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Figure 1: Given an arbitrary speech signal and a static 3D face mesh as input (left), our model, VOCA outputs a realistic 3D

character animation (right). Top: Winston Churchill. Bottom: Actor from Karras et al. [33]. See supplementary video.

Abstract

Audio-driven 3D facial animation has been widely ex-

plored, but achieving realistic, human-like performance is

still unsolved. This is due to the lack of available 3D

datasets, models, and standard evaluation metrics. To ad-

dress this, we introduce a unique 4D face dataset with about

29 minutes of 4D scans captured at 60 fps and synchro-

nized audio from 12 speakers. We then train a neural net-

work on our dataset that factors identity from facial mo-

tion. The learned model, VOCA (Voice Operated Char-

acter Animation) takes any speech signal as input—even

speech in languages other than English—and realistically

animates a wide range of adult faces. Conditioning on sub-

ject labels during training allows the model to learn a va-

riety of realistic speaking styles. VOCA also provides an-

imator controls to alter speaking style, identity-dependent

facial shape, and pose (i.e. head, jaw, and eyeball ro-

tations) during animation. To our knowledge, VOCA is

the only realistic 3D facial animation model that is read-

ily applicable to unseen subjects without retargeting. This

makes VOCA suitable for tasks like in-game video, vir-

tual reality avatars, or any scenario in which the speaker,

speech, or language is not known in advance. We make

the dataset and model available for research purposes at

http://voca.is.tue.mpg.de.

1. Introduction

Teaching computers to see and understand faces is crit-

ical for them to understand human behavior. There is an

extensive literature on estimating 3D face shape, facial ex-

pressions, and facial motion from images and videos. Less

attention has been paid to estimating 3D properties of faces

from sound; however, many facial motions are caused di-

rectly by the production of speech. Understanding the cor-

relation between speech and facial motion thus provides ad-
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ditional valuable information for analyzing humans, par-

ticularly if visual data are noisy, missing, or ambiguous.

The relation between speech and facial motion has previ-

ously been used to separate audio-visual speech [22] and

for audio-video driven facial animation [38]. Missing to

date is a general and robust method that relates the speech

of any person in any language to the 3D facial motion of

any face shape. Here we present VOCA (Voice Operated

Character Animation), that takes a step towards this goal.

While speech-driven 3D facial animation has been

widely studied, speaker-independent modeling remains a

challenging, unsolved task for several reasons. First, speech

signals and facial motion are strongly correlated but lie

in two very different spaces; thus, non-linear regression

functions are needed to relate the two. One can exploit

deep neural networks to address this problem. However,

this means that significant amounts of training data are

needed. Second, there exists a many-to-many mapping be-

tween phonemes and facial motion. This poses an even

greater challenge when training across people and styles.

Third, because we are especially sensitive to faces, particu-

larly realistic faces, the animation must be realistic to avoid

falling into the Uncanny Valley [39]. Fourth, there is very

limited training data relating speech to the 3D face shape of

multiple speakers. Finally, while previous work has shown

that models can be trained to create speaker-specific anima-

tions [14, 33], there are no generic methods that are speaker

independent and that capture a variety of speaking styles.

VOCASET: To address this, we collected a new dataset

of 4D face scans together with speech. The dataset has 12

subjects and 480 sequences of about 3-4 seconds each with

sentences chosen from an array of standard protocols that

maximize phonetic diversity. The 4D scans are captured

at 60fps and we align a common face template mesh to all

the scans, bringing them into correspondence. This dataset,

called VOCASET, is unlike any existing public datasets. It

allows training and testing of speech-to-animation models

that can generalize to new data.

VOCA: Given such data, we train a deep neural net-

work model, called VOCA (Figure 2), that generalizes to

new speakers (see Figure 1). Recent work using deep net-

works has shown impressive results for the problem of re-

gressing speaker-dependent facial animation from speech

[33]. Their work, however, captures the idiosyncrasies of

an individual, making it inappropriate for generalization

across characters. While deep learning is advancing the

field quickly, even the best recent methods rely on some

manual processes or focus only on the mouth [53], making

them inappropriate for truly automatic full facial animation.

The key problem with prior work is that facial motion

and facial identity are confounded. Our key insight is to fac-

tor identity from facial motions and then learn a model re-

lating speech to only the motions. Conditioning on subject

labels during training allows us to combine data from many

subjects in the training process, which enables the model

both to generalize to new subjects not seen during train-

ing and to synthesize different speaker styles. Integrating

DeepSpeech [29] for audio feature extraction makes VOCA

robust w.r.t. different audio sources and noise. Building

on top of the expressive FLAME head model [37] allows

us i) to model motions of the full face (i.e. including the

neck), ii) to animate a wide range of adult faces, as FLAME

can be used to reconstruct subject-specific templates from

a scan or image, and iii) to edit identity-dependent shape

and head pose during animation. VOCA and VOCASET

are available for research purposes [58].

2. Related work

Facial animation has received significant attention in the

literature. Related work in this area can be grouped into

three categories: speech-based, text-based, and video- or

performance-based.

Speech-driven facial animation: Due to the abundance

of images and videos, many methods that attempt to real-

istically animate faces use monocular video [7, 8, 16, 23,

51, 59, 62]. Bregler et al. [8] transcribe speech with a

Hidden Markov Model (HMM) into phonetic labels and an-

imate the mouth region in videos with an exemplar-based

video warping. Brand [7] uses a mix of Linear Predictive

Coding (LPC) and RASTA-PLP [30] audio features and an

HMM to output a sequence of facial motion vectors. Ezzat

et al. [23] perform Principal Component Analysis (PCA)

on all images and use an example-based mapping between

phonemes and trajectories of mouth shape and mouth tex-

ture parameters in the PCA space. Xie and Liu [62] model

facial animation with a dynamic Bayesian network-based

model. Wang et al. [59] use an HMM to learn a map-

ping between Mel-frequency Cepstral Coefficients (MFCC)

and PCA model parameters. Zhang et al. [67] combine

the HMM-based method of [59] trained on audio and vi-

sual data of one actor with a deep neural network based en-

coder trained from hundreds of hours of speaker indepen-

dent speech data to compute an embedding of the MFCC

audio features. Shimba et al. [48] use a deep Long Short-

term Memory (LSTM) network to regress active appearance

model (AAM) parameters from MFCC features. Chen et

al. [16] correlate audio and image motion to synthesize lip

motion of arbitrary identities.

Suwajanakorn et al. [51] use an Recurrent Neural Net-

work (RNN) for synthesizing photorealistic mouth tex-

ture animations using audio from 1.9 million frames from

Obama’s weekly addresses. However, their method does

not generalize to unseen faces or viewpoints. In contrast

to this, VOCA is trained across subjects sharing a com-

mon topology, which makes it possible to animate new faces

from previously unseen viewpoints. Pham et al. [42] regress
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global transformation and blendshape coefficients [13] from

MFCC audio features using an LSTM network. While their

model is trained across subjects—similar to VOCA—they

rely on model parameters regressed from 2D videos rather

than using 3D scans, which limits their quality.

A few methods use multi-view motion capture data [10,

14] or high-resolution 3D scans [33]. Busso et al. [10] syn-

thesize rigid head motion in expressive speech sequences.

Cao et al. [14] segment the audio into phonemes and use an

example-based graph method to select a matching mouth

animation. Karras et al. [33] propose a convolutional model

for mapping LPC audio features to 3D vertex displace-

ments. However, their model is subject specific, and ani-

mating a new face would require 3D capture and processing

of thousands of frames of subject data. Our model, VOCA

factors identity from facial motion and is trained across sub-

jects, which allows animation of a wide range of adult faces.

Several works also aim at animating artist designed char-

acter rigs [20, 21, 31, 32, 46, 52, 53, 54, 70]. Taylor et

al. [53] propose a deep-learning based speech-driven fa-

cial animation model using a sliding window approach on

transcribed phoneme sequences that outperforms previous

LSTM based methods [24, 25]. While these models are sim-

ilar to VOCA in that they animate a generic face from audio,

our focus is animating a realistic face mesh, for which we

train our model on high-resolution face-scans.

Text-driven facial animation: Some methods aim to

animate faces directly from text. Sako et al. [45] use a

hidden Markov model to animate lips in images from text.

Anderson et al. [4] use an extended hidden Markov text-to-

speech model to drive a subject-specific active appearance

model (AAM). In a follow-up, they extend this approach

to animate the face of an actress in 3D. While our focus is

not to animate faces from text, this is possible by animating

our model with the output of a text-to-speech (TTS) system

(e.g. [56]), similar to Karras et al. [33].

Performance-based facial animation: Most methods

to animate digital avatars are based on visual data. Alexan-

der et al. [3], Wu et al. [61], and Laine et al. [35] build

subject-specific face-rigs from high-resolution face scans

and animate these rigs with video-based animation systems.

Several methods build personalized face-rigs using

generic face models from monocular videos to transfer and

reenact facial performance between videos. Tensor-based

multilinear face models [5, 11, 12, 19, 57, 63] and linear

models [55] are widely used to build personalized face-rigs.

Cao et al. [11, 12] use a regression-based face tracker to an-

imate the face-rig and digital avatars, while Thies et al. [55]

use a landmark-based face tracker and deformation trans-

fer [50] to reenact monocular videos.

Other methods that animate virtual avatars rely on RGB-

D videos or 4D sequences to track and retarget facial perfor-

mance. Li et al. [36] and Weise et al. [60] capture example-

based rigs in an offline calibration procedure to build per-

sonalized face-rigs, Bouaziz et al. [6] use a generic identity

model. Liu et al. [38] combine audio and video to robustly

animate a generic face model from RGB-D video. Li et

al. [37] capture facial performance with a high-resolution

scanner and animate static face meshes using an articulated

generic head model. In contrast to these methods, our ap-

proach solely relies on audio to animate digital avatars.

3D face datasets: Several 3D face datasets have been

released that focus on the analysis of static 3D facial shape

and expression (e.g. [13, 47, 65]) or dynamic facial expres-

sions (e.g. [68, 2, 15, 18, 44, 64, 69]). Most of these datasets

focus on emotional expressions and only a few datasets cap-

ture facial dynamics caused by speech. The recently pub-

lished 4DFAB dataset [17] contains 4D captures of 180 sub-

jects, but with only nine word utterances per subject and

lower mesh quality than VOCASET.

The B3D(AC)ˆ2 dataset [26] contains a large set of

audio-4D scan pairs of 40 spoken English sentences. In

contrast, VOCASET contains 255 unique sentences in to-

tal. To enable training on both a large number of sentences

and subjects, some sentences are shared across subjects and

some sentences are spoken by only one subject. The visible

artifacts present in the raw B3D(AC)ˆ2 scans (i.e. holes and

capture noise) mean that subtle facial motions may be lost;

also, the registered template only covers the face, ignoring

speech-related motions in the neck region. VOCASET, in

comparison, provides higher-quality 3D scans as well as

alignments of the entire head, including the neck.

3. Preliminaries

Our goal for VOCA is to generalize well to arbitrary sub-

jects not seen during training. Generalization across sub-

jects involves both (i) generalization across different speak-

ers in terms of the audio (variations in accent, speed, au-

dio source, noise, environment, etc.) and (ii) generalization

across different facial shapes and motion.

DeepSpeech: To gain robustness to different audio

sources, regardless of noise, recording artifacts, or lan-

guage, we integrate DeepSpeech [29] into our model. Deep-

Speech [29] is an end-to-end deep learning model for

Automatic Speech Recognition (ASR). DeepSpeech uses a

simple architecture consisting of five layers of hidden units,

of which the first three layers are non-recurrent fully con-

nected layers with ReLU activations. The fourth layer is a

bi-directional RNN, and the final layer is a fully connected

layer with ReLU activation. The final layer of the network

is fed to a softmax function whose output is a probability

distribution over characters. The TensorFlow implementa-

tion provided by Mozilla [40] slightly differs from the orig-

inal paper in two ways: (i) the RNN units are replaced by

LSTM cells and (ii) 26 MFCC audio features are used in-

stead of directly performing inference on the spectrogram.
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Type Kernel Stride Output Activation

DeepSpeech - - 16x1x29 -

Identity concat - - 16x1x37 -

Convolution 3x1 2x1 8x1x32 ReLU

Convolution 3x1 2x1 4x1x32 ReLU

Convolution 3x1 2x1 2x1x64 ReLU

Convolution 3x1 2x1 1x1x64 ReLU

Identity concat - - 72 -

Fully connected - - 128 tanh

Fully connected - - 50 linear

Fully connected - - 5023x3 linear

Table 1: Model architecture.

Please see [40] for more details.

FLAME: Facial shape and head motion vary greatly

across subjects. Furthermore, different people have differ-

ent speaking styles. The large variability in facial shape,

motion, and speaking style motivates using a common

learning space. We address this problem by incorporat-

ing FLAME, a publicly available statistical head model, as

part of our animation pipeline. FLAME uses linear trans-

formations to describe identity and expression dependent

shape variations, and standard linear blend skinning (LBS)

to model neck, jaw, and eyeball rotations. Given a template

T ∈ R
3N in the “zero pose”, identity, pose, and expression

blendshapes are modeled as vertex offsets from T. For more

details we refer the reader to [37].

4. VOCA

This section describes the model architecture and pro-

vides details on how the input audio is processed.

Overview: VOCA receives as input a subject-specific

template T and the raw audio signal, from which we extract

features using DeepSpeech [29]. The desired output is the

target 3D mesh. VOCA acts as an encoder-decoder network

(see Figure 2 and Table 1) where the encoder learns to trans-

form audio features to a low-dimensional embedding and

the decoder maps this embedding into a high-dimensional

space of 3D vertex displacements

Speech feature extraction: Given an input audio clip

of length T seconds, we use DeepSpeech to extract speech

features. The outputs are unnormalized log probabilities of

characters for frames of length 0.02 s (50 frames per sec-

ond); thus, it is an array of size 50T × D, where D is the

number of characters in the alphabet plus one for a blank

label. We resample the output to 60 fps using linear inter-

polation. In order to incorporate temporal information, we

convert the audio frames to overlapping windows of size

W ×D, where W is the window size. The output is a three-

dimensional array of dimensions 60T ×W ×D.

Encoder: The encoder is composed of four convolu-

tional layers and two fully connected layers. The speech

features and the final convolutional layer are conditioned

on the subject labels to learn subject-specific styles when

trained across multiple subjects. For eight training sub-

jects, each subject j is encoded as an one-hot-vector

Ij = (δij)1≤i≤8
. This vector is concatenated to each D-

dimensional speech feature vector (i.e. resulting in win-

dows of dimension W × (D + 8)), and concatenated to the

output of the final convolution layer.

To learn temporal features and reduce the dimensional-

ity of the input, each convolutional layer uses a kernel of

dimension 3 × 1 and stride 2 × 1. As the features ex-

tracted using DeepSpeech do not have any spatial corre-

lation, we reshape the input window to have dimensions

W × 1 × (D + 8) and perform 1D convolutions over the

temporal dimension. To avoid overfitting, we keep the num-

ber of parameters small and only learn 32 filters for the first

two, and 64 filters for the last two convolutional layers.

The concatenation of the final convolutional layer with

the subject encoding is followed by two fully connected lay-

ers. The first has 128 units and a hyperbolic tangent activa-

tion function; the second is a linear layer with 50 units.

Decoder: The decoder of VOCA is a fully connected

layer with linear activation function, outputting the 5023×
3 dimensional array of vertex displacements from T. The

weights of the layer are initialized by 50 PCA components

computed over the vertex displacements of the training data;

the bias is initialized with zeros.

Animation control: During inference, changing the

eight-dimensional one-hot-vector alters the output speaking

style. The output of VOCA is an expressed 3D face in “zero

pose” with the same mesh topology as the FLAME face

model [37]. VOCA’s compatibility with FLAME allows

alteration of the identity-dependent facial shape by adding

weighted shape blendshapes from FLAME. The face ex-

pression and pose (i.e. head, jaw, and eyeball rotations) can

also be changed using the blendweights, joints, and pose

blendshapes provided by FLAME.

5. Model training

In this section we describe training relevant details.

Training set-up: We start from a large dataset of audio-

4D scan pairs, denoted as {(xi, yi)}
F
i=1

. Here xi ∈ R
W×D

is the input audio window centered at the ith video frame,

yi ∈ R
N×3. Further, let fi ∈ R

N×3 denote the output of

VOCA for xi.

For training, we split the captured data into a training

set (eight subjects), a validation set (two subjects), and a

test set (two subjects). The training set consists of all 40

sentences of the eight subjects, i.e. in total 320 sentences.

For validation and test data, we only select the 20 unique

sentences that are not shared with any other subject, i.e. 40

sentences for validation and testing, respectively. Note that

our training, validation, and test sets for all experiments are

fully disjoint, i.e. no overlap of subjects or sentences exists.
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Figure 2: VOCA network architecture.

Loss function: Our training loss function consists of

two terms, a position term and a velocity term. The posi-

tion term Ep = ‖yi − fi‖
2

F computes the distance between

the predicted outputs and the training vertices. This position

term encourages the model to match the ground truth perfor-

mance. The velocity term Ev = ‖(yi−yi−1
)−(fi−fi−1)‖

2

F

uses backward finite differences. It computes the distance

between the differences of consecutive frames between pre-

dicted outputs and training vertices. This velocity term in-

duces temporal stability.

Training parameters: We perform hyperparameter tun-

ing on the held-out validation set. We train VOCA for 50

epochs with a constant learning rate of 1e− 4. The weights

for the position and velocity terms are 1.0 and 10.0, respec-

tively. During training, we use batch normalization with a

batch size of 64. We use a window size of W = 16 with

D = 29 speech features.

Implementation details: VOCA is implemented in

Python using TensorFlow [1], and trained using Adam [34].

Training one epoch takes about ten minutes on a single

NVIDIA Tesla K20. We use a pre-trained DeepSpeech

model [40] which is kept fixed during training.

6. VOCASET

This section introduces VOCASET and describes the

capture setup and data processing.

VOCASET: Our dataset contains a collection of audio-

4D scan pairs captured from 6 female and 6 male subjects.

For each subject, we collect 40 sequences of a sentence spo-

ken in English, each of length three to five seconds. The

sentences were taken from an array of standard protocols

and were selected to maximize phonetic diversity using the

method described in [27]. In particular, each subject spoke

27 sentences from the TIMIT corpus [28], three pangrams

used by [33], and 10 questions from the Stanford Question

Figure 3: Sample meshes of two VOCASET subjects.

Answering Dataset (SQuAD) [43]. The recorded sequences

are distributed such that five sentences are shared across all

subjects, 15 sentences are spoken by three to five subjects

(50 unique sentences), and 20 sentences are spoken only by

one or two subjects (200 unique sentences). We make VO-

CASET available to the research community.

Capture setup: We use a multi-camera active stereo

system (3dMD LLC, Atlanta) to capture high-quality 3D

head scans and audio. The capture system consists of six

pairs of gray-scale stereo cameras, six color cameras, five

speckle pattern projectors, and six white light LED panels.

The system captures 3D meshes at 60fps, each with about

120K vertices. The color images are used to generate UV

texture maps for each scan. The audio, synchronized with

the scanner, is captured with a sample rate of 22 kHz.

Data processing: The raw 3D head scans are registered

with a sequential alignment method as described in [37]

using the publicly available generic FLAME model. The
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image-based landmark prediction method of [9] is used dur-

ing alignment to add robustness while tracking fast facial

motions. After alignment, each mesh consists of 5023 3D

vertices. For all scans, we measure the absolute distance be-

tween each scan vertex and the closest point in the FLAME

alignment surface: median (0.09mm), mean (0.13mm), and

standard deviation (0.14mm). Thus, the alignments faith-

fully represent the raw data.

All meshes are then unposed; i.e. effects of global rota-

tion, translation, and head rotation around the neck are re-

moved. After unposing, all meshes are in “zero pose”. For

each sequence, the neck boundary and the ears are auto-

matically fixed, and the region around the eyes is smoothed

using Gaussian filtering to remove capture noise. Note that

no smoothing is applied to the mouth region so as to pre-

serve subtle motions. Figure 3 shows sample alignments of

two VOCASET subjects. The supplementary video shows

sequences of all subjects.

7. Experiments

Quantitative metrics, such as the norm on the predic-

tion error, are not suitable for evaluating animation quality.

This is because facial visemes form many-to-many map-

pings with speech utterances. A wide range of plausible

facial motions exists for the same speech sequence, which

makes quantitative evaluation intractable. Instead, we per-

form perceptual and qualitative evaluations. Further, our

trained model is available for research purposes for direct

comparisons [58].

7.1. Perceptual evaluation

User study: We conduct three Amazon Mechanical Turk

(AMT) blind user studies: i) a binary comparison between

held-out test sequences and our model conditioned on all

training subjects, ii) an ablation study to assess the effec-

tiveness of the DeepSpeech features, and iii) a study to in-

vestigate the correlation between style, content, and iden-

tity. All experiments are performed on sequences and sub-

jects fully disjoint from our training and validation set.

For binary comparisons, two videos with the same ani-

mated subject and audio clip are shown side by side. For

each video pair, the participant is asked to choose the talk-

ing head that moves more naturally and in accordance with

the audio. To avoid any selection bias, the order (left/right)

of all methods for comparison is random for each pair.

Style comparisons are used to evaluate the learned

speaking styles. Here, Turkers see three videos: one ref-

erence and two predictions. The task is to determine which

of the two predictions is more similar to the reference video.

To ensure the quality of the study and remove potential

outliers, we require Turkers to pass a simple qualification

test before they are allowed to submit HITs. The qualifica-

tion task is a simplified version of the following user study,

where we show three comparisons with an obvious answer,

i.e. one ground-truth sequence and one sequence with com-

pletely mismatched video and audio.

Comparison to recorded performance: We compare

captured and processed test sequences with VOCA predic-

tions conditioned on all eight speaker styles. In total, Turk-

ers (400 HITs) perceived the recorded performance more

natural (83 ± 9%) than the predictions (17 ± 9%), across

all conditions. While VOCA results in realistic facial mo-

tion for the unseen subjects, it is unable to synthesize the id-

iosyncrasies of these subjects. As such, these subtle subject-

specific details make the recorded sequences look more nat-

ural than the predictions.

Speech feature ablation: We replace the DeepSpeech

features by Mel-filterbank energy features (fbank) and train

a model for 50 epochs (the same as for VOCA). Turkers

(400 HITs) perceived the performance of VOCA with Deep-

Speech more natural (78 ± 16%) than with fbank features

(22±16%) across all conditions. That indicates that VOCA

with DeepSpeech features generalizes better to unseen au-

dio sequences than with fbank features.

Style comparisons: Speech-driven facial performance

varies greatly across subjects. However, it is difficult to

separate between style (facial motion of a subject), iden-

tity (facial shape of a subject), and content (the words being

said), and how these different factors influence perception.

The goal of this user study is to evaluate the speech-driven

facial motion independently from identity-dependent face

shape in order to understand if people can recognize the

styles learned by our model.

To accomplish this, we subtract the personalized tem-

plate (neutral face) from all sequences to obtain “displace-

ments”, then add these displacements to a single com-

mon template (randomly sampled from the FLAME shape

space). Then, for several reference sequences from the

training data, we compare two VOCA predictions (on audio

from the test set): one conditioned on the reference subject

and one conditioned on another randomly selected subject.

We ask Turkers to select which predicted sequence is more

similar in speaking style to the reference.

To explore the influence of content, we perform the ex-

periment twice, once where the reference video and the pre-

dictions share the same sentence (spoken by different sub-

jects) and once with different sentences. Figure 4 shows

the results for this experiment. Results varied greatly across

conditions. For some conditions, Turkers could consistently

pick the sequence with the matching style (e.g. conditions

3, 4, and 5); for others, their choices were no better or worse

than chance. The impact of the content was not significant

for most conditions. More research is needed to understand

which factors are important for people to recognize differ-

ent speaking styles, and to develop new models that more

efficiently disentangle facial shape and motion.
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Figure 4: AMT study of styles. The bars show the percent-

age of Turkers choosing the reference condition when the

same sentence was being shown for reference and predic-

tion, and with difference sentences.

7.2. Qualitative evaluation

Generalization across subjects: Factoring identity

from facial motion allows us to animate a wide range of

adult faces. To show the generalization capabilities of

VOCA, we select, align and pose-normalize multiple neu-

tral scans from the BU-3DFE database [66], with large

shape variations. Figure 5 shows the static template (left)

and some VOCA animation frames, driven by the same au-

dio sequence.

Generalization across languages: The video shows the

VOCA output for different languages. This indicates that

VOCA can generalize to non-English sentences.

Speaker styles: Conditioning on different subjects dur-

ing inference results in different speaking styles. Stylistic

differences include variation in lip articulation. Figure 6

shows the distance between lower and upper lip as a func-

tion of time for VOCA predictions for a random audio se-

quence and different conditions. This indicates that the con-

vex combination of styles provides a wide range of different

mouth amplitudes.

We generate new intermediate speaking styles by convex

combinations of conditions. Due to the linearity of the de-

coder, performing this convex combination in the 3D vertex

space or in the 50-dimensional encoding space is equiva-

lent. The supplementary video shows that combining styles

offers animation control to synthesize a range of varying

speaking styles. This is potentially useful for matching the

speaking performance of a subject not seen during training.

template animation frames

Figure 5: VOCA generalizes across face shapes. Each row

shows the template of a subject selected from the static BU-

3DFE face database [66] (left), and three randomly selected

animation frames, driven by the same audio input (right).

Figure 6: Distance between lower and upper lip for VOCA

predictions conditioned on different subjects. The shaded

region represents the space of convex combinations of the

different conditions.

In the future, this could be estimated from video.

Robustness to noise: To demonstrate robustness to

noise, we combine a speech signal with different levels of

noise and use the noisy signal as VOCA input. As a noise

source, we use a realistic street noise sequence [49] added

with negative gain of 36dB (low), 24dB (medium), 18dB

(slightly high), and 12dB (high). Only the high noise level

leads to a damped facial motion, but despite the noise, the

facial animations remain plausible.

Comparison to Karras et al. [33]: We compare VOCA

to Karras et al. [33], the state-of-the-art in realistic subject-

specific audio-driven facial animation. The results are
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Figure 7: Animation control. Top: varying the first identity

shape components to plus two (second column) and minus

two (last column) standard deviations. Bottom: varying the

head pose to minus 30 degrees (second column) and plus 30

degrees (last column).

shown in the supplementary video. For comparison, the au-

thors provided us with a static mesh, to which we aligned

the FLAME topology. We then use eight audio sequences

from their supplementary video (including singing, spoken

Chinese, an excerpt of a Barack Obama speech, and dif-

ferent sequences of the actor), to animate their static mesh.

The supplementary video shows that, while their model pro-

duces more natural and detailed results, we can still repro-

duce similar facial animation without using any of their

subject-specific training data. Further, Karras et al. use

professional actors capable of simulating emotional speech.

This enables them to add more realism in the upper face by

modeling motions (i.e. eyes and eyebrows) that are more

correlated with emotions than speech.

Animation control: Figure 7 demonstrates the possi-

bility of changing the identity dependent shape (top) and

head pose (bottom) during animation. Both rows are driven

by the same audio sequence. Despite the varying shape or

pose, the facial animation looks realistic.

8. Discussion

While VOCA can be used to realistically animate a wide

range of adults faces from speech, it still lacks some of the

details needed for conversational realism. Upper face mo-

tions (i.e. eyes and eyebrows) are not strongly correlated

with the audio [33]. The causal factor is emotion, which

is absent in our data due the inherent difficulty of simulat-

ing emotional speech in a controlled capture environment.

Thus, VOCA learns the causal facial motions from speech,

which are mostly present in the lower face.

Non-verbal communication cues, such as head motion,

are weakly correlated with the audio signal and hence are

not modeled well by audio-driven techniques. VOCA of-

fers animators and developers the possibility to include head

motion, but does not infer it from data. A speech indepen-

dent model for head motion could be used to simulate real-

istic results. Application specific techniques, such as dyadic

interactions between animated assistants and humans re-

quire attention mechanisms that consider spatial features,

such as eye tracking. Learning richer conversation models

with expressive bodies [41] is future research.

Conditioning on subject labels is one of the key aspects

of VOCA that allows training across subjects. This allows

a user to alter the speaking style during inference. Using

data from more subjects to increase the number of differ-

ent speaking styles remains a task for future work. Further

experiments on mitigating or amplifying different speak-

ing styles, or combining characteristics of different subjects

also remain for future work.

9. Conclusion

We have presented VOCA, a simple and generic speech-

driven facial animation framework that works across a range

of identities. Given an arbitrary speech signal and a static

character mesh, VOCA fully automatically outputs a realis-

tic character animation. VOCA leverages recent advances

in speech processing and 3D face modeling in order to be

subject independent. We train our model on a self-captured

multi-subject 4D face dataset (VOCASET). The key in-

sights of VOCA are to factor identity from facial motion,

which allows us to animate a wide range of adult faces,

and to condition on subject labels, which enables us to train

VOCA across multiple subjects, and to synthesize differ-

ent speaker styles during test time. VOCA generalizes well

across various speech sources, languages, and 3D face tem-

plates. We provide optional animation control parameters to

vary the speaking style and to alter the identity dependent

shape and head pose during animation. The dataset, trained

model, and code are available for research purposes [58].
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[55] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and

M. Nießner. Face2Face: Real-time Face Capture and Reen-

actment of RGB Videos. In Computer Vision and Pattern

Recognition, 2016. 3

[56] A. van den Oord, S. Dieleman, H. Zen, . Simonyan, O.

Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and .

Kavukcuoglu. Wavenet: A generative model for raw audio.

CoRR, abs/1609.03499, 2016. 3

[57] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face trans-
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