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Abstract

Recently, unsupervised exemplar-based image-to-image

translation, conditioned on a given exemplar without the

paired data, has accomplished substantial advancements.

In order to transfer the information from an exemplar to

an input image, existing methods often use a normaliza-

tion technique, e.g., adaptive instance normalization, that

controls the channel-wise statistics of an input activation

map at a particular layer, such as the mean and the vari-

ance. Meanwhile, style transfer approaches similar task to

image translation by nature, demonstrated superior per-

formance by using the higher-order statistics such as co-

variance among channels in representing a style. In de-

tail, it works via whitening (given a zero-mean input fea-

ture, transforming its covariance matrix into the identity).

followed by coloring (changing the covariance matrix of

the whitened feature to those of the style feature). How-

ever, applying this approach in image translation is com-

putationally intensive and error-prone due to the expensive

time complexity and its non-trivial backpropagation. In re-

sponse, this paper proposes an end-to-end approach tai-

lored for image translation that efficiently approximates this

transformation with our novel regularization methods. We

further extend our approach to a group-wise form for mem-

ory and time efficiency as well as image quality. Extensive

qualitative and quantitative experiments demonstrate that

our proposed method is fast, both in training and inference,

and highly effective in reflecting the style of an exemplar.

1. Introduction

Since the introduction of image-to-image transla-

tion [16], in short, image translation, it has gained

significant attention from relevant fields and constantly

evolved propelled by the seminal generative adversarial net-

works [10]. The primary goal of image translation [16, 35]

is to convert particular attributes of an input image in an

original domain to a target one, while maintaining other se-

mantics. Early models for image translation required train-

ing data as paired images of an input and its correspond-

ing output images, allowing a direct supervision. Cycle-

GAN [35] successfully extends it toward unsupervised im-

age translation [25, 2, 4, 35] by proposing the cycle consis-

tency loss, which allows the model to learn the distinctive

semantic difference between the collections of two image

domains and translate the corresponding style without a di-

rect pair-wise supervision.

Nonetheless, CycleGAN is still unimodal in that it can

only generate a single output for a single input. Instead,

image translation should be capable of generating multi-

ple possible outputs even for a single given input, e.g., nu-

merous possible gender-translated outputs of a single fa-

cial image. Subsequently, two notable methods, DRIT [20]

and MUNIT [14], have been proposed to address the mul-

timodal nature of unsupervised image translation. They

demonstrate that a slew of potential outputs could be gen-

erated given a single input image, based on either a random

sampling process in the midst of translation or utilizing an

additional, exemplar image for a detailed guidance toward

a desired style.

They both have two separate encoders corresponding to

the content image (an input) and style image (an exemplar),

and combine the content feature and style feature together

to produce the final output. DRIT concatenates the encoded

content and style feature vectors, while MUNIT exploits the

adaptive instance normalization (AdaIN), a method first in-

troduced in the context of style transfer. AdaIN matches two

channel-wise statistics, the mean and variance, of the en-

coded content feature with the style feature, which is proven

to perform well in image translation.

However, we hypothesize that matching only these two

statistics may not reflect the target style well enough, ending

up with the sub-optimal quality of image outputs on numer-

ous occasions, as we confirm through our experiments in

Section 4. That is, the interaction effects among variables,

represented as the Gram matrix [8] or the covariance ma-

trix [22], can convey critical information of the style, which

is agreed by extensive studies [8, 7, 22]. In response, to fully

utilize the style information of an exemplar, we propose a
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novel method that takes into account such interaction effects

among feature channels, in the context of image translation.

Our model is mainly motivated by whitening-and-

coloring transformation (WCT) [23], which utilizes the

pair-wise feature covariances, in addition to the mean and

the variance of each single feature, to encode the style of an

image. To elaborate, whitening refers to the normalization

process to make every covariance term (between a pair of

variables) as well as every variance term (within each sin-

gle variable) as a unit value, with given an input whose each

single variable is zero-meaned. This plays a role in remov-

ing (or neutralizing) the style. On the other hand, coloring

indicates the procedure of matching the covariance of the

style to that of the content feature, which imposes the in-

tended style into an neutralized input image.

The problem when applying WCT in image translation

is that its time complexity is as expensive as O(n3) where

n is the number of channels of a given activation map.

Furthermore, computing the backpropagation with respect

to singular value decomposition involved in WCT is non-

trivial [30, 15]. To address these issues, we propose a novel

deep whitening-and-coloring transformation that flexibly

approximates the existing WCT based on deep neural net-

works. We further extend our method into group-wise deep

whitening-and-coloring transformation (GDWCT), which

does not only reduce the number of parameters and the

training time but also boosts the generated image qual-

ity [32, 12].

The main contribution of this paper includes:

• We present the novel deep whitening-and-coloring ap-

proach that allows an end-to-end training in image trans-

lation for conveying profound style semantics.

• We also propose the group-wise deep whitening-and-

coloring algorithm to further increase the computational

efficiency through a simple forward propagation, which

achieves highly competitive image quality.

• We demonstrate the effectiveness of our method via

extensive quantitative and qualitative experiments, com-

pared to state-of-the-art methods.

2. Related Work

Image-to-image translation. Image-to-image translation

aims at converting an input image to another image with

a target attribute. Many of its applications exist, e.g., col-

orization [34, 5, 1, 33], super-resolution [6, 19], and domain

adaptation [11, 21].

A slew of studies have been conducted in an unsuper-

vised setting of image translation [35, 18, 25]. StarGAN [4]

proposes a single unified model which can handle unsuper-

vised image translation among multiple different domains.

Several studies [9, 36] focus on the limitation of earlier

work in which they produce a single output given an in-

put without consideration that diverse images can be gener-

ated within the same target domain. However, they are not

without limitations, either by generating a limited number

of outputs [9] or requiring paired images [36].

Recently proposed approaches [14, 20] are capable of

generating multimodal outputs in an unsupervised man-

ner. They work mainly based on the assumption that a la-

tent image space could be separated into a domain-specific

style space a domain-invariant content spaces. Following

the precedents, we also adopt the separate encoders to ex-

tract out each of the content and style features.

Style transfer. Gatys et al. [7, 8] show that the pair-

wise feature interactions obtained from the Gram matrix

or the covariance matrix of deep neural networks success-

fully capture the image style. It is used for transferring the

style information from a style image to a content image by

matching the statistics of the style feature with those of

the content. However, they require a time-consuming, it-

erative optimization process during the inference time in-

volving multiple forward and backward passes to obtain

a final result. To address the limitation, alternative meth-

ods [29, 3, 17] have achieved a superior time efficiency

through feed-forward networks approximating an optimal

result of the iterative methods.

However, these models are incapable of transferring an

unseen style from an arbitrary image. To alleviate the limi-

tation, several approaches enable an unseen, arbitrary neu-

ral style transfer [13, 23, 24]. AdaIN [13] directly computes

the affine parameters from the style feature and aligns the

mean and variance of the content feature with those of the

style feature. WCT [23] encodes the style as the feature co-

variance matrix, so that it effectively captures the rich style

representation. Recently, a new approach [21] have approx-

imated the whitening-and-coloring transformation as a one-

time transformation through a single transformation matrix.

Even though the idea of learning the transformation is sim-

ilar to ours, the proposed networks are incapable of trans-

ferring the semantic style information, such as the transla-

tion between the cat and the dog because the existing ap-

proach can transfer only the general style, such as the color

and the texture. Moreover, its settings of approximating the

transformation is less rigorous than ours due to the lack of

the regularization for ensuring the whitening-and-coloring

transformation.

3. Proposed Method

This section describes our proposed model in detail, by

first giving a model overview and by explaining the our pro-

posed loss functions.
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Figure 1: Overview of our model. (a) To translate from A → B, we first extract the content feature cA from the image xA

(i.e., cA = Ec
A
(xA)) and the style feature sB from the image xB (i.e., sB = Es

B
(xB)). (b) The obtained features are combined

in our GDWCT module while forwarded through the generator GB. (c) The discriminator DB classifies whether the input

xAB is a real image of the domain B or not. (d) Similar to the procedures from (a) to (c), the generator GB generates the

reconstructed image xBAB by combining the content feature cBA and the style feature sAB.

3.1. Model Overview

Let xA ∈ XA and xB ∈ XB denote images from two

different image domains, XA, XB, respectively. Inspired by

MUNIT [14] and DRIT [20], we assume that the image x
can be decomposed into the domain-invariant content space

C and the domain-specific style spaces {SA, SB}, i.e.,

{cA, sA} = {Ec
A(xA), E

s
A(xA)} cA ∈ C, sA ∈ SA

{cB, sB} = {Ec
B(xB), E

s
B(xB)} cB ∈ C, sB ∈ SB,

where {Ec
A

, Ec
B
} and {Es

A
, Es

B
} are the content and style

encoders for each domain, respectively. Our objective is to

generate the translated image by optimizing the functions

{fA→B, fB→A} of which fA→B maps the data point xA

in the original domain XA to the point xA→B in the target

domain XB, reflecting a given reference xB, i.e.,

xA→B = fA→B(xA, xB) = GB(E
c
A(xA), E

s
B(xB))

xB→A = fB→A(xB, xA) = GA(E
c
B(xB), E

s
A(xA)),

where {GA, GB} are the generators for the corresponding

domains.

As illustrated in Fig. 1, the group-wise deep whitening-

and-coloring transformation (GDWCT), plays a main role

in applying the style feature s to the content feature c inside

the generator G. Concretely, GDWCT takes the content fea-

ture cA, the matrix for coloring transformation sCT
B

, and the

mean of the style sµ
B

as input and conduct a translation of

cA to cA→B, formulated as

cA→B = GDWCT(cA, s
CT
B , sµ

B
),

where sCT
B

= MLP CT
B (sB) and sµ

B
= MLP

µ

B
(sB). MLP

denotes a multi-layer perceptron composed of several

linear layers with a non-linear activation after each

layer. Additionally, we set a learnable parameter α
such that the networks can determine how much of

the style to apply considering that the amount of the

style information the networks require may vary, i.e.,

cA→B = α(GDWCT(cA, s
CT
B

, sµ
B
)) + (1− α)cA.

The different layers of a model focus on different in-

formation (e.g., the low-level feature captures a local fine

pattern, whereas the high-level one captures a complicated

pattern across a wide area). We thus add our GDWCT mod-

ule in each residual block Ri of the generator GB as shown

in Fig. 2. By injecting the style information across multiple

hops via a sequence of GDWCT modules, our model can

simultaneously reflect both the fine- and coarse-level style

information.

3.2. Loss Functions

Following MUNIT [14] and DRIT [20], we adopt both

the latent-level and the pixel-level reconstruction losses.

First, we use the style consistency loss between two style

features (sA→B, sB), so that it encourages the model to re-

flect the style of the reference image sB to the translated

image xA→B, i.e.,

LA→B
s = ExA→B,xB

[‖Es
B(xA→B)− Es

B(xB)‖1]

Second, we utilize the content consistency loss between two

content features (cA, cA→B) to enforce the model to main-

tain the content feature of the input image cA after being

translated cA→B, i.e. ,

LA→B
c = ExA→B,xA

[‖Ec
B(xA→B)− Ec

A(xA)‖1]
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Figure 2: Image translation via the proposed GDWCT. We

apply the style via multiple hops to apply the style from the

low-level feature to the high-level feature.

Third, in order to guarantee the performance of our model

through pixel-level supervision, we adopt the cycle consis-

tency loss and the identity loss [35] to obtain a high-quality

image, i.e.,

LA→B→A
cyc = ExA

[‖xA→B→A − xA‖1]

LA→A
i = ExA

[‖xA→A − xA‖1] .

Lastly, we use an adversarial loss for minimizing the dis-

crepancy between the distribution of the real image and

that of the generated image. In particular, we employ LS-

GAN [27] as the adversarial method, i.e.,

LB
Dadv

= 1
2 ExB

[(D(xB)− 1)2] +
1

2
ExA→B

[(D(xA→B))
2]

LB
Gadv

= 1
2 ExA→B

[(D(xA→B)− 1)2]

To consider the opposite translation, similar to

DRIT [20], our model is trained in both directions,

(A → B → A) and (B → A → B), at the same time.

Finally, our full loss function is represented as

LD = LA
Dadv

+ LB
Dadv

LG = LA
Gadv

+ LB
Gadv

+ λlatent(Ls + Lc)+

λpixel(Lcyc + LA→A
i + LB→B

i )

where L without a domain notation indicates both directions

between two domains, and we empirically set λlatent = 1,

λpixel = 10.

3.3. Groupwise Deep WhiteningandColoring
Transformation

For concise expression, we omit the domain notation un-

less needed, such as c = {cA, cB}, s = {sA, sB}, etc.

Whitening transformation (WT). WT is a linear trans-

formation that makes the covariance matrix of a given in-

put into an identity matrix. Specifically, we first subtract

the content feature c ∈ RC×BHW by its mean cµ, where

(C,B,H,W ) represent the number of channels, batch size,

height, and width, respectively. We then compute the outer

product of the zero-meaned c along the BHW dimension.

Lastly, we obtain the covariance matrix Σc ∈ RC×C and

factorize it via eigendecomposition, i.e.,

Σc =
1

BHW−1Σ
BHW
i=1 (ci − cµ)(ci − cµ)T = QcΛcQ

T
c ,

where Qc ∈ RC×C is the orthogonal matrix containing the

eigenvectors, and Λc ∈ RC×C indicates the diagonal ma-

trix of which each diagonal element is the eigenvalue corre-

sponding to each column vector of Qc. The whitening trans-

formation is defined as

cw = QcΛ
− 1

2

c QT
c (c− cµ), (1)

where cw denotes the whitened feature. However, as pointed

out in Section 1, eigendecomposition is not only compu-

tationally intensive but also difficult to backpropagate the

gradient signal. To alleviate the problem, we propose the

deep whitening transformation (DWT) approach such that

the content encoder Ec can naturally encode the whitened

feature cw, i.e., cw = c− cµ, where Ec(xc) = c. To this

end, we propose the novel regularization term that makes

the covariance matrix of the content feature Σc as close as

possible to the identity matrix, i.e.,

Rw = E[‖Σc − I‖1,1]. (2)

Thus, the whitening transformation in Eq. (1) is reduced to

cw = c− cµ in DWT.

However, several limitations exist in DWT. First of all,

estimating the full covariance matrix using a small batch

of given data is inaccurate [12]. Second, performing DWT

with respect to the entire channels may excessively throw

away the content feature, compared to channel-wise stan-

dardization. We therefore improve DWT by grouping chan-

nels and applying DWT to the individual group.

Concretely, the channel dimension of c is re-arranged at

a group level, i.e., c ∈ RG×(C/G)×BHW , where G is the

number of groups. After obtaining the covariance matrix Σc

in RG×(C/G)×(C/G), we apply Eq. (2) along its group di-

mension. Note that group-wise DWT (GDWT) is the same

with DWT during the forward phase, as shown in Fig. 3(a),

because the re-arranging procedure is required for the regu-

larization (2).

Coloring transformation (CT). CT matches the covari-

ance matrix of the whitened feature with that of the style

feature Σs, where Σs is the covariance matrix of the style

feature. Σs is then decomposed into QsΛsQ
T
s , used for the

subsequent coloring transformation. This process is written

as

ccw = QsΛ
1

2

s QT
s cw, (3)

where ccw denotes the colored feature.

Similar to WT, however, CT has the problems of

expensive time complexity and non-trivial backpropaga-

tion. Thus, We also replace CT with a simple but effec-

tive method that we call a deep coloring transformation
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Figure 3: Details on the proposed GDWCT module. (a) The process for obtaining the whitened feature. Because the regular-

ization (Eq. (2)) encourages the zero-mean content feature c− cµ to be the whitened feature cw, we just subtract the mean of

the content feature cµ
A

from cA. (b) The procedure of approximating the coloring transformation matrix (Section 3.3). (c) We

obtain the mean of the style feature sµ
B

by forwarding it to the MLP layer MLP
µ

B
. (d) Our module first multiply the whitened

feature cw with the group-wise coloring transformation matrix X . We then add it with the mean of the style s
µ

B
.

(DCT). Specifically, we first obtain the matrix sCT through

MLP CT(s), where s = Es(x). We then decompose sCT into

two matrices by computing its column-wise L2 norm, i.e.,

sCT = UD, where the i-th column vector ui of U ∈ RC×C

is the unit vector, and D ∈ RC×C is the diagonal matrix

whose diagonal entries correspond to the L2 norm of each

column vector of sCT. We assume that those matrices UD
is equal to two matrices in Eq. (3), i.e., UD = QsΛ

1

2

s .

In order to properly work as Qs and Λ
1

2

s , U needs to be

an orthogonal matrix, and every diagonal entry in the matrix

D should be positive. To assure the conditions, we add the

regularization for U to encourage the column vectors of U
to be orthogonal, i.e.,

Rc = Es [‖UTU − I‖1,1]. (4)

The diagonal matrix D has its diagonal elements as the

column-wise L2 norm of sCT, such that its diagonal entries

are already positive. Thus, it does not necessitate additional

regularization. Meanwhile, U becomes the orthogonal ma-

trix if U accomplishes the orthogonality, because each col-

umn vector ui of U has a unit L2 norm. That is, with the

regularization Eq. (4), UD satisfies the entire conditions to

be QsΛ
1

2

s . Finally, combining U and D, we simplify CT as

ccw = UDUT cw. (5)

However, approximating the entire matrix sCT has an

expensive computational cost (the number of parameters

to estimate is C2). Hence, we extend DCT to the group-

wise DCT (GDCT) and reduce the number of parameters

from C2 to C2/G, as the detailed steps are illustrated in

Fig. 3(b). We first obtain the i-th matrix {UDUT }i ∈
R(C/G)×(C/G) for GDCT for i = {1, ..., G}. We then form

a block diagonal matrix X ∈ RC×C by arranging the ma-

trices {UDUT }1,...,G. Next, as shown in Fig. 3(d), we com-

pute the matrix multiplication with X and the whitened fea-

ture cw, thus Eq. (5) being reduced to

ccw = Xφ(cw),

where φ denotes a reshaping operation φ : RC×H×W →
RC×HW . Finally, we add the new mean vector sµ to the

ccw, where sµ = MLPµ(s), as shown in Fig. 3(c). We em-

pirically set λw = 0.001, λc = 10, and G = 4, 8, 16.

4. Experiments

This section describes the baseline models and the

datasets. Implementation details as well as additional com-

parisons and results are included in the appendix.

4.1. Experimental Setup

Datasets. We evaluate GDWCT with various datasets

including CelebA [26], Artworks [35] (Ukiyoe, Monet,

Cezanne, and Van Gogh), cat2dog [20], Pen ink and Wa-

tercolor classes of the Behance Artistic Media (BAM) [31],

and Yosemite [35] (summer and winter scenes) datasets.

Baseline methods. We exploit MUNIT [14], DRIT [20],

and WCT [23] as our baselines because those methods are

the state-of-the-art in image translation and style transfer,

respectively. MUNIT and DRIT utilize different methods

when applying the style into the content from GDWCT.

MUNIT leverages AdaIN [13] while DRIT is based on con-

catenation of the content and the style features. Meanwhile,

WCT applies the whitening-and-coloring transformation to

the features extracted from the pretrained encoder, in order

to transfer the style into the content image.

4.2. Quantitative Analysis

We compare the performance of our model with the base-

lines with user study and classification accuracy.
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Figure 4: Qualitative comparisons based on Artworks dataset [35].

User study. We first conduct a user study using CelebA

dataset [26]. The initial motivation of our user study was to

measure user preferences on outputs produced by GDWCT

and the baseline models with a focus on the quality of an

output and the rendering of the style given in an exemplar.

Each user evaluated 60 sets of image comparisons, choosing

one among four candidates within 30 seconds per compar-

ison. We informed the participants of the original and the

target domains for every run, e.g., Male to Female, so that

they can understand exactly which style in an exemplar is of

interest. Table 1 summarizes the result. It is found that the

users prefer our model to other baseline models on five out

of six class pairs. In the translation of Female ⇒ Male, be-

cause DRIT consistently generates a facial hair in all trans-

lation, it may obtain the higher score than ours. The superior

measures demonstrate that our model produces visual com-

MUNIT DRIT WCT GDWCT

Male ⇒ Female 4.41 42.25 10.12 44.52

Female ⇒ Male 7.78 48.89 4.44 38.89

Bang ⇒ Non-Bang 3.35 42.20 3.37 51.10

Non-Bang ⇒ Bang 6.67 18.89 4.45 71.15

Smile⇒ Non-Smile 5.56 30.35 1.35 64.44

Non-Smile⇒ Smile 2.30 22.25 2.25 73.33

Table 1: Comparisons on the user preference. Numbers in-

dicate the percentage of preference on each class.

pelling images. Furthermore, the result indicates that our

model reflect the style from the exemplar better than other

baselines, which justifies that matching entire statistics in-

cluding a covariance would render style more effectively.

Classification accuracy. A well-trained image transla-

tion model would generate outputs that are classified as an

image from the target domain. For instance, when we trans-

late a female into male, we measure the classification accu-

racy in the gender domain. A high accuracy indicate that the

model learns deterministic patterns to be represented in the

target domain. We report the classification results on trans-

lated images in Table 2. For the classification, we adopted

the pretrained Inception-v3 [28], and fine-tuned on CelebA

dataset. Our model records competitive average on the ac-

curacy rate, marginally below DRIT on Gender class, and

above on Bangs and Smile.

MUNIT DRIT WCT GDWCT

Gender 30.10 95.55 28.80 92.65

Bangs 35.43 66.88 24.85 76.05

Smile 45.60 78.15 32.08 92.85

Avg. 37.04 80.19 28.58 87.18

Table 2: Comparison of the classification accuracy (%) in

the target domain. Tested with the image size of 216×216.
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Inference time. The superiority of GDWCT also lies in

the speed at which outputs are computed in the inference

stage. Table 3 shows that our model is as fast as the ex-

isting image translation methods, and has the capacity of

rendering rich style information as of WCT. The numbers

represent the time taken to generate one image.

MUNIT DRIT WCT GDWCT

Runtime (sec) 0.0419 0.0181 0.8324 0.0302

Table 3: Comparison of the inference time. Tested with the

image size 256×256 on a NVIDIA Titan XP GPU, and av-

eraged over 1,000 trials.

4.3. Qualitative Results

In this section, we analyze the effects of diverse hyper-

parameters and devices on the final image outputs.

Stylization comparisons. We conduct qualitative analy-

ses by a comparison with the baseline models on Fig. 4.

Each row represents different classes, and the leftmost and

the second columns are content and the exemplar style, re-

spectively. Across diverse classes, we observe consistent

patterns for each baseline model. First, MUNIT tends to

keep the object boundary, leaving not much room for style

to get in. DRIT shows results of high contrast, and actively

transfer the color. WCT is more artistic in the way it digests

the given style, however at times losing the original content

to a large extent. Our results transfer object colors as well

as the overall mood in the style, while not overly blurring

details. We provide additional results of our model in Fig. 9.

We believe our work gives another dimension of an oppor-

tunity to translate image at one’s discretion.

Number of hops on style. As we previously discussed in

Fig. 2, the proposed GDWTC could be applied in multi-

hops. We demonstrate the effects of the different num-

ber of hops on the style. To this end, we use Artworks

dataset (Ukiyoe) [35]. We train two identical models dif-

ferent only in the number of hops, a single hop (GDWTC1)

or multi-hops (GDWTC1−5). In Fig. 5, the rightmost im-

age (GDWTC1−5) has the style that agrees with the de-

tailed style given in the leftmost image. The third image

(GDWTC1) follows the overall color pattern of the exem-

plar, but with details less transferred. For example, the writ-

ing in the background has not been transferred to the result

1Style Content GDWCT GDWCT1−5

Figure 5: Comparison between single- and multi-hops.
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Figure 6: Visualization of the regularization influences.

of GDWCT1, but is clearly rendered on GDWTC1−5. The

difference comes from a capacity of the multiple hops on a

stylization, which covers both fine and coarse style [23].

Effects of regularization. We verify the influences of the

regularizations Rw and Rc on the final image output. In-

tuitively, a higher λw will strengthen the whitening trans-

formation, erasing the style more, because it encourages the

covariance matrix of the content feature to be closer to the

identity matrix. Likewise, a high value of λc would result

in a diverse level of style, since the intensity of the style

applied during coloring increases as the eigenvectors of the

style feature gets closer to orthogonal.

We use two classes, Watercolor and Pen Ink, of

BAM [31] dataset. The images in Fig. 6 illustrates the re-

sults of (watercolor → penink). Given the leftmost content

and style as input, the top row shows the effects of grad-

ually increasing value of λw. A large λw leads the model

to erase textures notably in the cloth and hair. It proves our

presumption that the larger w is, the stronger the effects of

the whitening is. Meanwhile, the second row shows the ef-

fects of different coloring coefficient λc. The cloth of the

subjects shows a stark difference, gradually getting darker,

applying the texture of the style more intensively.

Visualization of whitening-and-coloring transformation.

We visualize the whitened feature to visually inspect the in-

fluence of the proposed group-wise deep whitening trans-

formation on the content image. We also use a sample

from Artworks dataset. For visualization, we forward the

whitened feature into the networks without coloring trans-

formation. The third image from the left shows the whiten-

ing effects. It is evident that in the image, detailed style re-

garding the color and texture are erased from the content

image. Notably, the reeds around the river, and the clouds

in the sky are found to be whitened in color, being ready to

be stylized. On the other hand, the rightmost image stylizes

given the whitened image via the group-wise deep coloring

transformation. It reveals that the coloring transformation

properly applies the exemplar style, which is in a simpler

style with monotonous color than that of the content image.
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Figure 8: Visualization of whitening transformation that

makes the content feature lose the original information.

Comparison on face attribute translation. We compare

GDWCT with the baselines using CelebA dataset with the

image size of 216×216. The results are shown in Fig. 7.

Two columns from the left of each macro column denote a

content image and a style image (exemplar), respectively,

while the other columns indicates outputs of compared

models. Each row of each macro column illustrates the dif-

ferent target attribute. Our model shows a superior perfor-

mance in overall attribute translation, because our model

drastically but suitably applies the style compared to the

baselines. For example, In case of (male → female) trans-

lation, our model generates an image with long hair and

make-up, the major patterns of the woman. However, each

generated image from MUNIT and DRIT wears only light

make-up with incomplete long hair. Meanwhile, in both

translation cases of Smile and Bangs, the outputs of MU-

NIT show less capacity than ours in transferring the style

as shown in (Smile → Non-Smile), (Non-Bang → Bang),
and (Bang → Non-Bang), because MUNIT matches only

mean and variance of the style to those of the content when

conducting a translation. On the other hand, DRIT conducts

unnatural translation (two rows from the bottom) comparing

with ours. In case of (Non-Smile → Smile), DRIT applies

the style only into a mouth but ours converts both eyes and

mouth. Meanwhile, as seen in overall cases of WCT, it can-

not perform image translation because it does not learn to

transfer the semantic style.

5. Conclusion

In this paper, we propose a novel framework, group-wise

deep whitening-and-coloring transformation (GDWCT) for

(a)

(b)

(c)

(d)

Figure 9: Results on various dataset; (a) Yosemite (b) BAM

(Pen Ink ⇒ Water Color) (c) Cat2dog (d) BAM (Water

Color ⇒ Pen Ink)

an improved stylization capability. Our experiments demon-

strate that our work produces competitive outputs in image

translation as well as style transfer domains, having a ma-

jority of real users agree that our model successfully reflects

the given exemplar style. We believe this work bears the

potential to enrich relevant academic fields with the novel

framework and practical performances.
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Figure 7: Comparison with the baseline models on CelebA dataset; (a) Smile ⇒ Non-Smile (b) Non-Smile ⇒ Smile

(c) Male ⇒ Female (d) Female ⇒ Male (e) Bang ⇒ Non-Bang (f) Non-Bang ⇒ Bang
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