learn-

ing objective of CNNs to jointly learn the parameters of

CNNs and latent weight variable. However, SPCN seems

to only work well on simple dataset like MNIST. [2] shows

that CNNs with the SPL strategy do not show actual im-

provement on the CIFAR dataset. [15] shows that when

there are fewer layers in the CNN, an SPL-based algorithm

may work better on CIFAR. But when the number of lay-

ers increases, like for VGG [23], the SPL algorithm per-

forms almost equal to that of traditional CNN training. [25]

proposes a variant form of self-paced learning to improve

the performance of neural networks. However, the method

is complicated and can not be applied to large dataset like

ImageNet. Based on the above analysis of SPL’s limita-

tions, we develop a new data selection method for CNNs

called Local to Global Learning (LGL). LGL brings only

one hyper-parameter (easy to be tuned) to the CNN and per-

forms better than the SPL-based algorithms.

There are still two learning regimes similar to our work

called Active Learning [6] and Co-training [4] which also

select the data according to some strategies. But in ac-

tive learning, the labels of all the samples are not known

when the samples are chosen. Co-training deals with semi-

supervised learning in which some labels are missing. Thus,

these two learning regimes differ in our setting where the la-

bels of all the training data are known.
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3. Self-Paced Learning

Let us first briefly review SPL before introducing LGL.

Let L(yi, g(xi,w)) denote the loss of the ground truth la-

bel yi and estimated label g(xi,w), where w represents the

parameters of the model. The goal of SPL is to jointly

learn the model parameters w and latent variable v =
[vi, . . . , vn]

T by minimizing:

min
w,v∈[0,1]n

n
∑

i=1

viL(yi, g(xi,w)) + f(v;λ) . (1)

In the above, v denotes the weight variables reflecting the

samples’ importance; λ is a parameter for controlling the

learning pace; f is called the self-paced function which con-

trols the learning scheme. SPL-based algorithms are about

to modify f to automatically generate a good curriculum

during the learning process.

In the original SPL algorithm [17], v ∈ {0, 1}n, and f

is chosen as:

f(v;λ) = −λ||v||1 = −λ

n
∑

i=1

vi . (2)

Another popular algorithm is called SPLD (self-paced

learning with diversity) [13] which considers both ||v||1 and

the sum of group-wise ||v||2. In SPLD, f is chosen as:

f(v;λ, γ) = −λ||v||1 − γ||v||2,1 . (3)

In general, iterative methods like Alternate Convex

Search (ACS) are used to solve (1), where w and v are

optimized alternately. When v is fixed, we can use exist-

ing supervised learning methods to minimize the first term

in (1) to obtain the optimal w∗. Then when w is fixed,

and suppose f is adopted from (2), the global optimum

v
∗ = [v∗i , . . . , v

∗
n]

T can be explicitly calculated as:

v
∗
i =

{

1, L(yi, g(xi,w)) < λ,

0, otherwise.
(4)

From (4), λ is a parameter that determines the difficulty

of sampling the training data: When λ is small, ‘easy’ sam-

ples with small losses are sent into the model to train; When

we gradually increase λ, the ‘complex’ samples will be pro-

vided to the model until the entire training set is processed.

From the above analysis, the key step in an SPL algo-

rithm is to adjust the hyper-parameter λ at each iteration

of training. In reality, however, we do not know the loss

of each sample before training. Therefore sometimes one

needs to run a baseline (a training algorithm without SPL)

first to observe the average loss at each iteration and then set

an empirical value for λ to increase. For more complex al-

gorithms like SPLD from (3), researchers must control two

parameters λ and γ, which makes the training difficult. To

avoid the difficulty of tuning parameters in the SPL-based

algorithms, we introduce our easy-to-train LGL algorithm.

4. Local to Global Learning

This section goes as follows: In Section 4.1, LGL is de-

fined; In Section 4.2, we incorporate the idea of LGL into

the learning objective of DNN and propose the training al-

gorithm of LGL; In Section 4.3, we analyze the complexity

of training time in LGL; In Section 4.4, we introduce selec-

tion strategies of LGL; In Section 4.5, we explain why LGL

works better from an information-theoretic perspective.

4.1. Definition of LGL

Consider a K-label classification problem, where the set

of labels is K = {1, 2, . . . ,K}. Let the training dataset be

D = {(Xj , Yj) : j = 1, . . . , N}, where N is the number

of training samples, Xj is the j-th data point and Yj is its

label. The i-th cluster, denoted X{i}, is the set of Xj whose

label is i, i ∈ K. In the remaining, we will always use the

word ‘cluster’ to represent ‘class’ in the training set.

Definition 1 For a K-cluster learning problem, the local

to global learning methodology is to iteratively train DNN

by adding a new cluster to the training set at each time.

This process can be described by a learning sequence s =
[s1, s2, . . . , sK ], which is a permutation of the labels of the

clusters, to represent the learning order.

Each cluster X{i} ‘means’ a local area in LGL. From the

definition, LGL is a cluster-based data selection method.

Unlike traditional DNN training of SPL, LGL learns a DNN

model gradually from fewer clusters to more clusters within

the entire training set. Also, the learning order of clusters

may affect the performance of DNN. To find the order of

a learning sequence s, the procedure can be split into two

stages:

1. Select a cluster to start with;

2. Select the next cluster gradually based on the trained

clusters.

In this paper, the initial cluster is selected randomly since

we do not have prior information about all the clusters in

the beginning. It is worth noting that LGL is introduced

for the classification problems, possible future work can be

done to expand LGL to other types of learning regimes such

as regression or unsupervised learning.

4.2. General LGL Algorithm in DNN

Consider a K-label classification problem, let S be a

subset of K = {1, 2, . . . ,K}, and {(XS , YS)} be the data

whose labels are in S: {(XS , YS)} = {(Xj , Yj) : Yj ∈ S}.

The learning objective of a traditional DNN can be writ-

ten as:

w
∗ = argmin

w

L(w, XK, YK;winitial), (5)
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Algorithm 1 A general training algorithm of LGL

Input:

Dataset D = {(Xn, Yn) : n = 1, . . . , N} with K labels, K = {1, 2, . . . ,K}; Initial learning rate lrinitial; Initial weight

w
∗
0 = winitial; The function of seletion strategy f ; The initial data G = {(X{i}, Y{i})}, where i ∈ K.

Iteration:

for k = 1 to K do

w
∗
k = argminw L(G,w∗

k−1) // Train DNN on G until convergence

j∗ = f(D \ G,w∗
k) // Select a new cluster from the untrained clusters

G = G ∪ {(X{j∗}, Y{j∗})} // Add selected cluster to G

lr = lrinitial // Adjust learning rate to initial learning rate since new cluster included

end for

Output:

w
∗
K

where L denotes the loss function, winitial specifies the ini-

tial weight that the minimization process starts with. For

LGL, at the k-th step, starting with a subset Sk−1 of K, the

learning objective is:

w
∗
k = argmin

w

L(w, XSk
, YSk

;w∗
k−1)

s.t. i∗ = f(XSC

k−1

, YSC

k−1

,w∗
k−1),

Sk = Sk−1 ∪ {i∗}.

(6)

In the above, w∗
k−1 denotes the weight or knowledge on the

trained clusters at the beginning of the k-th step; SC
k−1 de-

notes the set of classes not in Sk−1; the function f denotes

the selection strategy that selects the label of a cluster from

the remaining untrained clusters utilizing existing knowl-

edge .

So instead of minimizing the loss function across all the

clusters like (5), we iteratively minimize the loss function

by adding a new cluster to DNN. A general training algo-

rithm of LGL for DNNs in classification problems is shown

in Algorithm 1.

A key step in LGL algorithm is that before we add new

clusters to DNN, we must train DNN until convergence

which means the loss of DNN will not increase. This sep-

arates LGL from the other types of SPL-based algorithms

which only train DNN several epochs before adding new

training data. Also, suppose there are K classes in the

training set, we can fix the number of nodes of the soft-

max layer to be K and unchanged when performing LGL.

But when DNN has many layers, the softmax layer needs

to be reinitialized when we add new clusters to DNN. The

reason is that since the output of the softmax layer is a

probability vector which adds up to 1, many weights (the

weights connected to the nodes which belong to the un-

trained classes) of the softmax layers are approximately

zero when we train DNN to convergence. Reinitializing the

softmax layer can make sure that the gradients will not sat-

urate. So in practice, when DNN has many layers, we reini-

tialized the weights (connected to the nodes which belong

to the untrained classes) of the softmax layer before we add

new clusters to DNN.

4.3. Time Complexity Analysis

From Algorithm 1, if there are K labels in a dataset, we

need to minimize the loss function for K times. For a large

K, the training time of LGL is very long. To alleviate this

issue, instead of adding one untrained cluster at each step,

we add more clusters to DNN. Suppose each cluster has

an equal number of training samples. We continually add
K
m

clusters to DNN and train DNN for an equal number of

epochs at each step when performing LGL, where K is the

number of clusters in the training set (rounding up K
m

when

it is a non-integer value). Then the training time of LGL is
1
2 t(m + 1), where t is the training time of the baseline for

DNN (the derivation is left to the supplementary material).

The training time of LGL is linear in t or m. For a com-

parison, SPL also increases the training time, but in a dif-

ferent way. In SPL, we need to run DNN on all the training

samples to select the ones with lower losses at each iter-

ation. If the training set has a large number of samples,

such as ImageNet, the training time of SPL is intolerable

huge. But for LGL, we can choose a proper m to control

the training time. Thus LGL is more applicable than SPL

for classification problems with a large training set.

4.4. Selection Strategy in LGL

In this paper, we propose three selection strategies based

on the existing trained clusters:

1. Randomly select a cluster from remaining clusters;

2. Select the most dissimilar cluster to the trained clus-

ters;

3. Select the most similar cluster to the trained clusters.

To quantify the ‘dissimilarity’ between each remaining

cluster and the trained clusters, we use the conditional en-

tropy Hw(T |X{i}), where w is the current weight of DNN,
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X{i} is the untrained cluster with label i, T is the softmax

output of DNNs. Hw(T |X{i}) can be written as:

Hw(T |X{i}) =
∑

x∈X{i}

p(x)Hw(T |X{i} = x) (7)

= −
∑

x∈X{i}

p(x)
∑

t∈T

p(t|x) log p(t|x). (8)

Suppose X{i} has M samples and the model has been

trained on L clusters, then for each x ∈ X{i}, p(x) = 1
M

.

Since T denotes the output of the softmax layer, it has L

possible values to take. For each t ∈ T , p(t|x) denotes

the probability of x belonging to the class with respect to

t. From the property of entropy, Hw(T |X{i}) achieves the

maximum if for each x ∈ X{i}, p(t|x) follows the uniform

distribution on T ; Hw(T |X{i}) achieves the minimum if

for each x ∈ X{i}, there exists a t such that p(t|x) = 1.

Suppose the model has been trained on L clusters success-

fully, then for each x in the trained clusters, p(t|x) ≈ 1 for t

being the label of x, which leads to a small Hw(T |x). Now

consider an untrained cluster X{i}:

• If X{i} is similar to a trained cluster, then

Hw(T |X{i}) will be small from the above analysis.

• If X{i} is dissimilar to any trained cluster, then p(t|x)
tends to follow a uniform distribution for x ∈ X{i},

hence Hw(T |X{i}) will be large.

So we use Hw(T |X{i}) to represent the dissimilarity be-

tween the untrained cluster X{i} and the trained clusters.

A large Hw(T |X{i}) means the untrained cluster X{i} has

less similarity to the trained clusters. Suppose we select the

most dissimilar cluster to the trained clusters, the function

of selection strategy f in (8) of the paper is:

i∗ = argmax
i∈SC

k−1

Hw
∗
k−1

(T |X{i}). (9)

There are two reasons why we choose Hw(T |X{i}) as

the dissimilarity measure. 1) Computational complexity:

The other similarity measures (such as calculating mutual

information or Euclidean distance between two clusters) re-

quire huge computations, especially when the data dimen-

sion is high like images, whereas calculating Hw(T |X{i})
using (8) is very fast. 2) Existing knowledge: The other

similarity measures do not consider the existing knowl-

edge (DNN’s weight w) of the trained clusters, whereas

Hw(T |X{i}) is calculated by running DNN with its current

weight. The experiments on different selection strategies

are shown in Section 5.3.

4.5. Information­Theoretic Perspective of LGL for
Deep Neural Networks

In recent years, there are some works that utilize infor-

mation theory to explain DNNs. Schwartz-Ziv and Tishby

[26, 22, 5] calculate the mutual information I(X;T ),
I(T ;Y ), where X is the input data, Y is the label and T

is the layer output. Then they demonstrate the effective-

ness of visualization of neural networks: the information

plane reveals that there are two learning stages in network

learning process (the first fitting phase and the second com-

pression phase). But mutual information is hard to estimate

accurately in the network especially when the layer of net-

work has high dimensions. Thus in the paper, instead of

using mutual information, we use the conditional entropy

H(T |X) to represent DNN’s stability and explain why LGL

algorithm works well, where T in H(T |X) is the softmax

output of DNN. We state that from an information-theoretic

perspective, the benefit of LGL algorithm is that LGL can

lower the initial H(T |X) of DNN to make the training of

DNN starts at a more stable state. Section 5.1 shows the

stability of LGL algorithm.

The more detailed explanations are shown in the supple-

mentary material.

5. Experiments

This section goes as follows: In Section 5.1, we show the

loss curve of LGL is more stable than the SPL algorithm

when the model or data distributions vary; In Section 5.2,

we show the validation accuracy of LGL outperforms the

baseline and SPL-based algorithms on the CIFAR-10 and

CIFAR-100 dataset; In Section 5.3, we compare different

selection strategies of LGL; In Section 5.4, we validate LGL

on the ImageNet dataset. The code is available at:

https://github.com/piratehao/

Local-to-Global-Learning-for-DNNs

5.1. Toy Data

In this experiment, we not only implement SPL but also

SPL INV (the inversion of SPL algorithm, learning sam-

ples from complex to easy) for comparison. The baseline

is the traditional DNN without the use of the SPL or LGL

strategy. The learning rate is 0.01 and remains fixed. The

optimizer is the basic SGD. The datasets are generated from

two-dimension Gaussian distributions. There are 3 labels in

the toy dataset corresponding to different means of Gaus-

sian distributions. The covariance matrix of each Gaussian

distribution is identity. The results of this experiment are

shown in Figure 2. Since clusters in the dataset are mutually

symmetric, we randomly add clusters to DNN when per-

forming LGL (first train 2 clusters, then add another cluster

to the model). Figure 2 exhibits some interesting phenom-

ena:
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Figure 2. This figure has 9 sub-figures. For (a, d) and (b, e), the dataset is the same and chosen from (g); the model of (a, d) is a fully

connected network (FC) with one hidden layer; while the model of (b, e) is a FC with three hidden layers. For (a, d) and (c, f), the model

is the same; the dataset of (a, d) is chosen from (g), while the dataset of (c, f) is chosen from (i). (Best viewed in color)

• Sub-figure (a) shows that SPL INV actually converges

faster than the baseline. To see the reason for this

phenomenon, we visualize the data according to their

losses during the training process. The result can be

seen in sub-figure (h): the samples with large training

losses are very close to the other clusters. These sam-

ples are more ‘informative’ which means that they are

sufficient for the model to classify only these ‘com-

plex’ samples to get a wonderful classifier. Since SPL

select the most ‘uninformative’ samples in the begin-

ning, these samples actually mislead DNN to learn.

From sub-figure (a), the loss of SPL increases at first it-

erations. Thus the SPL strategy converges slower than

the baseline.

• Compared to (a), sub-figure (b) shows that the SPL

strategy converges faster than the baseline when the

number of hidden layers of DNN increases. The rea-

son for this is that the SPL strategy can be seen as a

continuation method for dealing with minimizing non-

convex functions [3]. So when the number of hidden

layers increases, SPL can prevent the model from ar-

riving at a local minimum. SPL INV still performs

better, however, than SPL.

• Compared to (a), sub-figure (c) shows that with varied

data distributions (clusters’ intersection creates a con-

fusion area in two-dimension space shown in (i)), even

SPL INV performs worse than baseline. The reason is

that, for SPL INV, the ‘informative’ samples now lie

in the area of confusion, which makes it hard for the

DNN to recognize the true labels.

• From the experiments, SPL and SPL INV may not be

the best general strategies for DNNs, whereas for LGL,

(d), (e) and (f) show that when trained on all the train-

ing data, the loss curve of LGL is more stable and con-

verges faster when the structure of the learning model

or data distributions vary.
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Figure 3. This figure shows the validation accuracy with training epochs of each method when trained on all the clusters in the dataset.

(Best viewed in color)

CIFAR-10
Methods Baseline SPL SPL INV SPLD LGL(r, 2) LGL(r, 3) LGL(r, 4)

Accuracy 0.9303 0.9260 0.9296 0.9285 0.9311 0.9359 0.9397

CIFAR-100
Methods Baseline SPL SPL INV SPLD LGL(r, 2) LGL(r, 3) LGL(r, 4)

Accuracy 0.7111 0.703 0.7050 0.7025 0.7267 0.7342 0.7417

Table 1. The table records the validation accuracy of each method on CIFAR-10 and CIFAR-100. LGL(r,m) means the selection strategy

is random and we add K

m
clusters to DNN at each step (which means we minimize the loss function for m times). SPLD is an SPL-based

algorithm from [13].

5.2. CIFAR­10 and CIFAR­100

In this experiment, we show the validation accuracies of

the LGL and SPL algorithms on the CIFAR-10 and CIFAR-

100 dataset. CIFAR-10 has 10 classes and the classes are

mutually exclusive. CIFAR-100 has 100 classes which

can be grouped into 20 superclasses. Each superclass has

5 similar classes. Traditional DNN training without SPL

and LGL strategy is taken as the baseline. The hyper-

parameters’ setting is as follows: mini-batch size (128), ini-

tial learning rate (0.05), learning rate decay (0.95), momen-

tum (0.9), weight decay (0.0005), number of epochs (100),

optimizer (SGD). The hyper-parameters’ setting of the LGL

algorithm is the same as that used for the baseline for equal

comparison. VGG-16 is employed as the model for all the

methods in each dataset. The results are shown in Table 1

and Figure 3.

From Table 1 and Figure 3, the SPL-based algorithms

do not perform better than the baseline; indeed they per-

form worse. This observation is consistent with [2]. Since

CIFAR-10 only has 10 classes, the LGL algorithm does not

show major improvement. For CIFAR-100, the LGL algo-

rithm significantly outperforms the baseline and SPL-based

algorithms. We also find that if we increase the number

of times to minimize the loss function of DNN, the val-

idation accuracy increases which can be seen in Table 1.

LGL(r, 4) performs better than LGL(r, 3) and LGL(r, 2).

Furthermore, we get 0.7491 when performing LGL(r, 20)

on CIFAR-100 dataset. Thus there exists a trade-off be-

tween the training time and validation accuracy. The vali-

dation curve from Figure 3 shows that LGL(r, 4) almost al-

ways achieves a better accuracy than the baseline and SPL-

based algorithms at each epoch.

5.3. Comparison of Selection Strategies in LGL

In this experiment, we compare three selection strategies

(from Section 4.4) on CIFAR-10 and CIFAR-100: 1) Ran-

domly select clusters from remaining clusters; 2) Select the

most dissimilar clusters to the trained clusters; 3) Select the

most similar clusters to the trained clusters.

We first perform an experiment on CIFAR-100 to show

that Hw(T |X{i}) can represent the dissimilarity between

the trained clusters and the untrained cluster. The result is

shown in Table 2. We can see that in Table 2, for example,

Oak (with lower Hw(T |X{i}), second column) is very sim-

ilar to Forest, while Spider (with higher Hw(T |X{i}), right

column) is very dissimilar to any one in the left column.

With this similarity measure, we perform experiments on

CIFAR-10 and CIFAR-100 to test different selection strate-

gies of LGL. The initial clusters for three methods are the

same to exclude the influences of initialization. The result

is shown in Table 3. Surprisingly, the performance of each

selection strategy in LGL does not vary too much. One hy-

pothesis is that this phenomenon is related to the inherent

generalization properties of DNN. The main advantage of

LGL is training DNN to learn from fewer clusters to more

clusters gradually to iteratively build good initial weights,
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Trained Clusters by DNN Clusters with lowest Hw(T |X{i}) Clusters with highest Hw(T |X{i})
Forest, Cloud, Bottles,

Bowls, Cans

Oak, Willow, Plain,

Maple, Sea

Spider, Bridge, Lizard,

Beetle, Wolf

Bicycle, Bus, Bear,

Lion, Leopard

Pickup Trank, Street Car, Whale,

Cloud, Skyscraper

Road, Trout, Table,

Roses, Baby

Table 2. DNN is trained on the clusters from the left column. The middile and right columns record the clusters we select from the

remaining untrained clusters by using Hw(T |X{i}).

CIFAR-10
Methods LGL(r, 3) LGL(d, 3) LGL(s, 3)

Accuracy 0.9359 0.9373 0.9363

CIFAR-100
Methods LGL(r, 3) LGL(d, 3) LGL(s, 3)

Accuracy 0.7342 0.7354 0.7323

Table 3. The table records the validation accuracy of different LGL algorithms on the CIFAR-10 and CIFAR-100 dataset. LGL(r) means

the selection strategy is random; LGL(d) means dissimilar clusters to trained ones are selected; LGL(s) is the opposite of LGL(d) which

selects similar clusters.

but the order of clusters seems to affect DNN very little.

DNN may have great capability to memorize the features

of the training data regardless of the order (this may also

be the reason why some SPL-based algorithms perform al-

most equal to the baseline). A full exploration of this phe-

nomenon is an interesting future topic.

5.4. ImageNet

To test the performance of LGL on larger datasets, we

also validate LGL on the ImageNet [7], an image dataset

with more than 14 million images. Since SPL sorts all the

training samples at each iteration which is training time in-

tolerable for ImageNet, we compare LGL with the base-

line (traditional DNN training without LGL) for two mod-

els (VGG-16 and ResNet-50). The hyper-parameters’ set-

ting is consistent with official PyTorch setting for Ima-

geNet [1]: mini-batch size (256), initial learning rate (0.1),

learning rate decay (0.1 at every 30 epochs), momentum

(0.9), weight decay (0.0001), number of epochs (90), opti-

mizer (SGD). The result is shown in Table 4.

In Table 4, for each model, LGL performs better than

the baseline. Thus compared to the SPL algorithm, LGL

can also handle a large dataset.

Models Baseline LGL(r, 2) LGL(r, 3)

VGG-16 71.846 72.534 72.912

ResNet-50 75.290 75.858 76.166

Table 4. The table records Top-1 Accuracy of LGL and the base-

line on the ImageNet dataset.

6. Conclusion and Discussion

We propose a new learning paradigm called Local to

Global Learning (LGL). The core of LGL is to iteratively

minimize the learning objective of DNN by adding new

clusters. LGL can be seen as an initialization strategy. Un-

like transfer learning, the initial weights of DNN are trans-

ferred from own dataset. The new paradigm was shown to

be superior to the traditional Self-Paced algorithm in terms

of stability and final classification accuracy. We also ex-

plain LGL from an information-theoretic perspective: LGL

can lower the initial entropy of the network and make the

training of DNN starts at a more stable state. From our

work, we believe that LGL has big potentials in the field of

deep learning.

There are some future investigations to be performed:

• To further explore why the three selection strategies in

the paper affect the performance of DNN very little, or

is there any other selection strategy that could actually

improve the performance of DNN than random selec-

tion (for example, a selection strategy that put all the

classes in a ‘hierarchy’ form)?

• We apply LGL for classification problems in this pa-

per. Since LGL can be seen as an initialization strat-

egy, it is a valuable direction to apply LGL to other

types of learning problems like regression and unsu-

pervised learning in DNN. The key is to pre-define the

local areas of the training set.
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