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Abstract

In this work, we propose a novel adaptive spatially-

regularized correlation filters (ASRCF) model to simulta-

neously optimize the filter coefficients and the spatial reg-

ularization weight. First, this adaptive spatial regulariza-

tion scheme could learn an effective spatial weight for a

specific object and its appearance variations, and therefore

result in more reliable filter coefficients during the track-

ing process. Second, our ASRCF model can be effective-

ly optimized based on the alternating direction method of

multipliers, where each subproblem has the closed-from so-

lution. Third, our tracker applies two kinds of CF models

to estimate the location and scale respectively. The loca-

tion CF model exploits ensembles of shallow and deep fea-

tures to determine the optimal position accurately. The s-

cale CF model works on multi-scale shallow features to es-

timate the optimal scale efficiently. Extensive experiments

on five recent benchmarks show that our tracker perform-

s favorably against many state-of-the-art algorithms, with

real-time performance of 28fps.

1. Introduction

Visual tracking [36, 25, 24] is a fundamental computer

vision problem and has many realistic applications includ-

ing video surveillance, behavior analysis, to name a few.

Although many efforts have been done, it is still a tough

task to design a robust and efficient tracker due to the diffi-

culties from both foreground and background variations.

Recently, tracking algorithms based on correlation filters

(CF) have achieved top-ranked performance and drawn in-

creasing attentions. Usually, the CF-based trackers [18, 12,

11, 15, 8] exploit large numbers of cyclically shifted sam-

ples for learning, and convert the correlation operations in

the spatial domain to the element-wise multiplications in the

frequency domain, thereby reducing the computation com-

plexity and improving the tracking speed significantly.

∗Corresponding Author: Dr. Wang

(a) SRDCF [11] (b) ASRCF
Figure 1. The visualization of different spatial regularizations for

the (a) SRDCF [11] and (b) ASRCF methods. For SRDCF, the

spatial regularization has a negative Gaussian shape, which is al-

most equal for different objects and fixed during the tracking pro-

cess. By contrast, our ASRCF method attempts to learn an adap-

tive spatial regularization, which is flexible for different objects in

different time. As shown in (b), the ASRCF model has learned an

effective spatial regularization that provides a higher penalty on

the noise part and a lower penalty on the reliable part.

However, there exist two major imperfections of the ear-

lier CF-based methods. First, the circulant shifted sampling

process always suffers from periodic repetitions on bound-

ary positions and makes the CF model be trained with a por-

tion of unreal samples. This dilemma has been alleviated to

some extent with additional pre-defined spatial constraints

on filter coefficients [11, 15]. But these constraints are usu-

ally fixed for different objects and not changed during the

tracking process, which cannot fully exploit the diversity

information of different objects in different time. Second,

the object localization and scale estimation are usually con-

ducted on the same feature space, which requires extract-

ing multi-scale feature maps during the tracking process.

This strategy significantly increases the computational load

and decreases the tracking speeds when the tracker exploits

some powerful and complicated features (such as features

extracted from deep networks). That is why the top-ranked

CF trackers often runs very slow (e.g., DeepSRDCF [10],

C-COT [13], DRT [32] and RPCF [33]).

In this work, we develop a robust and efficient CF-based

tracker with two major efforts: adaptive spatial regulariza-

tion and efficient scale estimation. The contributions of this
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work can be summarized as follows.

First, this work proposes a novel adaptive spatially-

regularized correlation filters (ASRCF) model, which could

effectively estimate an object-aware spatial regularization

(see Figure 1) and obtain more reliable filter coefficients

during the tracking process. Our ASRCF is a general CF

model and the well-known KCF, SRDCF and BACF algo-

rithms are all its special cases.

Second, our ASRCF model can be effectively optimized

via the alternating direction method of multipliers (ADM-

M), where each subproblem has the analytic solution.

Third, our tracker effectively and efficiently estimates

both location and scale with two CF models: one exploits

complicated features for accurate localization; and the other

exploits shallow features for fast scale estimation.

Overall, our tracker achieves very remarkable perfor-

mance with a real-time speed on the OTB2015, TC128,

VOT2016, VOT2017 and LaSOT benchmarks.

2. Related Work
The trackers based on correlation filters (CF) have

achieved great success in recent years. We briefly intro-

duce some relevant ones to highlight our motivations. The

MOSSE [3] method is the earliest CF-based tracker, which

uses only grayscale samples to train the filter. The CSK [17]

tracker introduces kernel trick into the CF formula. By ex-

ploiting circulant shifted samples, the filter coefficients can

be efficiently optimized in the frequency domain. Based

on CSK [17], the KCF [18] method exploits multi-channel

HOG [7] features to enhance the feature representation a-

bility and improves the tracking performance significant-

ly. Similarly, the color naming features are introduced to

achieve robust tracking in color videos [12]. The DSST [9],

SAMF [26] and IBCCF [23] trackers address the scale adap-

tation problem using multi-scale searching strategies.

The traditional CF methods rely on a periodic assump-

tion of the training and detection samples, which pro-

duces unexpected boundary effects and makes the tracker

be trained and applied on a portion of unreal samples. To

address this issue, Danelljan et al. [11] introduce a spatial

regularization term in the CF formulae to penalize the fil-

ter coefficients near the boundary regions. Galoogahi et

al. [15] directly multiply the filter with a binary matrix to

generate real positive and negative samples for model train-

ing. The aforementioned two spatial constraints are widely

used in subsequent research works [8, 13, 22, 32]. These

spatial constraints are usually fixed for different objects and

not changed during the tracking process; thus, they cannot

fully exploit the diversity information of different objects in

different frames. In this wok, we propose a novel adaptive

spatial regularization term to make the tracker learn more

reliable filter coefficients during the tracking process.

Recently, many researchers have attempted to combine

the CF model with deep visual features, making the CF-

based trackers achieve state-of-the-art performance [29, 8,

13, 22, 32]. Ma et al. [29] exploit three layers of CNN

features pre-trained on the classification to generate feature

maps for training CF models. Danelljan et al. [13] use the

continuous convolution filters for combinations of feature

maps with different spatial resolutions. However, these CF-

based trackers no longer have the speed advantage due to

the complicated deep features. Particularly, their scale es-

timation strategies require extracting multi-scale deep fea-

tures, which is extremely expensive and makes the tracker

very slow. In this work, we exploit two kinds of CF models

to estimate the location and scale separately. The accurate

object localization is obtained based on one CF model only

with single scale robust deep features; while the efficient s-

cale estimation is conducted with the other CF model with

multi-scale shallow features.

3. Adaptive Spatially-Regularized Correlation

Filters (ASRCF)
3.1. Objective Function of Our ASRCF Model
Original Correlation Filters (CF): The original multi-

channel CF model in the spatial domain aims to minimize

the following objective function [18]:

E(H) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗ hk

∥∥∥∥∥

2

2

+
λ

2

K∑

k=1

‖hk‖22, (1)

where xk ∈ R
T×1 and hk ∈ R

T×1 denote the k-th channel

of the vectorized image and filter respectively, and K is the

total channel number. The vector y ∈ R
T×1 is the desired

response (i.e., the Gaussian-shaped ground truth), ∗ denotes

the spatial correlation operator and λ is a regularization con-

stant. H = [h1,h2, ...,hK ] is the matrix representing the

filters from all K channels.

The original CF model suffers from periodic repetition-

s on boundary positions caused by circulant shifted sam-

ples, which inevitably degrades the tracking performance.

To solve this problem, several spatial constraints have been

introduced to alleviate the unexpected boundary effect-

s. The representative methods include spatially regular-

ized discriminative correlation filters (SRDCF) [11] and

background-aware correlation filters (BACF) [15]. Their

basic ideas are presented as follows.

SRDCF: The SRDCF method [11] introduces a spatial reg-

ularization to penalize the filter coefficients with respect to

their spatial locations and modifies the objective function as

E(H) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗ hk

∥∥∥∥∥

2

2

+
λ

2

K∑

k=1

‖w̃ ⊙ hk‖22, (2)

where w̃ is a negative Gaussian-shaped spatial weight vec-

tor to make the learned filters have a high response around

the center of the tracked object.
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BACF: The BACF method [15] proposes a background-

aware CF and introduces the following objective function:

E(H) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗
(
P⊤hk

)
∥∥∥∥∥

2

2

+
λ

2

K∑

k=1

‖hk‖22,

(3)

where P ∈ R
T×T is a diagonal binary matrix to make the

correlation operator directly apply on the true foreground

and background samples.

The constraints on equations (2) and (3) are fixed dur-

ing the tracking process and identical for different objects,

which cannot well reflect the characteristics and appearance

variations of a specific object. Thus, it is reasonable to intro-

duce an adaptive spatial regularization into the CF model.

Our Objective Function: Motivated by the discussion-

s above, we propose a novel adaptive spatially-regularized

correlation filters (ASRCF) method to learn effective multi-

channel CFs. Our objective function is defined as follows:

E(H,w) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗ (P⊤hk)

∥∥∥∥∥

2

2

+
λ1

2

K∑

k=1

‖w ⊙ hk‖22 +
λ2

2
‖w −wr‖22

.

(4)

In equation (4), the first term is the ridge regression ter-

m that convolves the training data X = [x1,x2, ...,xK ]
with the filter H = [h1,h2, ...,hK ] to fit the Gaussian-

distributed ground truth y. The second term is a regular-

ization term introducing an adaptive spatial regularization

on the filter H, where the spatial weight w requires to be

optimized. The third term attempts to make the adaptive s-

patial weight w be similar to a reference weight wr. This

constraint introduces a priori information on w and avoids

model degradation1. λ1 and λ2 are the regularization pa-

rameters of the second and third terms, respectively.

We note that the proposed ASRCF is a general CF model

and the well-known KCF, SRDCF and BACF algorithms are

all special cases of our model (shown in Table 1).

Table 1. The generalization ability of our ASRCF model.

Method P w

KCF P = I w = 1, λ2 = 0

SRDCF P = I w = w̃, λ2 = 0

BACF - w = 1, λ2 = 0

3.2. Optimization of Our ASRCF Model
Inspired by previous works [11, 15], correlation filter-

s are usually learned in the frequency domain for efficient

1 If there is no third term, the solution of w will be degraded, i.e., w = 0.

training and testing. Thus, we express the objective function

(4) in the frequency domain (using Parseval’s theorem), and

convert it into the equality constrained optimization form:

E(H, Ĝ ,w) = 1
2

∥∥∥∥ŷ −
K∑

k=1

x̂ k ⊙ ĝ k

∥∥∥∥
2

2

+λ1

2

K∑
k=1

‖w ⊙ hk‖22 + λ2

2

K∑
k=1

‖w −wr‖22
s.t., ĝk =

√
TFP⊤hk, k = 1, ...,K

,

(5)

where Ĝ = [ĝ1, ĝ2, ..., ĝK ] (ĝk =
√
TFP⊤hk, k =

1, ...,K) is an auxiliary variable matrix. In equation (5),

the symbol ˆ denotes the discrete Fourier transform form

of a given signal, and F is the orthonormal T × T matrix

of complex basis vectors to map any T dimensional vec-

torized signal into the Fourier domain (such as â =
√
TFa,

a ∈ R
T×1). The model in equation (5) is bi-convex, and can

be minimized to obtain a local optimal solution using the al-

ternating direction method of multipliers (ADMM) [4]. The

augmented Lagrangian form of equation (5) can be formu-

lated as

L(H, Ĝ ,w, V̂)

= E(H, Ĝ ,w) +
K∑

k=1

v̂⊤
k (ĝ k −

√
TFP⊤hk)

+µ
2

K∑
k=1

∥∥∥ĝ k −
√
TFP⊤hk

∥∥∥
2

2

, (6)

where V = [v1,v2, ...,vK ] ∈ R
T×K is the Lagrange mul-

tiplier, and V̂ = [v̂1, v̂2, ..., v̂K ] ∈ R
T×K is the corre-

sponding Fourier transform. By introducing sk = 1
µ
vk

(k = 1, 2, ...,K), the optimization of equation (6) is equiv-

alent to solving equation (7) .

L(H, Ĝ,w, Ŝ )= 1
2

∥∥∥∥ŷ −
K∑

k=1

x̂ k ⊙ ĝ k

∥∥∥∥
2

2

+λ1

2

K∑
k=1

‖w ⊙ hk‖22 + λ2

2 ‖w −wr‖22

+µ
2

K∑
k=1

∥∥∥ĝ k −
√
TFP⊤hk + ŝk

∥∥∥
2

2

,

(7)

where Ŝ = [̂s1, ŝ2, ..., ŝK ] ∈ R
T×K .

Then, the ADMM algorithm is adopted by alternately

solving the following subproblems:

Subproblem H: If Ĝ, w and Ŝ are given, the optimal H∗

can be obtained as

h∗
k = argmin

hk

⎧
⎨
⎩

λ1

2 ‖w ⊙ hk‖22 +
µ
2

∥∥∥ĝ k −
√
TFP⊤hk + ŝk

∥∥∥
2

2

⎫
⎬
⎭

=
[
λ1W

⊤W + μTP⊤P
]−1

μTP (sk + gk)

=
μTp⊙ (sk + gk)

λ1(w ⊙w) + μTp

, (8)
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where W = diag (w) ∈ R
T×T represents the diagonal

matrix and p = [P11, P22, ..., PTT ]
⊤

is the column vector

composed by the diagonal elements of the cropping matrix

P (For P, we also have P⊤P = P). Equation (8) shows

that the solution of hk merely requires the element-wise

multiplication and the inverse fast Fourier transform (i.e.,

sk = 1√
T
F⊤ŝk and gk = 1√

T
F⊤ĝk). Thus, the computa-

tion complexities of solving hk and all H are O (T log T )
and O (KT log T ) respectively.

Subproblem Ĝ: If other variables in equation (7) are fixed,

the optimal Ĝ∗ can be estimated by solving the optimiza-

tion problem (9).

Ĝ∗ = argmin
Ĝ

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∥∥∥∥ŷ −
K∑

k=1

x̂ k ⊙ ĝ k

∥∥∥∥
2

2

+

µ
2

K∑
k=1

∥∥∥ĝ k −
√
TFP⊤hk + ŝk

∥∥∥
2

2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

(9)

However, it is difficult to optimize the problem (9) due to

its high computation complexity. Thus, we consider pro-

cessing on all channels of each pixel, and reformulate the

optimization problem (9) as

V∗
j (Ĝ ) = arg min

Vj(Ĝ )

⎧
⎪⎨
⎪⎩

1
2

∥∥∥ŷ j − Vj(X̂ )
⊤Vj(Ĝ )

∥∥∥
2

2
+

µ
2

K∑
k=1

∥∥∥Vj(Ĝ ) + Vj(M̂ )
∥∥∥
2

2

⎫
⎪⎬
⎪⎭

,

(10)

Vj(M̂ ) = Vj(Ŝ )− Vj(
√
TFP⊤H), (11)

where Vj(ĝ ) ∈ R
K×1 denotes the values of all channels of

filter ĝ on pixel j. Then, the analytical solution of equation

(10) can be obtained as

V∗
j (Ĝ ) = 1

µT

(
I− Vj(X̂ )Vj(X̂ )

⊤

µT+Vj(X̂ )
⊤Vj(X̂ )

)

(
ŷjVj(X̂ )+μVj(

√
TFP⊤H)− μVj(Ŝ )

) .

(12)

The derivation of equation (12) uses the Sherman Morrsion

formula:
(
A+ uv⊤)−1

= A−1−A
−1

uv
⊤
A

−1

1+v⊤A−1u
(here u and

v are two column vectors and uv⊤ is a rank-one matrix).

Solving w: If H, Ĝ and Ŝ are fixed, the closed-form solu-

tion regrading w can be determined as

w∗ = argmin
w

{
λ1

2

K∑
k=1

‖Nkw‖22 + λ2

2 ‖w −wr‖22
}

=(λ1

K∑
k=1

N⊤
k Nk+λ2I)

−1λ2w
r

= λ2w
r

λ1

K∑
k=1

hk⊙hk+λ21

,

(13)

where Nk = diag(hk) ∈ R
T×T . In practice, we utilize an

additional ADMM solver to obtain the weight w∗ for better

convergence. Some representative examples of the learned

weights are shown in Figure 2. From this figure, we can see

that the adaptive spatial regularization learning works well

in introducing large penalties on some unreliable regions,

thereby encouraging the learned filters to focus more on the

reliable regions of the tracked object in the next iteration.

Figure 2. The visualization of the adaptive spatial regularization.

For each pixel, a larger value of the adaptive spatial regularization

will give a greater learning penalty of the filter at this pixel. Better

viewed in color and zoom in for details.

Lagrangian Multiplier Update: We update Lagrangian

multipliers as

Ŝi+1 = Ŝi + Ĝi+1 − Ĥi+1, (14)

where Ŝi denotes the Fourier transform of the Lagrangian

in the previous state, Ĝ(i+1) and Ĥ(i+1) are the current

solutions to the two subproblems above at iteration i + 1.

The regularization constant μ is commonly set as μ(i+1) =
min(μmax, βμ

(i)) [4].

Thus, the optimization process can be conducted by it-

eratively applying the four steps above, including (1) solv-

ing H, (2) solving Ĝ, (3) solving w and (4) updating La-

grangian multipliers. After convergence, the optimal filter

parameter H∗ (with its Fourier transform Ĝ∗) and spatial

regularization weight w∗ can be obtained.

4. Object Localization and Scale Estimation

4.1. Object Localization

For tracking, the location of the tracked object can be

determined in the Fourier domain as

r̂ =

K∑

k=1

x̂k ⊙ ĝk, (15)

where r and r̂ denote the response map and its Fourier trans-

form. In this work, we adopt ensembles of deep and shallow

features for object localization (see implementation details

in Section 5). After obtaining the response map, the optimal

location can be obtained based on the maximum response.
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4.2. Model Update

Similar to other CF-based trackers [18, 11, 15], we train

our filters with an online adaptive template scheme. The

adaptive method of the template model is as follow:

X̂new
model = (1− η)X̂old

model + ηX̂∗, (16)

where X̂
(new)
model represents the newly updated template mod-

el, X̂
(old)
model is the old template model and X̂∗ denotes the

current observation (η is the online learning rate). In the

meanwhile, we update the reference weight as wr ← w∗.

Similar to [11], the reference weight wr is initialized with a

negative Gaussian shape in the first frame. We note that the

aforementioned update schemes make our model effective-

ly adapt to the appearance variations of the tracked object

and introduce a more reasonable priori for adaptive spatial

regularization during the tracking process.

4.3. Scale Estimation

For scale estimation, the previous CF-based tracker-

s [18, 11, 15] usually apply the learned filter on multiple res-

olutions of the searching area to estimate scale changes, and

then select the optimal scale with the maximum response.

This manner leads to two imperfections for the CF-based

model with deep features: (1) it is very time-consuming to

extract multi-scale deep visual features; and (2) it is difficult

to estimate the accurate scale based on deep CNN features

since the pooling layers make feature descriptions loss some

detailed information.

In this work, we attempt to learn two CF models (one

location CF is for object localization and the other scale CF

is for scale estimation). The location CF model for objec-

t localization is trained on ensembles of deep and shallow

features. Although the extraction process of this CF model

is time-consuming, it merely requires to be extracted on one

scale search region during the tracking process. The scale

CF model for scale estimation is trained on efficient shallow

features (HOG features in this work). During the tracking

process, we apply this CF model on five scale search regions

and obtain their related response maps. Then, the best scale

is determined based on the scale corresponding to the max-

imum score of five response maps. The effectiveness of our

designed scale estimation scheme is verified in Section 5.2.

In every frame, the overall framework (Figure 4.3) first

estimates the position using the location CF model with

complicated features, and then applies the scale CF mod-

el to refine the scale based on five scale HOG feature maps.

5. Experiments

Our tracker is implemented based on the MAT-

LAB2017a platform with the MatConvNet toolbox, and

runs on a PC machine with an Intel i7 8700 CPU, 32GB

RAM and a single NVIDIA GTX 1080Ti GPU, 11G mem-

Five Scale 

HOG feature 

maps

One Scale 

Fusion 

feature map

CF1 for 

estimating

scale

CF2 for 

predicting

position

Best

position

Best

Scale
ADMM1

ADMM2

CF1 for

Update 

CF1

Update 

CF2

Figure 3. The tracking framework of location and scale CF models.

ory. The tracking speed of our tracker is 28fps approxi-

mately, which makes our tracker meet the real-time require-

ment. For localization, we exploit an ensemble of deep

(Norm1 from VGG-M, Conv4-3 from VGG-16) and hand-

crafted (HOG) features for object representation. Besides,

we merely use five-scale HOG features for scale estima-

tion. The regularization parameters λ1 and λ2 are empir-

ically chosen as λ1= 0.2 and λ2= 0.001, respectively. We

set the learning rates of our ASRCF model as η = 0.0186,

and use three-step iterations for the ADMM optimization

process. The penalty factor μ of ADMM is initially set to

1 and then updated by μ(i+1) = min(μmax, βμ
(i)), where

β = 10 and μmax = 104. Our project is available on the

website: http://github.com/Daikenan/ASRCF.

In this section, we demonstrate the effectiveness of our

tracker on the OTB2015 [35], TC128 [27] VOT2016 [19],

VOT2017 [20] and LaSOT [14] datasets.

5.1. Quantitative Evaluation

OTB2015 Dataset. The OTB2015 [35] dataset is one of the

most popular tracking benchmarks which consists of 100
challenging image sequences with 11 different attributes,

such as illumination variation (IV), scale variation (SV),

occlusion (OCC), deformation (DEF), motion blur (MB),

fast motion (FM), in-plane Rotation (IPR), out-of-plane ro-

tation (OPR), out-of-view (OV), background clutters (BC)

and low resolution (LR). The one pass evaluation (OPE) is

employed to evaluate different trackers based on two crite-

ria: distance precision and overlap success.

We compare our tracker against recent state-of-the-art

trackers including ECO [8], MDNet [30], LSART [31], C-

COT [13], DaSiamRPN [39], SiamRPN [21], DeepSRD-

CF [10], ACT [5], BACF [15], StructSiam [38], CF2 [29],

SRDCF [11], SiamFC [2], Staple [1], CFNet [1] and

KCF [18]. Figure 4 reports both precision and success plots

of different trackers in terms of the OPE rule. Overall, the

proposed tracking algorithm achieves almost the best result

with an AUC score of 0.692 and a distance precision rate

of 0.922. In Table 2, we summarize both accuracies and

speeds of top-5 trackers on OTB2015. Among these top-
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ranked methods, our tracker achieves almost the best accu-

racy and the fastest speed (the only tracker with real-time

performance).
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Figure 4. Precision and success plots on OTB2015 [35]. The leg-

end contains the average distance precision score at 20 pixels and

the area-under-the-curve (AUC) score for each tracker.

Table 2. Accuracy and speed comparisons of top-5 trackers on the

OTB2015 dataset. The best two results are shown in red and blue

fonts, respectively.

C-COT LSART MDNet ECO Ours

Success 0.667 0.672 0.678 0.687 0.692

Precision 0.896 0.923 0.909 0.909 0.922

GPU/CPU CPU GPU GPU GPU GPU

FPS 0.7 1.3 1.7 17.9 28.0

Figure 6 illustrates overlap success plots of differen-

t trackers with 6 attributes (such as background clutter, de-

formation, occlusion, scale variation and so on). We can

see that our tracker achieves almost the best performance

in these attributes. First, our tracker performs well under

background clutter, deformation and occlusion conditions,

and obtains 1.6%, 1.6% and 0.8% gain respectively than the

second best tracker (ECO [8]). This is mainly owed to the

proposed adaptive spatial regularization, which makes the

learned filter focus on the reliable features of the tracked

object and alleviate the effects of unexpected noises within

the object region. In addition, our tracker works well in han-

dling scale variation based on the designed scale estimation

scheme using multi-scale shallow features.

TC128 Dataset. We perform comparisons on the

TC128 [27] dataset, which consists of 128 challenging color

sequences. We compare our tracker with 8 state-of-the-art

trackers including ECO [8], C-COT [13], SRDCF [11], S-

RDCFdecon, DeepSRDCF [10], MCCT [34], BACF [15],

MCPF [37] and 32 more default trackers in TC128. The re-

sults of top 15 trackers are reported in Figure 7, from which

we can see that the proposed tracker performs the best in

terms of both precision and success criterion.

VOT2016 Dataset. We also perform comparisons on the

VOT2016 dataset [19] which contains 60 challenging se-

quences. During the test phase, the tracker will be reset if

there is no overlap between prediction and groundtruth. The

expected average overlap (EAO) considering both bounding

box overlap (accuracy) and reset times (robustness) serves

as the major evaluation metric on VOT2016. In Table 3(a),
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Figure 7. Performance evaluation on the TC128 dataset in terms

of success and precision plots.

we compare our method with top-10 trackers including C-

COT, TCNN, SSAT, MLDF, Staple, DDC, EBT, SRBT,

STAPLE+ and DNT. Table 3 shows that our tracker achieves

the best in terms of EAO and R scores, furthermore, our

tracker is much faster than the second best tracker (C-COT).

VOT2017 Dataset. The VOT2017 [20] dataset contains 60
challenging sequences (replacing some simple sequences

with more difficult ones in VOT2016) and has more ac-

curate groundtruth. The evaluation criteria in VOT2017

is same as that in VOT2016. In Table 3(b), we compare

our method with top-10 trackers in the VOT2017 [20] of-

ficial report. The compared trackers include LSART [31],

ECO [8], CFCF [16], GNet, MCCT [34], C-COT [13], C-

SRDCF [28], SiamDCF, MCPF [37] and CRT [6]. Table

3(b) shows that our tracker achieves the best performance

in terms of EAO while maintaining very competitive A and

R scores. As presented before, our tracker is much faster

than the second best tracker (LSART).

LaSOT Dataset. The LaSOT [14] dataset is a recent large-

scale dataset with 1,400 sequences and more than 3.5M

frames in total (the average frame length is more than 2,500

frames). We also follow the one-pass evaluation to compare

different trackers based on three criteria (precision, normal-

ized precision and success). The success and precision plots

are reported to compare the proposed trackers with 34 track-

ers reported in [14]. We refer the readers to [14] for more

detailed descriptions. Figure 8 shows that our tracker also

achieves very competitive results, especially better than all

CF-based methods (e.g., ECO [8] and STRCF [22]).
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Figure 8. Performance evaluation on the LaSOT dataset in terms

of success and precision plots.
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Ours BACF [15] C-COT [13] ECO [8] CF2 [29]

Figure 5. Qualitative evaluation of our tracker and related algorithms on the Bird1, Biker, Freeman4, Human3 and Singer2 sequences.
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Figure 6. Evaluation of different trackers with 6 attributes on the OTB-2015 [35] dataset. The legend contains the average distance precision

score at 20 pixels and the area-under-the-curve score for each tracker.
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Table 3. Performance evaluation on the VOT2016 [19] and VOT2017 [20] datasets. In this table, we compare our method with top-10

trackers in the VOT2016 [19] and VOT2017 [20] official reports. The results are presented in terms of expected average overlap (EAO),

accuracy rank (A) and robustness rank (R). The best three results are shown in red, blue and green colors, respectively.

(a) VOT 2016

DNT STAPLE+ SRBT EBT DDC Staple MLDF SSAT TCNN C-COT Ours

EAO 0.278 0.286 0.290 0.291 0.293 0.295 0.311 0.321 0.325 0.331 0.391

A 0.515 0.557 0.496 0.465 0.541 0.544 0.490 0.577 0.554 0.539 0.563

R 0.329 0.368 0.350 0.252 0.345 0.378 0.233 0.291 0.268 0.238 0.187

(b) VOT 2017

MCPF SiamDCF CSRDCF C-COT MCCT GNet ECO CFCF CFWCR LSART Ours

EAO 0.248 0.249 0.256 0.267 0.270 0.274 0.280 0.286 0.303 0.323 0.328

A 0.510 0.500 0.491 0.494 0.525 0.502 0.483 0.509 0.484 0.493 0.494

R 0.427 0.473 0.356 0.318 0.323 0.276 0.276 0.281 0.267 0.218 0.234

5.2. Ablation Studies

Effectiveness of Different Components. We conduct the

ablation studies to verify the effectiveness of key compo-

nents in our tracker, and report the comparison results in

Figure 9(a). The basic notions are as follows. (1) ‘Baseline’

denotes the method that does not exploit the adaptive spatial

regularization and the designed scale estimation scheme.

(2) ‘Baseline+AR’ means the baseline method with adding

the adaptive spatial regularization. (3) ‘Baseline+MSS’ s-

tands for the baseline method replacing multi-scale estima-

tion on the original feature space with multi-scale estima-

tion on shallow features. (4) ‘Baseline+AR+MSS’ is our

final tracker that combines the baseline method with both

adaptive spatial regularization and multi-scale estimation on

shallow features. From Figure 9(a), we can see that both

adaptive spatial regularization and designed scale estima-

tion scheme contribute to the substantial improvement over

the baseline method. Besides, our final tracker improves the

baseline method by 7.1% and 6.5% in terms of success and

precision criterion, respectively.
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Figure 9. Ablation analysis using the OTB-2015 [35] Dataset.

Different Variants of Our ASRCF Model. In Table 1,

we point out the well-known KCF [18], SRDCF [11] and

BACF [15] methods are all special cases of our ASRCF

model. To show the effectiveness of ASRCF, we compare

it with those special cases with the same feature extraction

and scale estimation scheme2. From Figure 9(b), we can see

that the SRDCF and BACF methods performs better than

the original KCF algorithm, which can be attributed to the

adopted spatial constraints on filter coefficients. Our ASR-

CF model provides an adaptive spatial regularization, which

makes the tracker achieve the best results.

6. Conclusions

In this work, we attempt to introduce an adaptive spatial

regularization into the objective function of correlation fil-

ters (denoted as ASRCF). Compared with previous works

using fixed spatial constraints, this regularization could be

effectively learned with respect to a specific object being

tracked and updated to consider the appearance variations

during the tracking process. Our ASRCF model is effective-

ly optimized using the ADMM algorithm, which can learn

the reliable filter coefficients and therefore make our tracker

robust. To speed up our tracker, we exploit two CF mod-

els to estimate the location and scale separately. One CF

model with complicated features is responsible for accurate

localization. The other CF model with multi-scale shallow

features is aimed to accelerate scale estimation. Extensive

experimental results show that our ASRCF tracker performs

significantly better than many state-of-the-art tracking algo-

rithms, with a real-time speed of 28fps.
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