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Abstract

The flexibility and high-accuracy of Deep Neural Net-
works (DNNs) has transformed computer vision. But, the
fact that we do not know when a specific DNN will work
and when it will fail has resulted in a lack of trust. A clear
example is self-driving cars; people are uncomfortable sit-
ting in a car driven by algorithms that may fail under some
unknown, unpredictable conditions. Interpretability and ex-
plainability approaches attempt to address this by uncov-
ering what a DNN models, i.e., what each node (cell) in
the network represents and what images are most likely to
activate it. This can be used to generate, for example, ad-
versarial attacks. But these approaches do not generally al-
low us to determine where a DNN will succeed or fail and
why. i.e., does this learned representation generalize to un-
seen samples? Here, we derive a novel approach to define
what it means to learn in deep networks, and how to use
this knowledge to detect adversarial attacks. We show how
this defines the ability of a network to generalize to unseen
testing samples and, most importantly, why this is the case.

1. Introduction

Deep Neural Networks (DNNs) have enough capacity to
learn from very large datasets, without the need to define
hand-crafted features, models or hypotheses for every prob-
lem. This has revolutionized computer vision and other ar-
eas of Artificial Intelligence (AI) [15].

Using high-capacity DNNSs to learn from huge datasets,
however, does not tell us how the network learns what it
does and why. This so called “black-box” problem has re-
sulted in a lack of trust [5, 35]. For example, why did a
given DNN identified a specific deep representation as more
appropriate than other possible representations?

Interpretability and explainability methods [34] allow us
to see what a DNN has learned, but not how and why it
learned it. For example, if the goal is to know what type
of image activates a specific node (cell) of the network,
one can optimize the DeepDream or other related criteria
[1]. When our goal is to generate plausible class output im-
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Figure 1. Given a DNN its functional graph is defined by the corre-
lation of activation of distant nodes. This allows us to compute bi-
nary graphs defining local and global topological properties of the
network (Algorithm 1). Global topological properties define gen-
eralization, while local properties identify overfitting (Algorithm
2). The same topological properties are used to detect adversarial
attacks.

ages, optimizing softmax and related objectives may be per-
formed [27]. But neither method tells us how and why these
deep features (representations) were chosen by the network
and where they may fail.

The main problems of lack of interpretability and ex-
plainability are: 1. If we do not know how DNNs learn,
we can only improve them by trail-and-error. This is slow
and does not solve the trustability problem. And, 2. If we do
not know why DNNs learn a specific deep representation or
model, we will not know where and why the network fails,
e.g., detect an adversarial attack.

With the help of algebraic topology, we derive a set of
algorithms that help us address the problems stated above.
Simple local properties of the network (e.g., the degree of
a node) as well as global properties (e.g., the path length
between nodes) have been found to be insufficient to explain
how and why DNNss learn [3].

This paper shows how topological properties (e.g., n-
cliques and nD holes) of the functionality of the network
describe how a DNN learns, Figure 1. We use these prop-
erties to demonstrate we can predict when a DNN success-
fully learns, and when and why it is likely to misclassify
an unseen test sample (Algorithms 1 and 2). We also show
how to use the derived approach to successfully detect ad-
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versarial attacks.

2. Related Work

In recent years, high capacity Deep Neural Networks
(DNNs) have outperformed many other machine learning
algorithms in a number of applications like object recog-
nition [13, 32] and speech recognition [| I, 22], especially
when large labeled datasets [28, 1 7] and/or means of obtain-
ing information from large datasets were available [3].

Why or how DNNss achieve this feat and where and why
DNNSs fail remains a mystery. This makes DNNs untrust-
worthy “black-box” models to many [35], with some re-
searchers claiming DNNs are too unpredictable to make
them a general solution to most Al problems [26, 6, 20].

To solve this problem, researchers are trying to under-
stand what DNNs do. Two approaches are interpretability
and explainability, with an emphasis on defining what the
nodes (cells) of the network represent and how they respond
to different inputs [12, 14, 34, 25, 38, 19, 23].

For example, DNNs used in object recognition generally
learn to extract low-level, Gabor-like features in the first
layers, combine these low-level features to represent parts
of an object in mid-level layers, and finally combine those
to generate highly complex representation of objects that
are invariant to image changes, e.g., pose, illumination and
affine transformations [30, 24, 39].

Another group of methods focuses on the analysis of
these features. One way is by exploring the semantic mean-
ing of filters [33] or computing feature distributions of dif-
ferent attributes [2]. Saliency maps, heatmaps, sensitiv-
ity maps, and attention maps display class relevant infor-
mation that is used by the model to make its predictions
[7,18,7,40].

The goal of this paper is to go beyond these approaches
of interpretability and explainability and ask, instead, what
does it mean to learn in DNNs? Specifically, how does the
graph defining the network evolve during the learning pro-
cess? And, how can we use this knowledge to know where
the network has successfully learned and where it will fail?

Making “black-box” models like DNNs interpretable is
of great importance for several reasons, as for example to:
i) increase trust; i7) facilitate transferability to other prob-
lems, e.g., use a network pre-trained on a specific problem
in a different problem [37]; 4i4) predict where a network
is likely to work and where it will most probably fail; iv)
help researchers and practitioners design better networks,
because we now know what works and what does not; v)
derive unsupervised learning algorithms [36, 39], because
we will know what the network needs to do to generalize
to unseen samples; and vi) better prepare our algorithms
for fair and ethical decision makings (i.e., unbiased perfor-
mance) [4, 9].
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Figure 2. (a) Shown here are examples of a 0-clique (a point or
node of a graph), 1-clique (two nodes connected by a 1D undi-
rected edge), 2-clique (three nodes connected by the 1D edges and
2D faces filling in the space between the edges), and 3-clique (four
nodes connected by their 1D edges, 2D faces, and a 3D solid fill-
ing in the space between the faces). These simplicies correspond
to topological realization of a 0-clique, 1-clique, 2-clique, and 3-
clique, respectively. Note that a n-clique defines a nD space. (b)
Examples of clique complexes: cliques glue on common faces to
form topological objects. (c) Example cavities in the topological
space. (d) The boundary operator of a chain surrounding a clique
complex (top) and a cavity (bottom). (e) Persistent homology de-
tects birth and destruction of a cavity (shown with dashed line)
during the mapping of a weighted graph onto binary graphs (Al-
gorithm 1).

3. Approach

The structure of a DNN is generally defined by a
weighted graph. Similarly, the “behavior” of a DNN (i.e.,
the activation of its nodes) are given by a functional graph,
i.e., the correlations between the activation of each pair of
nodes.

We study the topological changes of this functional
graphs during training and testing. We show that networks
that generalize to unseen testing samples converge to a com-
mon topology, and that this topology is differential from
that of networks that fail to generalize. We then demon-
strate how we can exploit this new knowledge to determine
whether an unseen testing sample will be correctly analyzed
by the network and when it will not. Specifically, we focus
on adversarial attacks.

3.1. Preliminaries

Let G = (V, E) be an undirected graph that consists of
a pair of finite sets (V, E), where the elements v; of V' are
called the vertices, and the elements e;; of E are called the
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edges.

A n-cligue, 0 C G is a subset of n + 1 vertices of G
that are connected to each other, and n is the degree of the
clique. Any subgraph ¢ C o of a n-clique is itself a clique
of lower degree and is called a face of that clique. A clique
that is not a face of a clique of larger degree, is called a
maximal clique.

The cligue complex of a graph G is the collection of
all its cliques, S(G) = {So(G), S1(G), ... S,(G)}, where
Sk(G) is the set of all (k + 1)-cliques in G [31]. A clique
complex defines a topological space.

The geometric realization of this topological space is an
object. A few examples of such objects are shown in Figure
2(a). As seen in this figure, a O-clique is realized by a single
node, a 1-clique by a line segment (i.e., edge) connecting
two nodes, a 2-clique is the filled triangle that connects three
nodes (i.e., the three edges of the three nodes define a filled
triangle, that is, a 2D face), etc.

The geometric realizations of cliques in a clique complex
intersect on common faces forming a well-defined object as
shown in Fig. 2(b).

We define the correlation activation of nodes in a DNN
as topological objects, as those illustrated in Fig. 2(a-c).

We study the topological properties of these objects. For
this, we turn to several concepts necessary to compute ho-
mology, a method in algebraic topology capable of counting
cavities in topological objects.

3.2. Homology and cavities

We define a chain complex C(S) of a clique complex
to be the sequence {C),(S,F2)},>0 (abbreviated C,,), with
C,, the Fa-vector space whose bases are the (n+1)-cliques
o € Sp, Vn > 0, and Fo = {0, 1}. In other words the ele-
ments of C, are interconnections of (n+1)-cliques in S. For
example, elements of C'; are linear combinations of edges
(2-cliques) and elements of C'; are linear combinations of
filled triangles (3-cliques, i.e., 2D faces).

For each n > 1, there exist a linear transformation called
a boundary operator that maps C,, onto a lower dimen-
sional chain complex:

Op : Cp — Cp_i, H
with .
On(001,...n) = ZUO,l,...7k71,k+17...,n~ ()
k=0

Geometrically, the boundary of a n-clique is the set of
(n — 1)-cliques bordering it. Fig. 2(d) shows an example.
Hence, the boundary operator takes a collection of n-cliques
and maps them to their boundary, i.e., a collection of (n —
1)-cliques.

Similarly, a n-cycle is a path in our graph that forms
closed structures, e.g., vi — vo — v3 — wv1. Since
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Figure 3. The Betti numbers are sequences of natural numbers
counting the cavities of a topological object in a corresponding
dimension. Low dimensional Betti numbers have intuitive in-
terpretation: [y counts connected components, 51 2D cavities,
B2 3D cavities. We show several examples of clique simplices
and corresponding Betti numbers. By adding edges, lower di-
mensional cavities are destroyed while higher dimensional are
formed. For example, note how a first cavity lo = (vo, v1, ..., Us)
is formed (middle row, second column), then by adding two
more edges (v2,v4) and (vo, v4) four new cavities appear Iy =
(1}0, V4, Us, Ue), 12 = (’Uo, V1, V2,0V3, ’(}4), l3 = (’Uz7 V3, V4, ’U5) and
la = (vo,v1,v2,vs,vs) (middle row, third column). By defini-
tion, a geometrical realization of a clique always includes all the
enclosed space between the nodes (simplices). Adding another
edge (vo,vs) fills I1, thus 51 drops to 3. Some edges are dashed
for facilitating visualization.

the boundary of any clique is a cycle, the boundary oper-
ator provides a mechanism to compute cycles. Formally,
a n-cycle is given by any element [ € C,, that satisfies
On(1) = 0, Fig. 2(d).

Let us call the subset of n-cycles, k(9,,). And, let the
n-cycle that defines the boundary of C), be b(9,,).

Note that two n-cycles, ly,ly € C,,, are equivalent if
their sum in o defines the boundary of a path of n + 1
vertices, i.e., a (n + 1)-chain.

Formally, we define this homology of dimension n as,

Hn(Sv ]FZ) = k(an)/b(an + 1)» 3)
forn > 1, and
Hy(S) = Co/b(0h). “4)

Therefore, H,, defines the vector space spanned by the
class of n-cycles. Its dimensionality is the number of non-
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trivial n-cycles; i.e., the number of (n+1)-dimensional cav-
ities in the objects (graphs) in Fig. 2(c). And a cavity is a
non-filled face of dimensionality n, Fig 2(d).

Since cycles are chain complexes that map to () by the
boundary operator, cavities are the nullspace of this bound-
ary operator, null(0,) = k(0,) C Cp.

3.3. Cliques in DNNs

The above is defined in binary graphs, i.e., in Fy. For
weighted graphs we will compute all the possible binary
graphs. Let us define an approach to achieve this.

Let G = (V, E) be the graph defining the DNN we wish
to study, and X = {x;, y;}.~, the labeled training samples,
with m the number of samples, x; € RP, and y; € Z in
classification and y; € RY in regression (¢ > 1).

Passing the sample vectors x; through the network (i =
1,...,m), allows us to compute the correlation c;; between
the activation (a;, a;) of each pair of nodes (v;,v;) of G.
That is given by,

m—1 m
m(m — 1) (ai — pa,)(aj — Ha;)
= 2. D e 0 ©
i=1 j=i+1 @i>aj

where 1 and ¢ indicate the mean and standard deviation over
X.

Let us now order the absolute values of these correlations
from largest to smallest: |c;, j, | > [ciyj,| > -+ > e, | >
T, r the number of correlations larger than 7 in G given
X, written corr(G| X, T'). In this notation, the subscripts of
each correlation indicate the node pairs in that correlation:
(Uil ) vjl)a LR (’Uira vj'r)'

Binary graphs are obtained by iteratively adding a node
pair at a time. We start by adding the nodes with largest
correlation, (v;, ,v;, ), and continue adding node pairs up to
the last one, (v;,.,v;,.).

We will refer to the number of edges included in a binary
graph as its density, pr = k/number of non-zero correla-
tions; the number of non-zero correlations is computed as
the number of |¢;;| > 0, Vi and j > ¢. Thus, the density of
our binary graph will increase at each iteration (as we add
more and more nodes).

This process allows us to investigate how the homology
of the graph defining the DNN of interest evolves as a func-
tion of the density, Fig. 2(e).

This approach is summarized in Algorithm 1. This algo-
rithm maps a DNN defined by a weighted graph onto the set
of binary graphs {G1,...,G,}. And, these binary graphs
are topological objects as shown in Fig. 2.

Algorithm 1 allows us to compute any topological prop-
erty of a DNN given X as a function of learning.

We start with the analysis of the number of n-cliques. To
illustrate this, we will use the LeNet derived in [16]. LeNet

Algorithm 1 Weighted to binary graph mapping.
1 Let G = (V,E), X = {x;,yi},~,, and define T > 0.
2 Let corr(G|X,T) = {|ciij |, |Cirjals- -1 ]Cis |}, st
|Ci1j1| > ‘ci2j2| > 2 |Ci7-j7- >T.

3: Let Gy = 0 and k=0.

4: repeat

5: k=Fk+1.

6. G = Gr—1U{vi,, &;vj, }, with é;; the undirected
edge defining v;, — vj, .

7. pr=k/r.

8 until k£ = r.

is a historical network and will be used here as a proof-of-
concept. This network was originally derived to recognize
written digits, i.e., 0-10. We use the MNIST dataset, con-
sisting of 60, 000 training images and 10, 000 test images,
as X [16].

The cross-validation (CV) classification accuracy of this
network is shown in Fig. 4(a), where the z-axis defines
the epoch and the y-axis the 5-fold CV accuracy, and the
thickens of the blue curve defines the variance over this CV
procedure.

Given the graph of LeNet G'. vt and the training set X,
we use Algorithm 1 to get G, s.t. pr, = .25. The number of
n-cliques (n € [0,20]) in Gy, are shown in Fig. 4(b), where
each plot represents the results at the indicated epoch, the
x-axis specifies the value of n, and the y-axis the number of
n-cliques.

Note that the number of n-cliques in an untrained DNN
must be zero or very close to zero. That is because the num-
ber of nodes working together (i.e., correlated, as given by
ci;j) before any training is performed must be zero or tiny.
This is shown in the first plot of Fig. 4(b). But as the net-
work learns, the nodes in the graph start to work together to
solve the problem of mapping x; onto y.

Note that by the time the learning process has made its
major gains (by about epoch 10), the number of n-cliques
is maximum. As the learning process continuous tightening
the knobs of the network (i.e., adjusting its parameters), the
number of cliques starts to decrease. This is the result of
overfitting to X.

Are cavities an even better indicator of how well the net-
work learns a dataset X ? We explore this next.

3.4. Cavities in DNNs

The rank of the n-homology group H,, in a topological
space is called the n'™ Betti number. In other words, Betti
numbers compute the maximum amount of cuts that must be
made to separate a surface into two k-cycles, k = 1,2,....

Hence, the first Betti number, 3, computes the number
of connected elements in S(G); the second Betti number,
[1, calculates 1D cavities (or holes); B2 gives the number of
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Figure 4. Testing accuracy for LeNet training on MNIST (a) vs the number of cliques (b). Mean and standard deviation given by 5-fold

cross-validation.

2D cavities; and, more generally, 3,, computes the number
of nD cavities, Figure 3.

Key to understanding Figure 3 is to note that all kD faces
of the simplicies of a n-clique are filled, e.g., see the last ob-
ject in the second row and the last two in the last row in Fig-
ure 3; note how these kD faces eliminate cavities of lower
dimensionality and add cavities of higher dimensionality.

To further clarify this important point, consider the sec-
ond example in the second row in Figure 3. The functional
representation of this DNN indicates that node vy and v
work together to solve the classification or regression prob-
lem the network is tasked to address, i.e., their activation
patterns are highly correlated (Algorithm 1). Similarly, v;
and v;41 (¢ = 1,...,6) and vg and v also work together
to solve the problem the network is faced with. This cre-
ates a 1D cavity, 3; = 1, because O maps this chain to ().
But if vy and v4 and vy and vs are also highly correlated,
this forms cliques with filled simplicies, yielding two addi-
tional 1D cavities, 51 = 3; as shown in the last objects in
the second row in Fig. 3.

The Betti numbers of a clique complex S of a graph G
are formally given by,

Brn(S) = null(d,) — rank(Op41)- (6)

Note that in order to compute 3,,, we need the null space
and the rank of the matrix formed by cliques of dimension
n and dimension n — 1. This means that we only need to
compute the cliques in the first n dimensions to calculate
B1, ..., By Since, in most DNNs, 3,, = 0 for n larger than
4 or 5, this means that the computations can be performed
efficiently.

3.5. Learning and generalization

The evolution of the Betti numbers of the LeNet network
as a function of 7" and epochs is shown in Fig. 5. Recall,
T defines the density our approach explores, i.e., T is in-
versely proportional to p (see Algorithm 1). The y-axis in
the plots indicates the number of cavities properly normal-
ized by the number of nodes (i.e., number of cavities/node).

As we can see in this key figure, the number of 1D cav-
ities moves from higher to lower densities as the DNN
learns. That is, as the DNN learns, the correlation pat-
tern of activation of the nodes in the network that are fur-
ther apart as well as those that generate larger simplicial
complexes start to appear.’ This demonstrates that the net-
work is constructing global structures to learn the function
that maps the input samples to their corresponding outputs,
yvi = g(x;), Le., the network is learning to generalize by
using large portions of the graph.

But when the network can no longer generalize, it starts
to memorize the samples that do not abide by the learned
functional mapping g(-). This results in a decrease of global
structure and an increase in local chain complexes. This is
clearly visible in Figure 5: note the maximum number of
cavities starts to move toward higher densities. As seen in
Figure 5, this happens after about epoch = 40, when the
network has done all it can to learn to generalize, Figure
4(a). An example of this topological effect was illustrated

I'This effect is due to the fact that nodes that work together start to form
cliques whose simplices fill in the holes of the functional graph. That is,
rather than adding additional nodes when increasing the density from py,
to pi+1, we add edges between the nodes already available at density py,.
We refer to this as a global property, because rather than having a chain of
semi-related nodes (e.g., v1 — v2 — - -+ — v,), we have n-cliques (i.e.,
all nodes connected to all other nodes). Note that the cliques appearing at
higher densities delete the cavities we observe a lower densities, Figure 3.
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Figure 5. Betti number dynamics during LeNet [
Refer to Fig. 4(a) for testing accuracy.

Algorithm 2 Generalization.
Let G = (V, E) define a DNN with 6 its parameters.
Let X be the training set, and set 7" > 0.
Set t=0, and n to either 1, 2, or 3.
repeat
Use X and the selected loss to optimize 6.
t=t+1.
Use Algorithm 1 to obtain Gy, k= 1,...,7.
Compute the clique complexes S, of Gi.
Et = arg maxy 3, (Sk).
. until /k?t > /k?tfl.

SN AN A R el e

in the second and third rows of Fig. 3.

This means learning in DNNs is equivalent to finding the
smallest density p;; of nD cavities in the functional binary
graphs that define the network. This peak density allows
us to identify when a network has reach its limits of global
learnability and generalization to unseen samples.

This approach is summarized in Algorithm 2.

If we wish to find global properties with Algorithm 2,
we set n = 1 to detect 1D cavities. But if we wish to iden-
tify even larger topological connections, we set n = 2 or
3. Hence, larger n values mean we are interested in in-
creasingly general properties of the underlying, unknown
function g(-) our DNN needs to learn.

The smaller n is, the more we allow the DNN to adapt
to our specific dataset. Thus, a smaller n will yield more
accurate results on a testing set that is representative of the
training, but less accurate results on test sets that diverge
from the training set.

] training on MNIST. Mean and standard deviation given by 5-fold cross-validation.
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Figure 6. Training/testing accuracy with decreasing proportion of
training data and permuted/non-permuted labels.

Additional results are in the supplementary file.

3.6. Learning vs. failing to learn

We can also use the above defined topological properties
of our DNN to determine where the networks fails to learn
to generalize to unseen samples.

Let us illustrate this in an example using LeNet. In this
example, we trained the network with either 50%, 25%,
10% or 1% random selection of the training samples (plus
the data augmentation typically used in LeNet). The train-
ing and testing accuracies are shown in Figure 6(a). Solid
lines indicate training accuracy; dashed lines testing accu-
racy. As can be appreciated in the figure, for LeNet the
testing accuracy follows the same pattern as the training,
regardless of the percentage of training data used.

But, when we redo the above experiment with permuted
labels,? the results are very different, Figure 6(b).

2This means that the labels y; have been permuted by multiplying the
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Note how the network is able to learn from small non-
sensical (permuted) datasets during training. But the testing
accuracy curves shows this is just an illusion, i.e., the net-
work is able to memorize these nonsensical sample pairs
{x;,¥:}, where ¥, are the permuted labels, but this serves
no purpose when it comes to testing the performance of the
system on independent samples. This means we cannot re-
lay on the training accuracy as a measure of generalization;
a well-known fact.

Fortunately, from our previous section, we know that nD
cavities move toward lower densities of our functional bi-
nary graphs when the network learns to generalize. We will
now use this insight to derive a simple algorithm that knows
whether the network is learning or not.

Figure 7 shows the Bettis at different densities, percent-
ages of training data (50 to 1%), and epochs (epoch = 2, 10
and 50). The blue curves correspond to the Bettis computed
with Algorithm 2 and non-permuted data. Orange curves
show the Bettis obtained when using the permuted labels
y;. Figure 7(a) are the results at epoch = 2, Figure 7(b) at
epoch = 4, Figure 7(c) at epoch = 10 and Figure 7(d) at
epoch = 50.

As expected, the maximum number in 5; moves to lower
densities when the labels are non-permuted, but does not
when the labels are permuted. Even more telling is the lack
of 2D and 3D cavities when using permuted labels.

Our algorithm to detect lack of training is thus simple:
a. Lack of 2D and 3D cavities, and b. 1D cavities move
toward lower densities.

What does it mean to learn in DNN? Learning to gen-
eralize in DNN is defined by the creation of 2 and 3D cav-
ities in the functional binary graphs representing the cor-
relations of activation of distant nodes of the DNN, and the
movement of 1D cavities from higher to lower graph density
p. Overfitting is indicated by a regression of these cavities
toward higher densities in these functional binary graphs.

3.7. Detecting adversarial attacks

We can also use the approach derived in the previous sec-
tions to know where our network is likely to fail during test-
ing. We illustrate this by demonstrating how to detect an
adversarial attack, which is a guaranteed, easy way to make
a DNN fail [33].

To do this, we use the algorithm of [21] to generate im-
ages for an adversarial attack on a trained LeNet. As above,
LeNet was trained on MNIST.

For testing, we used the the independent MNIST testing
set and the set of images prepared for the adversarial attack.

As above, we expect 1D cavities to increase and move
to lower densities as well as an increase in the number of 2

vector (y1,..., ym)T with a randomly generated m X m permutation
matrix P. A permutation matrix is obtained by permuting the rows of an
identity matrix.

and 3D cavities at lower densities on unaltered testing data.
But for the data in the adversarial set, we expect only 1,
2 and 3D cavities at the highest densities, indicating local
processing but a lack of global engagement of the network.

The results are in Fig. 8, with the blue curves indicating
the cavities on the functional binary graphs G when us-
ing the unaltered testing sample, and the orange curve those
observed when processing the samples in the adversarial at-
tack set. Thus, our predictions are confirmed, and we know
that the images in the adversarial attack set cannot be cor-
rectly classified by LeNet.

This approach, for the first time allows us to identify test
images that the network is bound to misclassify.

See additional results in the supplementary file.

3.8. Experimental details

The experiments reported above with LeNet were trained
using stochastic gradient descent with momentum of .9 and
weight decay 5 x 10~%. Learning rate was initialized at
10~* and reduced by half when accuracy stagnated. For
training, data was augmented using random horizontal flips,
random rotations of +5 and random crops of equal image
size with padding = 4. The images of the adversarial attack
were generated using the approach of [21]. This approach
computes minimal perturbations, that are mostly indistin-
guishable to a human observer but have devastating effects
on DNNs. In our case, the initial testing accuracy of above
90% (Fig. 4(a)) dropped to random decision (10%) after the
adversarial perturbations were used.

4. Discussion and conclusions

DNNs are used in a large number of real life products, in-
cluding face recognition, facial expression analysis, object
recognition, speech recognition, and language translation,
to name but a few. Many companies depend on DNNs to
design their products.

The main problem with DNNSs is that they behave in a
“black-box” manner, i.e., we do not know how they learn,
what they learn, or where these learned deep representations
will fail. This has led to a loss of trust by many [5, 35, 26,

, 20]. Clear examples of these are self-driving cars and
medical diagnoses, with variants of the following argument:
If we do not know what the network learned and why and
where it will fail, how can I trust it to drive my car or give
me a medical diagnosis.

In this paper, we have introduced a set of tools and algo-
rithms to address these problems.

We accomplished this by defining what learning in deep
networks means. Specifically, we demonstrated that learn-
ing to generalize to unseen (test) samples is equivalent to
creating cliques among large number of nodes, whereas
memorizing specific training samples (i.e., a type of learn-
ing that does not translate to good generalizations) is equiv-
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Figure 7. Betti numbers obtained when using 50%, 25%, 10% or 1% of the training data (top to bottom row, respectively). Blue curves
indicate non-permuted labels; orange curves indicate permuted labels. 1D cavities (/31) are shown in the first column; 2D cavities (32) in
the second column; and 3D cavities (/33) in the third column. Results plotted at the following epochs (a) 2, (b) 4, (c) 10 and (d) 50.
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Figure 8. Betti numbers obtained when using unaltered and adver-
sarial testing samples. LeNet trained on MNIST.

alent to topological changes between low-correlated sets of
nodes (i.e., nodes that are not highly cooperative among
themselves). We then showed how we can use these same
principles to determine when the network works correctly
during testing. Specifically, we showed we can reliably

identify adversarial attacks.

Beyond what we have demonstrated in this paper, it is
worth mentioning that our approach is general and by no
means limited to feedforward neural networks or the use of
backpropagation. Our approach works equally well on net-
works that have all types of directed and undirected edges,
e.g., [10], alternative to backpropagation [29], or different
types of activation functions.
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