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Abstract

Current captioning approaches can describe images us-

ing black-box architectures whose behavior is hardly con-

trollable and explainable from the exterior. As an image can

be described in infinite ways depending on the goal and the

context at hand, a higher degree of controllability is needed

to apply captioning algorithms in complex scenarios. In

this paper, we introduce a novel framework for image cap-

tioning which can generate diverse descriptions by allow-

ing both grounding and controllability. Given a control sig-

nal in the form of a sequence or set of image regions, we

generate the corresponding caption through a recurrent ar-

chitecture which predicts textual chunks explicitly grounded

on regions, following the constraints of the given control.

Experiments are conducted on Flickr30k Entities and on

COCO Entities, an extended version of COCO in which we

add grounding annotations collected in a semi-automatic

manner. Results demonstrate that our method achieves state

of the art performances on controllable image captioning,

in terms of caption quality and diversity. Code and an-

notations are publicly available at: https://github.

com/aimagelab/show-control-and-tell.

1. Introduction

Image captioning brings vision and language together

in a generative way. As a fundamental step towards ma-

chine intelligence, this task has been recently gaining much

attention thanks to the spread of Deep Learning architec-

tures which can effectively describe images in natural lan-

guage [42, 18, 46, 43]. Image captioning approaches are

usually capable of learning a correspondence between an

input image and a probability distribution over time, from

which captions can be sampled either using a greedy de-

coding strategy [43], or more sophisticated techniques like

beam search and its variants [1].

As the two main components of captioning architectures

are the image encoding stage and the language model, re-
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Figure 1: Comparison between (a) captioning models with

global visual feature [43], (b) attentive models which in-

tegrate features from image regions [3] and (c) our Show,

Control and Tell. Our method can produce multiple cap-

tions for a given image, depending on a control signal

which can be either a sequence or a set of image regions.

Moreover, chunks of the generated sentences are explicitly

grounded on regions.

searchers have focused on improving both phases, which

resulted in the emergence of attentive models [46] on one

side, and of more sophisticated interactions with the lan-

guage model on the other [25, 5]. Recently, attentive models

have been improved by replacing the attention over a grid

of features with attention over image regions [3, 44, 50]. In

these models, the generative process attends a set of regions

which are softly selected while generating the caption.

Despite these advancements, captioning models still lack

controllability and explainability – i.e., their behavior can

hardly be influenced and explained. As an example, in the

case of attention-driven models, the architecture implicitly

selects which regions to focus on at each timestep, but it

cannot be supervised from the exterior. While an image

can be described in multiple ways, such an architecture pro-

vides no way of controlling which regions are described and

what importance is given to each region. This lack of con-

trollability creates a distance between human and machine
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intelligence, as humans can manage the variety of ways in

which an image can be described, and select the most appro-

priate one depending on the task and the context at hand.

Most importantly, this also limits the applicability of cap-

tioning algorithms to complex scenarios in which some con-

trol over the generation process is needed. As an example,

a captioning-based driver assistance system would need to

focus on dangerous objects on the road to alert the driver,

rather than describing the presence of trees and cars when a

risky situation is detected. Eventually, such systems would

also need to be explainable, so that their behavior could be

easily interpreted in case of failures.

In this paper, we introduce Show, Control and Tell, that

explicitly addresses these shortcomings (Fig. 1). It can gen-

erate diverse natural language captions depending on a con-

trol signal which can be given either as a sequence or as a set

of image regions which need to be described. As such, our

method is capable of describing the same image by focus-

ing on different regions and in a different order, following

the given conditioning. Our model is built on a recurrent ar-

chitecture which considers the decomposition of a sentence

into noun chunks and models the relationship between im-

age regions and textual chunks, so that the generation pro-

cess can be explicitly grounded on image regions. To the

best of our knowledge, this is the first captioning framework

controllable from image regions.

Contributions. Our contributions are as follows:

• We propose a novel framework for image captioning

which is controllable from the exterior, and which can

produce natural language captions explicitly grounded

on a sequence or a set of image regions.

• The model explicitly considers the hierarchical struc-

ture of a sentence by predicting a sequence of noun

chunks. Also, it takes into account the distinction be-

tween visual and textual words, thus providing an ad-

ditional grounding at the word level.

• We evaluate the model with respect to a set of care-

fully designed baselines, on Flickr30k Entities and on

COCO, which we semi-automatically augment with

grounding image regions for training and evaluation

purposes.

• Our proposed method achieves state of the art re-

sults for controllable image captioning on Flick30k

and COCO both in terms of diversity and caption qual-

ity, even when compared with methods which focus on

diversity.

2. Related work

A large number of models has been proposed for im-

age captioning [37, 47, 24, 23, 17, 25]. Generally, all in-

tegrate recurrent neural networks as language models, and

a representation of the image which might be given by the

output of one or more layer of a CNN [43, 10, 37, 24], or

by a time-varying vector extracted with an attention mech-

anism [46, 48, 24, 7, 3] selected either from a grid over

CNN features, or integrating image regions eventually ex-

tracted from a detector [32, 3]. Attentive models provided

a first way of grounding words to parts of the image, al-

though with a blurry indication which was rarely semanti-

cally significant. Regarding the training strategies, notable

advances have been made by using Reinforcement Learning

to train non-differentiable captioning metrics [35, 23, 37].

In this work, we propose an extended version of this ap-

proach which deals with multiple output distributions and

rewards the alignment of the caption to the control signal.

Recently, more principled approaches have been pro-

posed for grounding a caption on the image [34, 38, 15, 16]:

DenseCap [17] generates descriptions for specific image re-

gions. Further, the Neural Baby Talk approach [25] extends

the attentive model in a two-step design in which a word-

level sentence template is firstly generated and then filled

by object detectors with concepts found in the image. We

instead decompose the caption at the level of noun chunks,

and explicitly ground each of them to a region. This ap-

proach has the additional benefit of providing an explicabil-

ity method at the chunk level.

Another related line of work is that of generating diverse

descriptions. Some works have extended the beam-search

algorithm to sample multiple captions from the same distri-

bution [41, 1], while different GAN-based approaches have

also appeared [8, 39, 45]. Most of these improve on diver-

sity, but suffer on accuracy and do not provide controlla-

bility over the generation process. Others have conditioned

the generation with a specific style or sentiment [27, 28, 11].

Our work is mostly related to [9], which uses a control in-

put as a sequence of part-of-speech tags. This approach,

while generating diversity, is hardly employable to effec-

tively control the generation of the sentence; in contrast, we

use image regions as a controllability method.

3. Method

Sentences are natural language structures which are hi-

erarchical by nature [26]. At the lowest level, a sentence

might be thought as a sequence of words: in the case of

a sentence describing an image, we can further distinguish

between visual words, which describe something visually

present in the image, and textual words, that refer to entities

which are not present in the image [25]. Analyzing further

the syntactic dependencies between words, we can recover

a higher abstraction level in which words can be organized

into a tree-like structure: in a dependency tree [12, 14, 6],

each word is linked together with its modifiers (Fig. 2).

Given a dependency tree, nouns can be grouped with

their modifiers, thus building noun chunks. For instance,

the caption depicted in Fig. 2 can be decomposed into a se-

quence of different noun chunks: “a young boy”, “a cap”,
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Figure 2: Example of a dependency tree for a caption. Noun

chunks are marked with rounded boxes; chunks correspond-

ing to image regions are depicted using the same color.

“his head”, “striped shirt”, and “gray and sweat jacket”. As

noun chunks, just like words, can be visually grounded into

image regions, a caption can also be mapped to a sequence

of regions, each corresponding to a noun chunk. A chunk

might also be associated with multiple image regions of the

same class if more than one possible mapping exists.

The number of ways in which an image can be described

results in different sequences of chunks, linked together to

form a fluent sentence. Therefore, captions also differ in

terms of the set of considered regions, the order in which

they are described, and their mapping to chunks given by

the linguistic abilities of the annotator.

Following these premises, we define a model which can

recover the variety of ways in which an image can be de-

scribed, given a control input expressed as a sequence or set

of image regions. We begin by presenting the former case,

and then show how our model deals with the latter scenario.

3.1. Generating controllable captions

Given an image I and an ordered sequence of set of

regions R = (r0, r1, ..., rN )1, the goal of our captioning

model is to generate a sentence y = (y0, y1, ..., yT ) which

in turns describes all the regions in R while maintaining the

fluency of language.

Our model is conditioned on both the input image I

and the sequence of region sets R, which acts as a control

signal, and jointly predicts two output distributions which

correspond to the word-level and chunk-level representa-

tion of the sentence: the probability of generating a word

at a given time, i.e. p(yt|R, I;θ), and that of switching

from one chunk to another, i.e. p(gt|R, I;θ), where gt is

a boolean chunk-shifting gate. During the generation, the

model maintains a pointer to the current region set ri and

can shift to the next element in R by means of the gate gt.

To generate the output caption, we employ a recurrent

neural network with adaptive attention. At each timestep,

we compute the hidden state ht according to the previous

hidden state ht−1, the current image region set rt and the

1For generality, we will always consider sequences of sets of regions, to

deal with the case in which a chunk in the target sentence can be associated

to multiple regions in training and evaluation data.

current word wt, such that ht = RNN(wt, rt,ht−1). At

training time, rt and wt are the ground-truth region set and

word corresponding to timestep t; at test time, wt is sampled

from the first distribution predicted by the model, while the

choice of the next image region is driven by the values of the

chunk-shifting gate sampled from the second distribution:

rt+1 ← R[i], where i = min

(
t∑

k=1

gk, N

)

, gk ∈ {0, 1}

(1)

where {gk}k is the sequence of sampled gate values, and N

is the number of region sets in R.

Chunk-shifting gate. We compute p(gt|R) via an adaptive

mechanism in which the LSTM computes a compatibility

function between its internal state and a latent representa-

tion which models the state of the memory at the end of a

chunk. The compatibility score is compared to that of at-

tending one of the regions in rt, and the result is used as an

indicator to switch to the next region set in R.

The LSTM is firstly extended to obtain a chunk sentinel

sct , which models a component extracted from the memory

encoding the state of the LSTM at the end of a chunk. The

sentinel is computed as:

lct = σ(Wigxt +Whght−1) (2)

sct = lct ⊙ tanh(mt) (3)

where Wig ∈ R
d×k, Whg ∈ R

d×d are learnable weights,

mt ∈ R
d is the LSTM cell memory and xt ∈ R

k is the

input of the LSTM at time t; ⊙ represents the Hadamard

element-wise product and σ the sigmoid logistic function.

We then compute a compatibility score between the in-

ternal state ht and the sentinel vector through a single-layer

neural network; analogously, we compute a compatibility

function between ht and the regions in rt.

zct = wT
h tanh(Wsgs

c
t +Wght) (4)

zr
t = wT

h tanh(Wsrrt + (Wght)✶
T ) (5)

where n is the number of regions in rt, ✶ ∈ R
n is a vector

with all elements set to 1, wT
h is a row vector, and all W∗,

w∗ are learnable parameters. Notice that the representation

extracted from the internal state is shared between all com-

patibility scores, as if the region set and the sentinel vector

were part of the same attentive distribution. Contrarily to an

attentive mechanism, however, there is no value extraction.

The probability of shifting from one chunk to the next

one is defined as the probability of attending the sentinel

vector sct in a distribution over sct and the regions in rt:

p(gt = 1|R) =
exp zct

exp zct +
∑n

i=1
exp zr

ti

(6)

where zr
ti indicates the i-th element in zr

t , and we dropped

the dependency between n and t for clarity. At test time, the

8309



Detection Set
Sorting

Network

Detection Sequence

dog a next to

Chunk-

Shifting Gate

Adaptive 

Attention

Language LSTM

Attention LSTM

La
n

g
u

a
g

e
 M

o
d

e
l

1 2 3

a on bikeasidewalk

Control Signal

In
p

u
t 

Im
a

g
e

sitting

Figure 3: Overview of the approach. Given an image and a control signal, the figure shows the process to generate the

controlled caption and the architecture of the language model.

value of gate gt ∈ {0, 1} is then sampled from p(gt|R) and

drives the shifting to the next region set in R.

Adaptive attention with visual sentinel. While the chunk-

shifting gate predicts the end of a chunk, thus linking the

generation process with the control signal given by R, once

rt has been selected a second mechanism is needed to at-

tend its regions and distinguish between visual and textual

words. To this end, we build an adaptive attention mecha-

nism with a visual sentinel [24].

The visual sentinel vector models a component of the

memory to which the model can fall back when it chooses

to not attend a region in rt. Analogously to Eq. 2, it is

defined as:

lvt = σ(Wisxt +Whsht−1) (7)

svt = lvt ⊙ tanh(mt) (8)

where Wis ∈ R
d×k and Whs ∈ R

d×d are matrices of

learnable weights. An attentive distribution is then gener-

ated over the regions in rt and the visual sentinel vector svt :

αt = softmax([zr
t ;w

T
h tanh(Wsss

v
t +Wght)]) (9)

where [·] indicates concatenation. Based on the attention

distribution, we obtain a context vector which can be fed to

the LSTM as a representation of what the network is attend-

ing:

ct =

n+1∑

i=1

αti[rt; s
v
t ] (10)

Notice that the context vector will be, mostly, an approx-

imation of one of the regions in rt or the visual sentinel.

However, rt will vary at different timestep according to the

chunk-shifting mechanism, thus following the control input.

The model can alternate the generation of visual and textual

words by means of the visual sentinel.

3.2. Objective

The captioning model is trained using a loss function

which considers the two output distributions of the model.

Given the target ground-truth caption y∗
1:T , the ground-truth

region sets r∗
1:T and chunk-shifting gate values correspond-

ing to each timestep g∗
1:T , we train both distributions by

means of a cross-entropy loss. The relationship between

target region sets and gate values will be further expanded

in the implementation details. The loss function for a sam-

ple is defined as:

L(θ) = −
T∑

t=1

(

log

Word-level probability
︷ ︸︸ ︷

p(y∗t |r
∗
1:t,y

∗
1:t−1)+

+ g∗t log p(gt = 1|r∗1:t,y
∗
1:t−1)+

+ (1− g∗t )(1− log p(gt = 1|r∗1:t,y
∗
1:t−1)

︸ ︷︷ ︸

Chunk-level probability

)

(11)

Following previous works [35, 37, 3], after a pre-training

step using cross-entropy, we further optimize the sequence

generation using Reinforcement Learning. Specifically, we

use the self-critical sequence training approach [37], which

baselines the REINFORCE algorithm with the reward ob-

tained under the inference model at test time.

Given the nature of our model, we extend the approach to

work on multiple output distributions. At each timestep, we

sample from both p(yt|R) and p(gt|R) to obtain the next

word wt+1 and region set rt+1. Once a EOS tag is reached,

we compute the reward of the sampled sentence ws and

backpropagate with respect to both the sampled word se-

quence ws and the sequence of chunk-shifting gates gs.

The final gradient expression is thus:

∇θL(θ) = −(r(w
s)− b)(∇θ log p(w

s) +∇θ log p(g
s))
(12)
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where b = r(ŵ) is the reward of the sentence obtained us-

ing the inference procedure (i.e. by sampling the word and

gate value with maximum probability). We then build a

reward function which jointly considers the quality of the

caption and its alignment with the control signal R.

Rewarding caption quality. To reward the overall quality

of the generated caption, we use image captioning metrics

as a reward. Following previous works [3], we employ the

CIDEr metric (specifically, the CIDEr-D score) which has

been shown to correlate better with human judgment [40].

Rewarding the alignment. While captioning metrics can

reward the semantic quality of the sentence, none of them

can evaluate the alignment with respect to the control in-

put2. Therefore, we introduce an alignment score based on

the Needleman-Wunsch algorithm [30].

Given a predicted caption y and its target counterpart

y∗, we extract all nouns from both sentences, and evaluate

the alignment between them, recalling the relationships be-

tween noun chunks and region sets. We use the following

scoring system: the reward for matching two nouns is equal

to the cosine similarity between their word embeddings; a

gap gets a negative reward equal to the minimum similarity

value, i.e.−1. Once the optimal alignment is computed, we

normalize its score, al(y,y∗) with respect to the length of

the sequences. The alignment score is thus defined as:

NW(y,y∗) =
al(y,y∗)

max(#y,#y∗)
(13)

where #y and #y∗ represent the number of nouns con-

tained in y and y∗, respectively. Notice that NW(·, ·) ∈
[−1, 1]. The final reward that we employ is a weighted ver-

sion of CIDEr-D and the alignment score.

3.3. Controllability through a set of detections

The proposed architecture, so far, can generate a caption

controlled by a sequence of region sets R. To deal with

the case in which the control signal is unsorted, i.e. a set of

regions sets, we build a sorting network which can arrange

the control signal in a candidate order, learning from data.

The resulting sequence can then be given to the captioning

network to produce the output caption (Fig. 3).

To this aim, we train a network which can learn a per-

mutation, taking inspiration from Sinkhorn networks [29].

As shown in [29], the non-differentiable parameterization

of a permutation can be approximated in terms of a differ-

entiable relaxation, the so-called Sinkhorn operator. While

a permutation matrix has exactly one entry of 1 in each row

and each column, the Sinkhorn operator iteratively normal-

izes rows and columns of any matrix to obtain a “soft” per-

2Although METEOR creates an alignment with respect to the reference

caption, this is done for each unigram, thus mixing semantic and alignment

errors.

mutation matrix, i.e. a real-valued matrix close to a permu-

tation one.

Given a set of region setsR = {r1, r2, ..., rN}, we learn

a mapping from R to its sorted version R∗. Firstly, we

pass each element in R through a fully-connected network

which processes every item of a region set independently

and produces a single output feature vector with length N .

By concatenating together the feature vectors obtained for

all region sets, we thus get a N × N matrix, which is then

passed to the Sinkhorn operator to obtain the soft permuta-

tion matrix P . The network is then trained by minimizing

the mean square error between the scrambled input and its

reconstructed version obtained by applying the soft permu-

tation matrix to the sorted ground-truth, i.e. P TR∗.

At test time, we take the soft permutation matrix and ap-

ply the Hungarian algorithm [20] to obtain the final permu-

tation matrix, which is then used to get the sorted version of

R for the captioning network.

3.4. Implementation details

Language model and image features. We use a language

model with two LSTM layers (Fig. 3): the input of the bot-

tom layer is the concatenation of the embedding of the cur-

rent word, the image descriptor, as well as the hidden state

of the second layer. This layer predicts the context vector

via the visual sentinel as well as the chunk-gate. The sec-

ond layer, instead, takes as input the context vector and the

hidden state of the bottom layer and predicts the next word.

To represent image regions, we use Faster R-CNN [36]

with ResNet-101 [13]. In particular, we employ the model

finetuned on the Visual Genome dataset [19] provided

by [3]. As image descriptor, following the same work [3],

we average the feature vectors of all the detections.

The hidden size of the LSTM layers is set to 1000, and

that of attention layers to 512, while the input word embed-

ding size is set to 1000.

Ground-truth chunk-shifting gate sequences. Given a

sentence where each word of a noun chunk is associated to a

region set, we build the chunk-shifting gate sequence {g∗t }t
by setting g∗t to 1 on the last word of every noun chunk, and

0 otherwise. The region set sequence {r∗t }t is built accord-

ingly, by replicating the same region set until the end of a

noun chunk, and then using the region set of the next chunk.

To compute the alignment score and for extracting depen-

dencies, we use the spaCy NLP toolkit3. We use GloVe [33]

as word vectors.

Sorting network. To represent regions, we use Faster R-

CNN vectors, the normalized position and size and the

GloVe embedding of the region class. Additional details

on architectures and training can be found in the Supple-

mentary material.

3https://spacy.io/
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A young girl is sitting down 

with her dog.

A woman sitting at a table

with a dog eating cake.

A woman and a dog that is 

eating from a plate.

A young man walking past 

a red fire hydrant.

A man walks past a red fire 

hydrant on the sidewalk.

A man in a white t-shirt 

walking past a fire hydrant.

Figure 4: Sample captions and corresponding visual groundings from the COCO Entities dataset. Different colors show a correspondence

between visual chunks and image regions.

COCO Entities (ours) Train Validation Test

Nb. of captions 545,202 7,818 7,797

Nb. of noun chunks 1,518,667 20,787 20,596

Nb. of noun chunks per caption 2.79 2.66 2.64

Nb. of unique classes 1,330 725 730

Flickr30k Entities Train Validation Test

Nb. of captions 144,256 5,053 4,982

Nb. of noun chunks 416,018 14,626 14,556

Nb. of noun chunks per caption 2.88 2.89 2.92

Nb. of unique classes 1,026 465 458

Table 1: Statistics on our COCO Entities dataset, in com-

parison with those of Flick30k Entities.

4. Experiments

4.1. Datasets

We experiment with two datasets: Flickr30k Entities,

which already contains the associations between chunks

and image regions, and COCO, which we annotate semi-

automatically. Table 1 summarizes the datasets we use.

Flickr30k Entities [34]. Based on Flickr30k [49], it con-

tains 31, 000 images annotated with five sentences each.

Entity mentions in the caption are linked with one or

more corresponding bounding boxes in the image. Overall,

276, 000 manually annotated bounding boxes are available.

In our experiments, we automatically associate each bound-

ing box with the image region with maximum IoU among

those detected by the object detector. We use the splits pro-

vided by Karpathy et al. [18].

COCO Entities. Microsoft COCO [22] contains more than

120, 000 images, each of them annotated with around five

crowd-sourced captions. Here, we again follow the splits

defined by [18] and automatically associate noun chunks

with image regions extracted from the detector [36].

We firstly build an index associating each noun of the

dataset with the five most similar class names, using word

vectors. Then, each noun chunk in a caption is associated

by using either its name or the base form of its name, with

the first class found in the index which is available in the im-

age. This association process, as confirmed by an extensive

manual verification step, is generally reliable and produces

few false positive associations. Naturally, it can result in re-

gion sets with more than one element (as in Flickr30k), and

noun chunks with an empty region set. In this case, we fill

empty training region sets with the most probable detections

of the image and let the adaptive attention mechanism learn

the corresponding association; in validation and testing, we

drop those captions. Some examples of the additional an-

notations extracted from COCO are shown in Fig. 4.

4.2. Experimental setting

The experimental settings we employ is different from

that of standard image captioning. In our scenario, indeed,

the sequence of set of regions is a second input to the model

which shall be consider when selecting the ground-truth

sentences to compare against. Also, we employ additional

metrics beyond the standard ones like BLEU-4 [31], ME-

TEOR [4], ROUGE [21], CIDEr [40] and SPICE [2].

When evaluating the controllability with respect to a se-

quence, for each ground-truth regions-image input (R, I),
we evaluate against all captions in the dataset which share

the same pair. Also, we employ the alignment score (NW)

to evaluate how the model follows the control input.

Similarly, when evaluating the controllability with re-

spect to a set of regions, given a set-image pair (R, I), we

evaluate against all ground-truth captions which have the

same input. To assess how the predicted caption covers

the control signal, we also define a soft intersection-over-

union (IoU) measure between the ground-truth set of nouns

and its predicted counterpart, recalling the relationships be-

tween region sets and noun chunks. Firstly, we compute

the optimal assignment between the two set of nouns, us-

ing distances between word vectors and the Hungarian al-

gorithm [20], and define an intersection score between the

two sets as the sum of assignment profits. Then, recalling

that set union can be expressed in function of an intersec-

tion, we define the IoU measure as follows:

IoU(y,y∗) =
I(y,y∗)

#y +#y∗ − I(y,y∗)
(14)

where I(·, ·) is the intersection score, and the # operator

represents the cardinality of the two sets of nouns.
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Cross-Entropy Loss CIDEr Optimization CIDEr + NW Optimization

Method B-4 M R C S NW B-4 M R C S NW B-4 M R C S NW

FC-2K† [37] 10.4 17.3 36.8 98.3 25.2 0.257 12.3 18.5 39.6 117.5 26.9 0.273 - - - - - -

Up-Down† [3] 12.9 19.3 40.0 119.9 29.3 0.296 14.2 20.0 42.1 133.9 30.0 0.310 - - - - - -

Neural Baby Talk† [25] 12.9 19.2 40.4 120.2 29.5 0.305 - - - - - - - - - - - -

Controllable LSTM 11.4 18.1 38.5 106.8 27.6 0.275 12.8 18.9 40.9 123.0 28.5 0.290 12.9 19.3 41.3 124.0 28.9 0.341

Controllable Up-Down 17.3 23.0 46.7 161.0 39.1 0.396 17.4 22.9 47.1 168.5 39.0 0.397 17.9 23.6 48.2 171.3 40.7 0.443

Ours w/ single sentinel 20.0 23.9 51.1 183.3 43.9 0.480 21.7 25.3 54.5 202.6 47.6 0.606 21.3 25.3 54.5 201.1 48.1 0.648

Ours w/o visual sentinel 20.8 24.4 52.4 191.2 45.1 0.508 22.2 25.4 55.0 206.2 47.6 0.607 21.5 25.1 54.7 202.2 48.1 0.639

Ours 20.9 24.4 52.5 193.0 45.3 0.508 22.5 25.6 55.1 210.1 48.1 0.615 22.3 25.6 55.3 209.7 48.5 0.649

Table 2: Controllability via a sequence of regions, on test portion of COCO Entities. NW refers to the visual chunk alignment

measure defined in Sec. 3.2. The † marker indicates non-controllable methods.
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Figure 5: Sample results of controllability via a sequence of regions. Different colors and numbers show the control sequence

and the associations between chunks and regions.

Method B-4 M R C S NW

Neural Baby Talk† [25] 8.5 13.5 31.7 53.9 17.9 0.090

Controllable LSTM 6.5 12.6 30.2 43.5 15.8 0.124

Controllable Up-Down 10.4 15.2 35.2 69.5 21.7 0.190

Ours w/ single sentinel 10.7 16.1 38.1 76.5 22.8 0.260

Ours w/o visual sentinel 11.1 15.5 37.2 74.7 22.4 0.244

Ours 12.5 16.8 38.9 84.0 23.5 0.263

Table 3: Controllability via a sequence of regions, on the

test portion of Flickr30K Entities.

4.3. Baselines

Controllable LSTM. We start from a model without atten-

tion: an LSTM language model with a single visual fea-

ture vector. Then, we generate a sequential control input

by feeding a flattened version of R to a second LSTM and

taking the last hidden state, which is concatenated to the

visual feature vector. The structure of the language model

resembles that of [3], without attention.

Controllable Up-Down. In this case, we employ the full

Up-Down model from [3], which creates an attentive distri-

bution over image regions and make it controllable by feed-

ing only the regions selected in R and ignoring the rest.

This baseline is not sequentially controllable.

Ours without visual sentinel. To investigate the role of the

visual sentinel and its interaction with the gate sentinel, in

this baseline we ablate our model by removing the visual

sentinel. The resulting baseline, therefore, lacks a mecha-

nism to distinguish between visual and textual words.

Ours with single sentinel. Again, we ablate our model by

merging the visual and chunk sentinel: a single sentinel is

used for both roles, in place of sct and svt .

As further baselines, we also compare against non-

controllable captioning approaches, like FC-2K [37], Up-

Down [3], and Neural Baby Talk [25].

4.4. Quantitative results

Controllability through a sequence of detections. Firstly,

we show the performance of our model when providing the

full control signal as a sequence of region sets. Table 2

shows results on COCO Entities, in comparison with the

aforementioned approaches. We can see that our method

achieves state of the art results on all automatic evaluation

metrics, outperforming all baselines both in terms of over-

all caption quality and in terms of alignment with the con-

trol signal. Using the cross-entropy pre-training, we out-

perform the Controllable LSTM and Controllable Up-Down

by 32.0 on CIDEr and 0.112 on NW. Optimizing the model

with CIDEr and NW further increases the alignment qual-

ity while maintaining outperforming results on all metrics,

leading to a final 0.649 on NW, which outperforms the Con-

trollable Up-Down baseline by a 0.25. Recalling that NW

ranges from −1 to 1, this improvement amounts to a 12.5%
of the full metric range.
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Figure 6: Sample results of controllability via a set of regions. Different colors show the control set and the associations

between chunks and regions.

Method B-4 M R C S IoU

FC-2K† [37] 12.5 18.5 39.6 116.5 26.6 61.0

Up-Down† [3] 14.4 20.0 42.2 132.8 29.7 63.2

Neural Baby Talk† [25] 13.1 19.2 40.5 119.1 29.2 62.6

Controllable LSTM 12.9 19.3 41.3 123.4 28.7 64.2

Controllable Up-Down 18.1 23.6 48.4 170.5 40.4 71.6

Ours w/ single sentinel 17.4 23.6 48.4 168.4 43.7 75.4

Ours w/o visual sentinel 17.6 23.4 48.5 168.9 43.6 75.3

Ours 18.0 23.8 48.9 173.3 44.1 75.5

Table 4: Controllability via a set of regions, on the test por-

tion of COCO Entities.

In Table 3, we instead show the results of the same exper-

iments on Flickr30k Entities, using CIDEr+NW optimiza-

tion for all controllable methods. Also on this manually an-

notated dataset, our method outperforms all the compared

approaches by a significant margin, both in terms of cap-

tion quality and alignment with the control signal.

Controllability through a set of detections. We then as-

sess the performance of our model when controlled with

a set of detections. Tables 4 and 5 show the performance

of our method in this setting, respectively on COCO Enti-

ties and Flickr30k Entities. We notice that the proposed ap-

proach outperforms all baselines and compared approaches

in terms of IoU, thus testifying that we are capable of re-

specting the control signal more effectively. This is also

combined with better captioning metrics, which indicate

higher semantic quality.

Diversity evaluation. Finally, we also assess the diver-

sity of the generated captions, comparing with the most re-

cent approaches that focus on diversity. In particular, the

variational autoencoder proposed in [45] and the approach

of [9], which allows diversity and controllability by feeding

PoS sequences. To test our method on a significant num-

ber of diverse captions, given an image we take all regions

which are found in control region sets, and take the permu-

tations which result in captions with higher log-probability.

This approach is fairly similar to the sampling strategy used

in [9], even if ours considers region sets. Then, we follow

the experimental approach defined in [45, 9]: each ground-

Method B-4 M R C S IoU

Neural Baby Talk† [25] 8.6 13.5 31.9 53.8 17.8 49.9

Controllable LSTM 6.4 12.5 30.2 42.9 15.6 50.8

Controllable Up-Down 10.5 15.2 35.5 69.5 21.6 54.8

Ours w/ single sentinel 9.5 15.2 35.8 65.6 21.2 55.0

Ours w/o visual sentinel 9.8 14.8 35.0 64.2 20.9 54.3

Ours 10.9 15.8 36.2 70.4 21.8 55.0

Table 5: Controllability via a set of regions, on the test por-

tion of Flickr30K Entities.

Method Samples B-4 M R C S

AG-CVAE [45] 20 47.1 30.9 63.8 130.8 24.4

POS [9] 20 44.9 36.5 67.8 146.8 27.7

Ours 20 44.8 36.6 68.9 156.5 30.9

Table 6: Diversity performance on the test portion of

COCO.

truth sentence is evaluated against the generated caption

with the maximum score for each metric. Higher scores,

thus, indicate that the method is capable of sampling high

accuracy captions. Results are reported in Table 6, where to

guarantee the fairness of the comparison, we run this exper-

iments on the full COCO test split. As it can be seen, our

method can generate significantly diverse captions.

5. Conclusion

We presented Show, Control and Tell, a framework for

generating controllable and grounded captions through re-

gions. Our work is motivated by the need of bringing

captioning systems to more complex scenarios. The ap-

proach considers the decomposition of a sentence into

noun chunks, and grounds chunks to image regions follow-

ing a control signal. Experimental results, conducted on

Flickr30k and on COCO Entities, validate the effectiveness

of our approach in terms of controllability and diversity.
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