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Abstract

Despite the recent success in face recognition and ob-

ject classification, in the field of human gaze prediction,

computer models are still struggling to accurately mimic

human attention. One main reason is that visual attention

is a complex human behavior influenced by multiple fac-

tors, ranging from low-level features (e.g., color, contrast)

to high-level human perception (e.g., objects interactions,

object sentiment), making it difficult to model computation-

ally. In this work, we investigate the relation between ob-

ject sentiment and human attention. We first introduce an

improved evaluation metric (AttI) for measuring human at-

tention that focuses on human fixation consensus. A series

of empirical data analyses with AttI indicate that emotion-

evoking objects receive attention favor, especially when they

co-occur with emotionally-neutral objects, and this favor

varies with different image complexity. Based on the em-

pirical analyses, we design a deep neural network for hu-

man attention prediction which allows the attention bias on

emotion-evoking objects to be encoded in its feature space.

Experiments on two benchmark datasets demonstrate its su-

perior performance, especially on metrics that evaluate rel-

ative importance of salient regions. This research provides

the clearest picture to date on how object sentiments influ-

ence human attention, and it makes one of the first attempts

to model this phenomenon computationally.

1. Introduction

Predicting where humans will look in a scene (i.e.,

saliency prediction) has attracted a significant amount of

research because of its potential applications such as in

social advertising and robot vision. Classic bottom-up

methods like the Itti-Koch model [18] and Graph-Based

Visual Saliency (GBVS) [15] use low-level features such

as color, intensity, and orientations. Recently, numer-

ous saliency models based on deep neural network (DNN)

have been proposed with largely improved performance

[17, 6, 20, 7, 22]. Although these DNN-based models are
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Figure 1. (a) We first introduce an improved metric (AttI) for eval-

uating human attention. Analyses show that AttI can better reflect

human attention consensus on images of various complexity com-

pared with previously used Attention Score (AS). (b) Motivated

by our empirical data analyses, we propose the Emotion-Aware

saliency model (EASal) that incorporates information of object

proposals with sentiment labels (red, gray, blue indicate positive,

neutral, and negative sentiments, respectively).

trained with massive amounts of labeled data [8, 19] and

equipped with superior object recognition ability, there is

still a large gap between their predictions and ground truth

human fixations. Aiming to address this limitation, Bylin-

skii and colleagues [4] re-examined current saliency mod-

els, and argued that to approach human-level performance,

saliency models need to discover high-level image concepts,

such as text or motion, and reason about the relative impor-

tance of image regions.

One possible high-level image concept is emotion, a fac-
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tor known to influence human attention [12, 35]. Behav-

ioral observations show that people pay attention to affec-

tive rather than neutral stimuli, and this commonly hap-

pens spontaneously [23]. In a visual search task, the ob-

ject can be easily found if it contains affective value [35],

e.g., a snake among flowers. Initial work has been intro-

duced to explore saliency prediction with emotion informa-

tion [24, 11]. However, the work in [24] did not analyze

how exactly emotion influences human attention, and [11]

did not identify emotion-evoking objects or regions. Indeed,

more efforts are needed to study how emotion can be used

in predicting human attention.

Our work is motivated by the above research but we go

further. Aiming to have a deeper look at emotional atten-

tion, we first evaluate quantitatively how different emotion-

eliciting objects impact human attention. We propose an

improved evaluation metric (AttI) which focuses on human

fixation consensus and study it under various image com-

plexity. With AttI, we discover that emotion-evoking ob-

jects are prioritized in human attention, and such prioriti-

zation effect is modulated by image complexity. Moreover,

it is most significant when they co-occur with emotionally

neutral objects. Based on the human findings, we propose a

DNN-based model that identifies emotion-evoking objects

in an image and incorporates such information in saliency

prediction. Results on two benchmark datasets show that

the proposed emotion-aware saliency model outperforms

other state-of-the-art methods, especially in terms of pre-

dicting the relative importance of salient regions within an

image (see Fig. 1). Our main contributions are as follows:

1. We introduce an improved metric to assess human at-

tention. The improved metric Attention Index (AttI), which

focuses on human consensus of fixation, allows us to better

study the relation between attention and object sentiments.

2. We provide a comprehensive picture on how objects

with different sentiments compete for human attention un-

der different scene complexity.

3. We introduce an emotion-aware DNN model for pre-

dicting human attention that utilizes object sentiment infor-

mation. With a subnetwork based on detected image com-

plexity and context, the new model conditionally integrates

the predicted emotion information in the final saliency map.

2. Related Work

Emotional attention: In psychology, human attention is

considered as a state of arousal, during which human brains

selectively concentrate on a discrete aspect of informa-

tion, while ignoring others [1]. Due to their evolutionary

salience, threat- and reward-related stimuli, such as snakes,

angry faces, and delicious food constitute a special class of

stimuli believed to capture human attention in a rapid, or

even involuntary manner [25]. This “automatic” capture of

attention is supported by research in neuroscience, which

has unraveled neural pathways for emotional stimuli pro-

cessing [36]. The above works lead us to look at emotion in

saliency prediction.

Predicting human attention: The legacy approaches of

saliency prediction [18, 15] are based on Feature Integra-

tion Theory of attention which suggests that features are

registered automatically and in parallel across the visual

field. In recent DNN-based saliency models, human at-

tention at different resolutions is assembled in SALICON

[17] and DeepFix [20]. Some models incorporate the hu-

man central fixation bias in their system either by superim-

posing the center priors [21, 6] or by learning [7]. These

models took advantage of the representational power of the

semantic-rich DNN feature detectors trained on ImageNet

[8]. Although these models have largely boosted the perfor-

mance for saliency prediction, they are mainly trained on

the datasets and learn weights as a whole, enabling few in-

sights on how different objects in an image compete for hu-

man attention. Different from existing networks, our study

focuses on the relative importance of salient regions.

Predicting emotional regions in images: Peng et al. [28]

and Sun et al. [33] both introduced systems which predict

the affective regions in an image. The authors in [28] pro-

posed the prediction of Emotion Stimuli Map which esti-

mates the pixel-wise contribution to evoked emotion of an

image. The work in [33] used object proposals and emotion

score to determine an affective region. More recently, Yang

et al. [38] presents a system for automatic identification of

the affective region using image-level label. These studies

demonstrate that emotion-evoking region are predictable.

However, how the resulting emotion-evoking maps/regions

reflect visual saliency remains unclear. Our work aims to

bridge the two types of knowledge through empirical data

analyses and computational modeling.

Attention prediction with emotion: Saliency re-

searchers have made initial attempts to incorporate emotion

in attention prediction, such as the human fixation datasets

featuring emotional contents [29, 11], saliency models

that identifies emotional objects, such as faces [31, 24],

injury, worm and snake [24]. The work closest to ours is

[11], in which the authors made a preliminary study on

the relation between image sentiment and visual saliency,

and reported an emotion prioritization effect for emotion-

eliciting content. Their work is insightful but it also leads

to the following unresolved questions: (1) the authors

used “object attention score” (the maximum fixation-map

value inside the objects contour) to measure an object’s

attention level. This is inadequate as the fixation map was

normalized, leading to a situation that each object receives

an attention score close to 1 in a very scattered fixation

4027



A
v
e

ra
g

e

Attention 

Index

Attention 

Score

Human Consensus 

Score

Neural objects

0.5

0.6

0.7

0.8

0.9

1.0

1.1

*** n.s.

Emotion-evoking objects

Figure 2. The proposed evaluation metric Attention Index (AttI)

which focuses on human consensus can identify more intricate dif-

ferences than attention score (AS). For images with fewer than 4

labeled objects in EMOd dataset, AttI shows a notable difference

between the emotion-evoking objects and neutral objects whereas

AS shows none. The difference on AttI is mainly due to the differ-

ence on Human Consensus Score. In all figures in this paper, error

bars represent the standard error of means. The asterisks denote

the following: * p < 0.05, ** p < 0.01, n.s. non-significant.

map (see Fig. 1 (a)); (2) the proposed saliency model in

[11] did not identify specific object sentiments, thus it

is hard to say if the performance improvement is due to

emotion or due to other factors (e.g. more information

learned about semantics, spatial location, and so on). In

our work, we focus on human consensus in measuring each

object’s attention level. We show that factoring human

consensus allows us to better describe the relative attention

level of emotion-evoking objects and emotionally-neutral

objects under various image complexities. We use our

human findings to guide the design of an emotion-aware,

DNN-based saliency model with object sentiment masks.

3. Empirical data analyses on emotion and at-

tention

In this section, we first introduce an improved evalua-

tion metric (AttI) for measuring human attention. We then

conduct a series of statistical analyses using this metric.

The analyses were performed on the EMOtional attention

dataset (EMOd) proposed in [11]. EMOd contains 1019

emotional images each with detailed object sentiment la-

bel (positive, negative and neutral) and has eye fixation data

collected from 16 human subjects.

3.1. Attention Index: an improved way of measur­
ing human attention

In the field of saliency research, most of the previous

studies [10, 37, 11] used the attention score (hereafter AS) of

an object defined as the maximum value of the normalized

fixation map inside the object’s contour. However, when

comparing the attention levels of objects among different

images each with various complexities1, the relative impor-

tance of different objects are concealed due to the normal-

ization procedure during the fixation map generation. For

example, consider two images. The first image with several

objects has rather scattered human fixations, and each ob-

ject receives an AS score close to 1 after the normalization

of the fixation map. In contrast, the second image has a sin-

gle object standing out among others, catching most human

attention, thus it will also have an AS score close to 1. The

objects in the two images receive different level of human

attention but have similar high AS score due to fixation map

normalization. Thus, AS alone is inadequate to reflect the

human attention level for objects among various images.

To address the above limitation, we propose an improved

metric to measure human attention, we name it Attention

Index (AttI). To do this, we first define human consensus

of fixation score (HCS), which measures the consensus of

observers’ fixation on an object. We adopt the agreement

ratio of the Fleiss’ kappa [13] for the ith subject as the HCS

of n observers for the ith object provided in Eqs. 1 and 2.

HCS = (Pi − Pmin)/(1− Pmin) (1)

Pi =
1

n(n− 1)
[(
∑k

j=1
n2
ij)− n], for n > 1 (2)

where Pmin represents the Pi value for complete disagree-

ment (50% fixated and 50% not fixated), i.e.,
n
2

2
−n

n(n−1) . k = 2

represents the non-fixated and fixated groups. That is, nij

for j = 1 is the number of observers who do not fixate on

the ith object and nij for j = 2 is the number of observers

who fixate on the ith object. HCS = 1.0 if all observers

agree to fixate or do not fixate on an object and HCS = 0.0

for a complete disagreement. Using HCS alone is inade-

quate to indicate an object’s attention level, as it generates

high scores for objects in both cases when they are fixated

or not fixated by most of the observers. To address this, we

multiply HCS with AS for the final AttI (refer to Eq. 3).

The AttI range is from 0.0 to 1.0.

AttI = HCS ×AS (3)

Fig. 2 illustrates the advantage of AttI over AS in

practice. We computed the average AttI, AS and HCS of

emotion-evoking and neutral objects in all EMOd images

with low complexity (i.e. containing fewer than four labeled

objects). Independent-samples t-test indicate no significant

difference on the AS of emotional objects and neutral ob-

jects (p = 0.162). However, independent-samples t-test

on AttI reveals that emotion-evoking objects indeed have a

1In our work, image complexity is determined by the number of objects

in the image.
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Figure 3. (a) The prioritization effect of emotion-evoking objects is modulated by image complexity, and is most significant when they

co-occur with emotionally neutral objects. (b-c) Sample images with co-occurring objects of positive and neutral sentiments, respectively.

(d) Sample image with co-occurring objects with different sentiments. Red and gray indicate positive and neutral sentiments, respectively.

The asterisks denote the following: ** p < 0.01, *** p < 0.0001. The numbers near the boxes in (b-d) are the respective AttI scores.

higher AttI than neutral objects (p = 0.010). As shown in

Fig. 2, the significant difference on AttI is mainly carried by

the difference on HCS (p = 0.008), suggesting the efficacy

of considering human consensus.

3.2. Effect of emotion under different image com­
plexity

With the improved evaluation metric AttI, we are able

to explore in detail how emotion-evoking and neutral ob-

jects compete for attention under varying image complex-

ity. We performed a series of analyses using inferential

statistics. More specifically, we considered two groups of

images: (1) images with co-occurring objects with similar

sentiments (e.g., all negative or all positive); (2) images with

co-occurring objects with different sentiments (i.e., posi-

tive/negative objects co-occur with neutral objects2). For

the first group, there are 50, 94 and 387 images which con-

tain only positive, negative, neutral objects, respectively.

For the second group, there are 137 images which contain

both positive and neutral objects, and 342 images which

contain both negative and neutral objects. In each group, we

classified images into seven subgroups based on the num-

ber of labeled objects contained in the image (see Fig. 3).

We then computed the average AttI of objects with positive,

neutral, and negative sentiment labels, respectively.

As shown in Fig. 3 (a), for images with co-occurring

objects with similar sentiments, when the image complex-

ity increases, the difference of AttI between the emotion-

evoking objects and the neutral objects is more significant

than in less complex images. For more complex images

(e.g., images with more than 6 objects), the advantage of

the emotion-evoking objects for human attention is reduced.

This is understandable as when there are too many stimuli

that catch human eyes, the effect from an individual stimuli

will be weakened. For images with co-occurring emotion-

2There are only 9 images in EMOd that contain both positive and neg-

ative objects, which is a very small sample size for us to reasonably detect

an effect. Thus, we exclude this case in our statistical analyses.

evoking objects and neutral objects, the AttI difference be-

tween emotion-evoking objects and neutral objects remains

large even when the image complexity increases (see Fig. 3

(d)). This suggests that emotion-evoking objects are most

advantageous when they co-occur with neutral objects, and

such priority is manifested on human attention consistency

regardless of image complexity.

To summarize, in this section we propose an improved

metric AttI for measuring human attention, which takes

into account human consensus under different image com-

plexity. Our empirical data analyses with AttI indicate that

emotion-evoking objects are prioritized in human attention.

Such prioritization effect is modulated by image complex-

ity, and is most significant when they co-occur with emo-

tionally neutral objects. Our findings are consistent with

previous studies on emotional attention [25, 11], but provide

a more nuanced evidence on how the emotion prioritization

effect is influenced by image context and complexity. Our

findings also guide us in the design of an emotion-aware

DNN saliency model, as described in the next section.

4. Emotion-aware saliency prediction

Based on our human findings, we design an emotion-

aware DNN model that integrates object sentiment infor-

mation in saliency prediction. Experiments on two bench-

mark datasets demonstrate the efficacy of the emotion-

aware mechanisms, especially on metrics that measure the

relative importance of salient regions.

4.1. DNN architecture

We propose an Emotion-Aware Saliency model (here-

after EASal), as shown in Fig. 4. EASal is composed of

two branches: (1) semantic feature extraction and (2) sen-

timent mask generation. The semantic feature extraction

learns image semantics and multi-scale information to form

semantic feature maps. The sentiment mask generation de-

tects and localizes possible emotion-evoking objects, pre-

dicts the emotions evoked by these detected objects, and
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Figure 4. Our proposed Emotion-Aware Saliency model (EASal) is composed of two branches: (1) the semantic feature extraction branch

which learns semantic information from the input image, and (2) the object-level sentiment mask generation branch which generates and

incorporates the objects’ sentiment masks to the feature maps from the semantic branch. We use a subnetwork (in green box) which

combines the two branches based on detected image complexity and object sentiments. If the output of the ReLU is greater than 0, all

feature maps will be combined via the last convolution filter block.

adjusts the predicted saliency of the corresponding affec-

tive regions in the feature maps. The combination of the two

branches is controlled by a subnetwork signal which takes

into consideration the image complexity and image context

(i.e., number of sentiment types co-occurring in the image).

Below we describe the two branches and the combination

mechanism, which resembles our empirical data analyses.

Two steps were implemented in the sentiment mask gen-

eration branch. First, we use Mask-RCNN [16] to generate

the contours of the object proposals. The object proposals

are then passed to the GoogleNet [34]-based object senti-

ment classification (Fig. 4, lower left) to infer the object

sentiment. The sentiment mask generation branch outputs

three types of important information for human attention:

object contour, object position, and object sentiment.

Our empirical data analyses show that the emotion pri-

oritization effect depends on image complexity and image

context. Based on this finding, we introduce a signal con-

trol subnetwork (Fig. 4, green box) to automatically learn

whether the information from sentiment mask generation

branch should be incorporated in the final saliency map. Af-

ter fine-tuning, the subnetwork weights learned for image

complexity (no. of objects) and emotion types in the fully-

connected layer are −0.48, 2.46, respectively. With these

weights, the TanH and the ReLU layer at the output, we ob-

serve that the subnetwork combines (i.e. ReLU output > 0),

the emotion information in saliency prediction except when

(i.e. ReLU output = 0) the following conditions are met: (1)

the image is complex (i.e., more than 6 object proposals are

detected within the same image) and the image complexity

is within the common range (object no. < 11)); and (2)

the image contains only one type of object sentiment (i.e.

all detected objects sentiment labels were the same). This

is similar to our empirical data analyses. Experiments on

EMOd show that for images with similar object sentiments

and contain greater than 6 objects, integrating emotion data

will not improve their saliency prediction (Fig. 3 (a)).

Parallel to the sentiment mask generation branch, the

feature extraction branch consists of two VGG-16 [32]

modules that capture the object semantics and multi-

resolution information. The input image for each module

is of size 600×800 and 300×400, respectively. We tested

three integration architectures, namely early fusion, inter-

mediate fusion, and late fusion to determine the best way

to combine the two branches. We finally selected inter-

mediate fusion as experiments show that it has best per-

formance (refer to the supplementary material for details).

During the intermediate fusion, we removed the classifier of

the VGG networks such that each module has 512 feature

maps as output. The 1024 feature maps are then copied to

each element-wise block of the positive, negative and neu-

tral emotion, and multiplied by a scaled version of the sen-

timent masks (1×1 convolution filters) to provide saliency

level correction to the corresponding emotion-evoking re-

gions (see the element-wise block in the lower right of Fig.

4). A concatenation layer and a 1×1 convolution filter are

used to combine the 4096 feature maps.
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Table 1. Quantitative comparison of EASal and other saliency models on EMOd and the affective category of CAT2000. The best score in

each metric are highlighted in bold. (↑) indicates higher values are better. (↓) indicates lower values are better.

Metrics NSS↑ KL↓ IG↑ EMD↓ AUC-Judd↑ sAUC↑ CC ↑ SIM↑

E
M

O
d

EASal (Proposed) 1.85 5.52 1.66 2.56 0.83 0.78 0.66 0.56

N-EASal 1.78 5.54 1.59 2.69 0.82 0.77 0.63 0.56

CASNet[11] 1.75 5.54 1.58 2.66 0.83 0.78 0.66 0.58

SALICON[17] 1.69 5.60 1.52 2.75 0.82 0.76 0.62 0.56

SalGAN[26] 1.74 5.82 1.15 2.63 0.82 0.76 0.64 0.58

SROD[5] 0.98 6.04 0.92 4.31 0.72 0.69 0.33 0.43

BMS[39] 0.81 6.97 0.64 3.95 0.70 0.65 0.29 0.41

GBVS[15] 1.18 5.86 1.17 3.27 0.77 0.73 0.45 0.48

IttiKoch2[18] 0.99 5.98 0.98 3.96 0.73 0.69 0.35 0.44

A
ff

ec
ti

v
e

C
A

T
2

0
0

0

EASal (Proposed) 2.27 0.65 29.36 4.94 0.86 0.67 0.72 0.59

N-EASal 2.09 0.70 29.27 5.10 0.86 0.67 0.66 0.57

CASNet[11] 2.02 0.73 29.29 4.10 0.85 0.67 0.68 0.59

SALICON[17] 2.08 0.71 29.20 4.50 0.86 0.67 0.69 0.59

SalGAN[26] 2.05 0.94 28.83 5.27 0.86 0.68 0.69 0.58

SROD[5] 1.32 1.04 28.69 6.87 0.81 0.64 0.46 0.45

BMS[39] 1.16 1.86 28.56 5.97 0.78 0.59 0.39 0.44

GBVS[15] 1.49 0.90 28.89 6.08 0.83 0.60 0.52 0.48

IttiKoch2[18] 1.26 1.02 28.72 7.37 0.80 0.61 0.44 0.44

4.2. Training and testing

The training and testing are implemented using Caffe

framework. The feature extraction branch was first fine-

tuned using SALICON dataset [17] with momentum of 0.9

and initial learning rate of 10−5. The learning rate decreases

by a factor of 0.1 every 8000 iterations. As the SALICON

training dataset has no ground truth sentiment mask, the se-

mantic feature extraction branch is separately fine-tuned.

The trained saliency prediction branch is then combined

with the sentiment mask generation branch for fine-tuning.

Except for the first two layers whose filter weights were

fixed, all filter weights were fine-tuned with momentum

of 0.9 and initial learning rate of 10−5. For the sentiment

mask generation branch’s three 1×1 convolution filters and

the subnetwork’s fully connected layer, the initial kernel

weights are set to 1 and all the kernel biases are fixed to

0, so as to force the system to use the emotion informa-

tion. The learning rate multiplier is set to 10−3 and the bias

multiplier set to 0. The emotion classification module in the

sentiment mask generation branch is trained separately. The

continuous fixation maps were used as the ground truth. We

trained EASal using GeForce GTX TITAN X.

We evaluated EASal on two publicly available datasets

rich in emotion-evoking objects. The first dataset is EMOd

[11] which consists of 1019 emotional images. We divided

EMOd into training set containing 776 images and test set

containing 243 images. Using the same dataset, we per-

formed 5-fold cross validation by randomly sampling 776

images into training and 243 images into test in each fold.

The second dataset is the CAT2000 [2] which is composed

of 2000 images from different categories. We used the af-

fective category of CAT2000.

4.3. Evaluation methods and results

We compared EASal with respect to other saliency mod-

els on the two aforementioned benchmark datasets. We

chose three other DNN-based models with available im-

plementation/code and no center-bias, namely SALICON

[17], SalGAN [26], and CASNet [11]. SALICON and Sal-

GAN are commonly used benchmarking models for several

saliency models e.g. [7, 20], while CASNet [11] focuses on

the relative saliency within an image. We also used two re-

cent non DNN-based models SROD [5] and BMS [39] and

two classical algorithms GBVS [15] and Itti-Koch [18]. We

further compared EAsal with a similar model but without

the sentiment mask generation branch (hereafter N-EASal).

The performance is measured using standard saliency

metrics (see [3] for details). AUC measures the salient ob-

ject detection capability of the model. The shuffled AUC

(sAUC) is similar to AUC but it penalizes models with cen-

ter bias in their design. CC and SIM treat saliency pre-

dictions as valid distribution. CC equally penalizes both

false positive and false negatives while SIM is sensitive to

false positive. EMD and KL are distance-based metrics

thus, lower values reflect better performance. IG measures

the ability of the model to make predictions above baseline

mode of center bias. It sums the information gain for each

saliency map pixel such that IG for images with different

size are incomparable. NSS is a discrete approximation of

CC. NSS, KL and IG take into consideration the range of

4031



Figure 5. Qualitative comparison of predicted saliency maps. The detected object proposals by EASal are outlined in the first column. Red,

gray, and blue color indicates positive, neutral, and negative sentiment, respectively. The last column shows the difference of the saliency

maps between EASal and N-EASal. EASal better emphasizes the detected emotional objects when compared with other models.

saliency map during evaluation thus capturing the relative

importance of image regions.

The quantitative results are reported in Table 1. EASal

demonstrates state-of-the-art performance on metrics re-

flecting relative saliency [4], i.e., NSS, KL, and IG. EASal

shows marginal improvement on AUC, sAUC, CC and SIM.

Notably, EASal outperforms N-EASal on almost all met-

rics, suggesting the efficacy of the sentiment mask genera-

tion branch and the combination mechanism which is moti-

vated by our empirical data analyses.

The qualitative results are shown in Fig. 5. The emotion

labels of the object proposals are indicated using red, blue

and gray marks to signify positive, negative and neutral ob-

jects. When compared with other saliency models, EASal

is more effective in assigning relative importance for the la-

beled objects, either in less complex images (e.g., first four

images in Fig. 5) or more complex images (e.g., last four

images in Fig. 5). When compared with N-EASal, EASal

yields better relative saliency prediction. A visualization

of the corrected image locations in N-EASal is shown in

the last column of Fig. 5. Higher saliency values are as-

signed to emotion-evoking objects and lower saliency val-

ues are assigned to emotionally-neutral objects. The results

demonstrate that EASal better embodies the phenomenon

that emotion-evoking objects attract human attention.

4.4. DNN visualization and discussion

An interesting observation in EASal training is the con-

vergence of the three 1× 1 convolution filters to the follow-

ing values: 1.53, 1.32 and -0.90, which serve as multiplier

to the positive, negative, and neutral sentiment mask, re-

spectively. Note that there is a regularization function ReLU

at the output of these filters such that only the emotion-

evoking objects get amplified (i.e., receive higher saliency

prediction). In connection to this, we observe that the ad-

vantage of EASal over N-EASal is due to the increase in

saliency value for emotion-evoking objects, which naturally

leads to a decrease in the saliency values of neutral objects

when the predicted saliency map is normalized.

In producing the saliency maps, the output feature map

is directly mapped to the input image via image resizing.

Therefore, each output feature map node encapsulates the

predicted saliency of image regions. To visualize how emo-

tion information changes the predicted relative importance

of image regions, we show in Fig. 6 the top five nodes from

the output feature map of EASal and N-EASal. This is done

by selecting the five maximum node values from the 19×25

output feature map and locating their respective sections in

the 600×800 input image. These nodes correspond to the

predicted top five most important 32×32 regions in the in-

put image. For example, the node located at the first row

and first column of the output feature map corresponds to

the upper left 32×32 region of the input image.

We further quantify the changes in the saliency values

for emotion-evoking objects under various image complex-

ity. As shown in Fig. 7, images with objects of diverse

sentiments have higher percent increase in saliency value

than images with similar object sentiments. For more com-
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Figure 6. EASal emphasizes emotion-evoking objects. Here we

visualize the top five nodes from the output feature map of EASal

and N-EASal on five emotional images. The yellow squares in the

last two columns indicate the predicted top five most important re-

gions. The top five regions in EASal (3rd column) show stronger

emotions than those in N-EASal (4th column), suggesting the ef-

ficacy of the proposed emotion integration mechanism.
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Figure 7. EASal’s percent increase with respect to N-EASal in pre-

dicting the saliency of emotion-evoking objects. Emotion-evoking

objects appearing with different sentiments receive higher increase

in saliency levels as compared when the objects in an image are of

the same sentiment. Such advantage lessens when image complex-

ity increases, mainly due to EASal’s subnetwork signal, which dis-

ables the sentiment mask generation under high image complexity.

plex images (> 6 objects), the increase in saliency level of

co-occurring objects with similar sentiments is minimal as

compared to co-occurring objects with diverse sentiments.

These observations show that EASal successfully encodes

our empirical finding that attention favors emotion-evoking

objects, especially when they co-occur with objects with

different sentiments, regardless of image complexity.

An important part of EASal is the object sentiment clas-

sifier. In the design of the object sentiment classifier, be-

sides the labeled emotional and neutral objects from EMOd

[11], we further generated objects with sentiment labels

from COCO attributes [27] datasets based on their object-

level attributes. For example, COCO attributes “happy”

and “joyful” are converted to positive sentiments, whereas

“unhappy” and “sad” are linked to negative sentiments.

We used GoogleNet architecture for the emotion classifier,

achieving 71.91% classification performance on EMOd.

This suggests future space for improvement for EASal—its

performance will be even better if given a perfect emotion

classifier. Due to space limit, we describe the details of the

emotion classifier in the supplementary material.

5. Conclusion

In this paper, we propose an improved metric (AttI) for

evaluating human attention that takes into account human

consensus and image context (in terms of object sentiment).

AttI enables us to have a comprehensive picture on how

emotion-evoking objects compete for human attention un-

der various image context and image complexity. Our sta-

tistical analyses show that emotion-evoking objects attract

human attention, and such advantage is modulated by im-

age complexity and image context.

Based on the empirical data analyses, we propose

EASal—an emotion-aware DNN model for saliency predic-

tion. EASal fuses object sentiment information, by mod-

ulating the final saliency map using the automatically de-

tected objects’ sentiment masks. Such modulation mecha-

nism is controlled by image complexity and image context

through a subnetwork whose parameters were automatically

learned. With two benchmark datasets featuring emotional

images, EASal exhibits notable improvement on evaluation

metrics that indicate relative importance of salient regions

within an image (i.e.., NSS, KL, IG), implying that integrat-

ing emotion information betters relative saliency prediction.

To the best of our knowledge, this work is a first at-

tempt to quantify an object’s attention level while consider-

ing human consensus and image complexity. The proposed

saliency model is distinctive from existing models in that it

conditionally incorporates emotional information, in which

the condition is determined by the image context and image

complexity. In future work it will be interesting to inves-

tigate the relationship between human attention and other

measures, e.g. object interestingness [14], object memora-

bility [9], and traits of social relation within an image [30].
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