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Abstract

Feature detectors and descriptors are key low-level vi-

sion tools that many higher-level tasks build on. Unfortu-

nately these fail in the presence of challenging light trans-

port effects including partial occlusion, low contrast, and

reflective or refractive surfaces. Building on spatio-angular

imaging modalities offered by emerging light field cameras,

we introduce a new and computationally efficient 4D light

field feature detector and descriptor: LiFF. LiFF is scale

invariant and utilizes the full 4D light field to detect fea-

tures that are robust to changes in perspective. This is par-

ticularly useful for structure from motion (SfM) and other

tasks that match features across viewpoints of a scene. We

demonstrate significantly improved 3D reconstructions via

SfM when using LiFF instead of the leading 2D or 4D fea-

tures, and show that LiFF runs an order of magnitude faster

than the leading 4D approach. Finally, LiFF inherently es-

timates depth for each feature, opening a path for future

research in light field-based SfM.

1. Introduction

Feature detection and matching are the basis for a broad

range of tasks in computer vision. Image registration, pose

estimation, 3D reconstruction, place recognition, combina-

tions of these, e.g. structure from motion (SfM) and simulta-

neous localisation and mapping (SLAM), along with a vast

body of related tasks, rely directly on being able to identify

and match features across images. While these approaches

work relatively robustly over a range of applications, some

remain out of reach due to poor performance in challenging

conditions. Even infrequent failures can be unacceptable,

as in the case of autonomous driving.

State-of-the-art features fail in challenging conditions

including self-similar, occlusion-rich, and non-Lambertian

scenes, as well as in low-contrast scenarios including low

light and scattering media. For example, the high rate of

self-similarity and occlusion in the scene in Fig. 1 cause the

COLMAP [35] SfM solution to fail. There is also an inher-

ent tradeoff between computational burden and robustness:

Figure 1. (left) One of five views of a scene that COLMAP’s

structure-from-motion (SfM) solution fails to reconstruct using

SIFT, but successfully reconstructs using LiFF; (right) LiFF

features have well-defined scale and depth, measured as light

field slope, revealing the 3D structure of the scene – note we do

not employ depth in the SfM solution. Code and dataset are at

http://dgd.vision/Tools/LiFF, see the supplementary

information for dataset details.

given sufficient computation it may be possible to make

sense of an outlier-rich set of features, but it is more desir-

able to begin with higher-quality features, reducing compu-

tational burden, probability of failure, power consumption,

and latency.

Light field (LF) imaging is an established tool in com-

puter vision offering advantages in computational complex-

ity and robustness to challenging scenarios [7,10,29,38,48].

This is due both to a more favourable signal-to-noise ra-

tio (SNR) / depth of field tradeoff than for conventional

cameras, and to the rich depth, occlusion, and native non-

Lambertian surface capture inherently supported by LFs.

In this work we propose to detect and describe blobs

directly from 4D LFs to deliver more informative features

compared with the leading 2D and 4D alternatives. Just as

the scale invariant feature transform (SIFT) detects blobs

with well-defined scale, the proposed light field feature

(LiFF) identifies blobs with both well-defined scale and

well-defined depth in the scene. Structures that change their

appearance with viewpoint, for example those refracted

through or reflected off curved surfaces, and those formed

by occluding edges, will not satisfy these criteria. At the

same time, well-defined features that are partially occluded

are not normally detected by 2D methods, but can be de-

tected by LiFF via focusing around partial occluders.
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Ultimately LiFF features result in fewer mis-

registrations, more robust behaviour, and more complete

3D models than the leading 2D and 4D methods, allowing

operation over a broader range of conditions. Following

recent work comparing hand-crafted and learned fea-

tures [36], we evaluate LiFF in terms of both low-level

detections and the higher-level task of 3D point cloud

reconstruction via SfM.

LiFF features have applicability where challenging

conditions arise, including autonomous driving, deliv-

ery drones, surveillance, and infrastructure monitoring, in

which weather and low light commonly complicate vision.

It also opens a range of applications in which feature-based

methods are not presently employed due to their poor rate

of success, including medical imagery, industrial sites with

poor visibility such as mines, and in underwater systems.

The key contributions of this work are:

• We describe LiFF, a novel feature detector and descrip-

tor that is less computationally expensive than leading

4D methods and natively delivers depth information;

• We demonstrate that LiFF yields superior detection

rates compared with competing 2D and 4D methods

in low-SNR scenarios; and

• We show that LiFF extends the range of conditions un-

der which SfM can work reliably, outperforming SIFT

in reconstruction performance.

To evaluate LiFF we collected a large multi-view LF

dataset containing over 4000 LFs of over 800 scenes. This

is the first large dataset of its kind, with previous examples

limited to a single LF of each scene [39]. It is our hope that

LiFF and the accompanying dataset will stimulate a broad

range of research in feature detection, registration, interpo-

lation, SfM, and SLAM.

2. Related Work

Feature Detection and Matching 2D feature detectors

such as SIFT [25], SURF [2], FAST [33], and ORB [34], are

instrumental in many computer vision algorithms, includ-

ing SfM, SLAM, disparity estimation, and tracking. Many

of these applications rely on matching features between dif-

ferent viewpoints of the same scene. Unfortunately, this

matching is often unreliable, because similar spatial struc-

tures can occur several times in the same scene, and view-

dependent effects such as partial occlusion and specularity

makes features look different from different perspectives.

To reliably match features, additional geometric constraints

have to be imposed, for example via bundle adjustment, but

this is computationally expensive, severely affecting run-

time, required memory, and power.

3D feature detection from RGB-D images can be more

robust than 2D feature detection, as demonstrated in the

context of object detection and segmentation [17] as well

as SLAM [12]. Rather than working with RGB-D data,

3D feature detectors can also operate directly on point

clouds [16, 40, 55] while providing similar benefits. How-

ever, point clouds are usually not available in conventional

imaging systems and RGB-D data does not generally han-

dle partial occlusion and other view-dependent effects.

LFs inherently capture a structured 4D representation

that includes view-dependent effects, partial occlusions,

and depth. A number of existing works touch upon exploit-

ing these characteristics for feature detection and descrip-

tion. Ghasemi et al. [14] exploit depth information in the LF

to build a global, scale-invariant descriptor useful for scene

classification, though they do not address the localized fea-

tures required for 3D reconstruction. Tosic et al. [44] em-

ploy LF scale and depth to derive an edge-sensitive feature

detector. Our focus is on blob detection rather than edge

detection since it is much easier to uniquely match blobs

across viewpoints, making it appropriate for a larger set of

tasks including 3D reconstruction.

The leading method for extracting features from LFs is

to run a 2D detector across subimages, then consolidate the

detected features by imposing consistency with epipolar ge-

ometry. For example, Teixeira et al. [42] propose feature

detection that repeats SIFT on 2D subimages then consol-

idates across 2D epipolar slices. In exploring LF SfM, Jo-

hannsen et al. [20] extract SIFT features across subimages

then consolidate them using 4D LF geometry. Zhang et

al. [54] demonstrate that line and plane correspondence can

be employed for LF-based SfM, by detecting 2D line seg-

ments in subimages then applying a higher-order consolida-

tion step. Finally, Maeno et al. [26] and Xu et al. [53] detect

refractive objects by following 2D features through the LF

using optical flow. They then enforce 4D epipolar geometry

to detect refracted features.

While these approaches differ in their details they are all

fundamentally limited by the performance of the 2D detec-

tor they build upon. We refer to these as repeated 2D detec-

tors, and make direct comparison to repeated SIFT in this

work. We show that LiFF shows significantly higher per-

formance over repeated 2D methods by virtue of simultane-

ously considering all subimages in detecting and describing

features. Because repeated 2D detectors are less direct in

their approach, they present more parameters requiring tun-

ing, making them more difficult to deploy. Finally, repeat-

ing SIFT across viewpoints is a highly redundant operation,

and we will show that LiFF has significantly lower compu-

tational complexity.

Light Field Imaging An LF [15, 23] contains 4D spatio-

angular information about the light in a scene, and can be

recorded with a camera array [51], or a sensor equipped

with a lenslet array [1, 8, 31] or a coded mask [28, 45].

See [19, 50] for detailed overviews of LF imaging. To

date, LF image processing has been applied to a variety

of applications including image-based rendering [9,22,23],

8043



post-capture image refocus [13, 30], SfM [20], lens aber-

ration correction [18], spatial [3] and temporal [46] super-

resolution, video stabilization [37], motion deblurring [38],

and depth imaging [24, 41, 43, 47, 49]. In this work, we ex-

plore robust LF feature detection and matching for improv-

ing applications in reconstruction including SfM.

Conventions In this work we consider the two-plane-

parameterized LF L(s, t, u, v) with Ns × Nt views of

Nu × Nv pixels each [7, 23]. A point in 3D space appears

in the LF as a plane with slope inversely proportional to

the point’s depth [1, 5, 19]. Working with sampled LFs in-

troduces unknown scaling factors between slope and depth,

which can either be tolerated or calibrated away. In the fol-

lowing we refer to slope with the understanding that it can

be mapped to depth via camera calibration [4, 6, 52].

3. Light Field Feature Detection

We begin our development with the well-known SIFT

feature detector and extend it to 4D LFs. We begin with

SIFT because of its dominance in reconstruction applica-

tions [36]. Our key insight is that while SIFT locates

blobs with well-defined scales and locations in the 2D im-

age plane, LFs offer the ability to identify blobs with well-

defined scales and locations in 3D space.

To generalize SIFT to the LF we first propose a much

more computationally expensive approach that searches for

features in a joint 4D scale-slope space. We then show how

numerically identical results can be achieved by first con-

verting the LF to a focal stack while retaining the 4D search

step. The result is both more robust and more computation-

ally efficient than repeating SIFT across the LF. This ap-

proach offers numerous advantages including rejection of

undesired spurious features at occlusion boundaries, detec-

tion of desired but partially occluded features, and inherent

depth estimation.

SIFT identifies blobs by searching for extrema in a 3D

scale space constructed as a difference of Gaussian (DoG)

stack. The DoG is built by convolving with a set of Gaus-

sian filters covering a range of scales, then taking the differ-

ence between adjacent scales, as in

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (1)

D(x, y, σi) = L(x, y, σi+1)− L(x, y, σi), (2)

where G(x, y, σ) is a Gaussian filter at scale σ, and the DoG

is computed over a range of scales σi, 1 ≤ i ≤ N with

constant multiplicative factor k such that σi+1 = kσi.

The convolutions (1) represent the bulk of the computa-

tional cost of SIFT. Significant savings can be had by apply-

ing larger-scaled convolutions on downsampled versions of

the input image [25]. Nevertheless, a good approximation

of the cost of this approach is to understand it as a set of N
2D filtering operations, which we denote N × Filt2D.

Following extrema detection, SIFT proceeds through

steps for sub-pixel-accurate feature location, rejection of

edge features that can trigger the blob detection process,

and estimation of dominant orientation allowing rotation in-

variance. Finally, an image descriptor is constructed from

histograms of edge orientations. LiFF will differ from these

steps only in the detection and descriptor stages.

3.1. Searching Scale and Slope

Jointly searching across scale and 3D position can be ac-

complished as a direct extension of SIFT’s DoG space. We

first rewrite each scale of the DoG (2) as a single convolu-

tion, applied in the u and v dimensions

Hσ(u, v, σ) = G(u, v, σi+1)−G(u, v, σ), (3)

D2D(u, v, σ) = Hσ(u, v, σ) ∗ I(u, v). (4)

The filter Hσ finds blobs in LF subimages at the scale σ.

We augment this with depth selectivity using a frequency-

planar filter Hλ. The frequency-planar filter selects for a

specific depth in the LF, and can be constructed in a number

of ways in the frequency or spatial domains [7,30]. For this

work we consider the direct spatial-domain implementation

Hλ(s, t, u, v, λ) =

{

1, u = λs, v = λt,

0, otherwise.
(5)

We combine (3) and (5) to yield a filter that is simultane-

ously selective in scale and slope:

H(φ, σ, λ) = Hσ(u, v, σ) ∗Hλ(φ, λ), (6)

where φ = [s, t, u, v] gathers the LF indices. We apply the

filter H over N scales σ and M slopes λ:

D6D(φ, σ, λ) = H(φ, σ, λ) ∗ L(φ). (7)

D6D is highly redundant in that each subimage contains vir-

tually the same information, and so when searching for local

extrema we restrict our attention to the central view in s, t
yielding the 4D search space D(u, v, σ, λ).

Identifying local extrema in D is a straightforward ex-

tension of the 3D approach used in SIFT, yielding feature

coordinates [u, v, σ, λ]. It is important to jointly search the

scale-slope space in order to identify those features with

both distinct scale and slope. This is a key distinction be-

tween LiFF and repeating SIFT over the LF or a focal stack.

3.2. Simplification using Focal Stack

The method so far is extremely computationally expen-

sive. The 4D convolution (7) is repeated over N scales and

M slopes. The key insight in simplifying (7) is exploiting

the linear separability of Hσ and Hλ seen in (6). The fact

that we employ only the central view of D allows the slope
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selectivity step to be computed only over that subset, col-

lapsing the 4D LF into a 3D focal stack:

F (u, v, λ) =
∑

s,t

L(s, t, u− λs, v − λt), (8)

D(u, v, σ, λ) = Hσ(u, v, σ) ∗ F (u, v, λ). (9)

i.e. we compute a focal stack F over M slopes, then apply a

DoG filter over N scales for each slope. Finally, we search

the joint space D for extrema. This process yields numer-

ically identical results to building the full 6D scale-slope

space (7), but at a fraction of the computational cost.

A few efficient methods for computing the focal stack

F have been proposed [27, 32]. These generally find at

minimum as many layers as there are samples in s or t.
Feature detection may not require so many layers, and

so we proceed with the more straightforward approach

of shifting and summing LF subimages (8), with the un-

derstanding that computational savings may be possible

for large stack depths. The cost of this focal stack is

M ×Ns ×Nt ×Nu ×Nv .

Computing the DoG from each focal stack image F is

identical to the first steps of conventional SIFT, and can

benefit from the same downsampling optimization [25]. We

approximate the complexity as M times the cost of conven-

tional SIFT, M × N × Filt2D. For practical scenarios this

will overshadow the cost of computing the focal stack.

3.3. Feature Descriptor

As with SIFT, for each feature [u, v, σ, λ] we construct a

histogram of edge orientations. The key difference with the

LiFF descriptor is that it is computed at a specific depth in

the scene corresponding to the detected slope λ. Each de-

scriptor is thus constructed from the appropriate stack slice

F (u, v, λ). The key advantage is selectivity against inter-

fering objects at different depths including partial occluders

and reflections off glossy surfaces.

3.4. Complexity

A common approach to LF feature detection is repeating

SIFT across subimages, then applying a consistency check

to reject spurious detections [20,42]. The complexity of this

approach is at least the cost of the DoG operations applied

over the subimages, i.e. Ns×Nt×N×Filt2D. Note that this

ignores the cost of consolidating observations across views,

which varies by implementation and can be substantial.

Comparing complexity, we see that for M slopes LiFF

is at least NsNt/M times faster than repeated SIFT. In a

typical scenario using Lytro Illum-captured LFs with 11 ×

11 views, and applying LiFF over M = 11 slopes, LiFF will

be about 11 times faster than repeated SIFT. For larger LFs,

e.g. Stanford gantry-collected LFs1 with 17× 17 views, the

1http://lightfields.stanford.edu

speed increase is larger, 26 times, assuming the same slope

count. When accounting for time required to consolidate

features across views in repeated SIFT, the speed gain is

even larger.

3.5. Parameters

LiFF has the same parameters as SIFT: a list of scales

at which to compute the DoG, a peak detection threshold,

and an edge rejection threshold. The descriptor parameters

are also the same, including the area over which to collect

edge histograms, numbers of bins, and so on. The only ad-

ditional parameter for LiFF is a list of slopes over which to

compute the focal stack. A good rule of thumb for lenslet-

based cameras is to consider slopes between -1 and 1, with

as many slopes as there are samples in Ns or Nt. Larger

slope counts increase compute time without improving per-

formance, while smaller slope counts can miss features at

specific depths in the scene.

4. Evaluation

LiFF Implementation Our implementation of LiFF is in

C, compiled into MEX files that we call from MATLAB.

For testing purposes, we load light fields and convert to

grayscale in MATLAB, but the feature detection and extrac-

tion process is entirely in C. Our focal stack implementa-

tion uses the shift-and-sum method with nearest-neighbour

interpolation, and includes a normalization step which pre-

vents darkening near the edges of the LF.

Repeated SIFT Implementation To compare LiFF with

repeated SIFT, we called the VLFeat C implementation of

SIFT v0.9.21, and in MATLAB implemented a consolida-

tion process that enforces consistency between subimages.

A variety of approaches have been suggested [20,26,42,53].

Our goal for SfM testing is not speed, but approaching the

upper bound of performance. We therefore employ an ex-

haustive search starting at each detected 2D feature across

all subimages. For each feature we identify matching de-

tections in all other subimages based on a set of criteria in-

cluding scale, orientation, feature descriptor, and maximum

deviation from a best-fit plane. When evaluating speed we

omit the time taken for this consolidation process.

A key parameter of any repeated 2D detector is the num-

ber of subimages in which a feature must be identified be-

fore being considered a detection. In the following we test

across different thresholds, and identify the method accord-

ingly, e.g. repeated SIFT 0.5 requires that at least half of the

subimages contain a detected feature.

Our repeated SIFT implementation is not very compu-

tationally efficient. However we believe its performance is

revealing of a broad class of repeated and consolidated 2D

features.
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Figure 2. A set of disks at varying scales and depths, presented at two noise levels σ. At the lower noise level (top row), all methods oper-

ate reasonably well; while SIFT shows some spurious detections, repeated SIFT is able to reject these by imposing consistency between

views; In higher noise (bottom row) LiFF’s performance is ideal including reasonable slope estimates, but SIFT misses some features and

has spurious detections; repeated SIFT with threshold 0.25 rejects the spurious features but cannot locate those missed in the individual

views; and repeated SIFT with a lower threshold admits more spurious detections while still missing some true positives.

4.1. Speed

We compared the speed of our LiFF implementation with

the SIFT implementation in VLFeat. All tests were run on

an Intel i7-8700 at 3.20 GHz. The test included both feature

detection and descriptor extraction, and was run on scenes

with similar feature counts for SIFT and LiFF. On Illum-

captured LFs with 11× 11× 541× 376 samples, we found

LiFF took on average 2.88 sec, while repeating SIFT across

subimages took on average 53.1 sec, excluding time to con-

solidate observations, which was considerable.

Overall the speed increase moving from repeated SIFT to

LiFF with our implementation is measured as 18×, which

agrees well with the anticipated speed gain. Further speed

improvements should be possible: as with SIFT, LiFF is

amenable to optimization via parallelization, implementa-

tion on GPU, etc.

4.2. Noise Performance

Repeated SIFT is fundamentally constrained by the per-

formance of the 2D method it builds on. To demonstrate this

we synthesized a set of scenes with known good feature lo-

cations, and introduced varying levels of noise to observe

feature performance.

In one set of experiments, depicted in Fig. 2, the input

consists of 26 disks at varying scales and at depths corre-

sponding to slopes between -1 and 1. The LF has dimen-

sions 9 × 9 × 256 × 256 and a signal contrast of 0.1. We

introduced moderate noise with variance 10−3 (top), and

strong noise with variance 10−1 (bottom).

We ran SIFT operating on the central subimage of the

LF, repeated SIFT with minimum subimage agreements of

0.25 and 0.12, and LiFF. The common parameters of peak

threshold, edge detection threshold, and scale range were

identical for all methods. LiFF was operated over 9 slopes

between -1 and 1.

As seen in Fig. 2, LiFF successfully detects all 26 disks

in both moderate and high noise, as well as providing slope

estimates even in high noise. SIFT suffers from spurious

(a) (b)

(c) (d)

Figure 3. Noise performance: (a,b) Sweeping noise level σ for

fixed detection thresholds, LiFF has the best true positive (TP)

rate for noisy imagery, though like SIFT suffers from a high

false positive (FP) count; (c) Sweeping detection threshold, the

methods show similar performance in moderate noise, while

(d) LiFF delivers a much higher TP rate and zero FP rate in high

noise for appropriately set threshold. Overall, LiFF matches or

outperforms both SIFT and repeated SIFT.
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Method % pass Keypts /

Img

Putative

Matches /

Img

Inlier

Matches /

Img

Match

Ratio

Precision Matching

Score

3D Points Track

Len

COLMAP Defaults

LiFF 64.19 2684 282 274 0.14 0.96 0.13 382 3.38

SIFT 57.83 2669 243 235 0.10 0.95 0.10 337 3.31

COLMAP Permissive

LiFF 97.53 2689 213 206 0.11 0.93 0.11 472 2.46

SIFT 97.88 2688 175 167 0.077 0.92 0.073 396 2.40

Defaults Intersect

LiFF 54.65 2674 304 297 0.15 0.96 0.14 418 3.44

SIFT 54.65 2689 248 240 0.10 0.95 0.10 348 3.33

Permissive Intersect

LiFF 96.23 2687 212 205 0.11 0.93 0.11 473 2.46

SIFT 96.23 2684 172 165 0.076 0.92 0.073 397 2.40

Table 1. Structure-from-motion: With COLMAP’s default values, LiFF outperforms SIFT in all measures, including successful reconstruc-

tion of significantly more scenes; with more permissive settings, COLMAP reconstructs nearly all scenes, succeeding on slightly more

scenes using SIFT, but with LiFF outperforming SIFT in all other measures including 3D points per model. Taking only those scenes that

passed with both feature detectors (“Intersect”) allows a direct comparison of performance, with LiFF outperforming SIFT in all cases.

detections in moderate noise, and both missed and spurious

detections in high noise. Repeated SIFT successfully rejects

spurious detections in low noise, but either misses detec-

tions or both misses detections and admits spurious features

in high noise, depending on its threshold.

To better expose the behaviours of these methods we ran

a set of experiments on the same scene with varying noise

levels and peak detection thresholds, measuring true pos-

itive (TP) rate over the 26 disks, and false positive (FP)

count. Each experiment was repeated 25 times, with the

mean results shown in Fig. 3. The top row depicts two de-

tection thresholds (highlighted as vertical bars on the bot-

tom row), with noise variances σ swept between 10−7 and

101. The TP rate shows that LiFF correctly detects features

in more than an order of magnitude higher noise than the

other methods. At high noise levels LiFF and SIFT both

suffer from high FP counts, though this is somewhat ame-

liorated for LiFF by setting a higher peak detection thresh-

old.

The bottom row of Fig. 3 depicts two noise levels,

σ = 10−3 and 10−1 (highlighted as vertical bars in the top

row), for varying peak detection thresholds. In moderate

noise (left) all methods perform similarly across a range of

threshold values. In high noise (right), only LiFF delivers

a good TP rate, and a nil FP count for a sufficiently large

detection threshold.

From these experiments we conclude that LiFF offers

enhanced performance in noisy conditions compared with

SIFT and repeated SIFT. We expect this increased perfor-

mance applies to LFs collected in low light, and also to

shadowed and low-contrast regions of well-lit scenes. It

also applies where contrast is limited by participating media

like water, dust, smoke, or fog.

4.3. Structure from Motion

Following the feature comparison approach in [36], we

employed an SfM solution to evaluate LiFF in the context

of 3D reconstruction applications. We used a Lytro Illum to

collect a large dataset of LFs with multiple views of each

scene. The dataset contains 4211 LFs covering 850 scenes

in 30 categories, with between 3 and 5 views of each scene.

Images are in indoor and outdoor campus environments,

and include examples of Lambertian and non-Lambertian

surfaces, occlusion, specularity, subsurface scattering, fine

detail, and transparency. No attempt was made to empha-

size challenging content.

Although we expect LiFF’s slope estimates could dra-

matically improve SfM, we ignore this information to al-

low a more direct comparison with SIFT. We also use

identical settings for all parameters common to SIFT and

LiFF. Based on the noise performance experiments above, a

higher peak threshold for LiFF would likely result in fewer

spurious features without loss of useful features. However,

by using identical thresholds we are better able to highlight

the behavioural differences between LiFF and SIFT, rather

than focusing exclusively on the difference in noise perfor-

mance.

We extracted the central view of each LF and converted

to grayscale. The method of grayscale conversion sig-

nificantly impacts performance [21], and we determined

that MATLAB’s luminance-based conversion followed by

gamma correction with a factor of 0.5, and finally histogram

equalization, yielded good results.

We ran LiFF and the VLFeat implementation of SIFT

using a peak threshold of 0.0066, edge threshold 10, and

DoG scales covering 4 octaves over 3 levels per octave. We

started at octave -1 because our images are relatively small,

8047



Figure 4. Comparison to SIFT: Features identified only by LiFF,

only by SIFT, and by both are shown in green, red, and blue

respectively. (top) LiFF rejects spurious features in low-contrast

areas and to some extent those distorted through refraction; (cen-

ter) LiFF rejects spurious features at occlusion boundaries – the

inset highlights a SIFT-only detection caused by leaves at dif-

ferent depths; (bottom) LiFF detects partially occluded features

missed by SIFT – note the increasing proportion of LiFF-only

features toward the back of the scene, and the LiFF-only detec-

tions highlighted in the inset. Slope estimates for the bottom

scene are shown in Fig. 5.

making smaller features important. For LiFF we employed

the centermost 11× 11 subimages, and computed the focal

stack over 11 slopes between -1 and 1.

For the feature descriptor we found that L1 root normal-

ization yields significantly improved matching compared

with the default L2 normalization build into VLFeat’s im-

plementation of SIFT. We therefore applied this same nor-

malization scheme to both SIFT and LiFF feature descrip-

tors. To confirm that our external feature detection was

working correctly, we compared COLMAP’s performance

when using our externally extracted SIFT features and when

using its internal calls to SIFT, and achieved virtually iden-

tical results.

We ran COLMAP up to and including the SfM stage,

stopping before dense multi-view stereo reconstruction. We

evaluated performance in terms of numbers of keypoints

per image, putative feature matches generated per image,

and number of putative matches classified as inliers during

SfM. Following [36], we also evaluated the putative match

ratio: the proportion of detected features that yield puta-

tive matches; precision: the proportion of putative matches

yielding inlier matches; matching score: the proportion of

features yielding inlier matches; the mean number of 3D

points in the reconstructed models; and track length: the

mean number of images over which a feature is successfully

tracked.

With its default settings, we found that COLMAP failed

to generate output for many scenes. It failed to converge

during bundle adjustment, or failed to identify a good initial

image pair. With each of our images having only 541× 376
pixels, and each scene only 3 to 5 images, COLMAP’s de-

fault settings are not well suited to our dataset. The differ-

ence in performance between LiFF and SIFT at this stage

is nevertheless informative, and is shown in the top row

of Table 1. LiFF did not detect many more features than

SIFT, but it did result in a significantly higher number of

successfully reconstructed scenes (% pass). The statistics

support the conclusion that LiFF has a higher proportion

of informative features, yielding higher absolute numbers

of putative and inlier matches, higher proportions of inlier

matches, more 3D points, and longer track lengths. Note

that we have not highlighted the higher keypoint count as

being a superior result, as having LiFF detect more features

is not necessarily a better outcome without those features

also being useful.

We relaxed COLMAP’s settings to better deal with our

dataset, reducing the mapper’s minimum inlier counts, min-

imum track length, and minimum 3D point count. In this

more permissive mode COLMAP was able to reconstruct

most of the scenes in the dataset. As seen in the second

set of results in Table. 1, in this mode SIFT allowed slightly

more scenes to be reconstructed, and detected a nearly iden-

tical number of features, but performed dramatically less

well than LiFF in all other statistics. Note in particular that

LiFF-generated models had on average 472 reconstructed

points compared with SIFT’s 396.

A shortcoming of the comparisons made above is that

they are applied over different subsets of the data: SIFT

passed a different set of scenes than LiFF. For a fair compar-

ison we computed the same statistics over only those scenes

that passed using both SIFT and LiFF features. The results,

in the bottom half of Table 1, clearly show LiFF outper-

forming SIFT in all measures.

4.4. Challenging Cases

To better expose the differences in performance between

SIFT and LiFF, we investigated those scenes for which

COLMAP had trouble converging with SIFT features, but

passed when using LiFF features. Fig. 4 depicts some infor-

mative examples. At right we show features detected only

by LiFF (green), only by SIFT (red), and by both methods

(blue). In the top row we see that this relatively well-lit in-

door scene has low contrast around the door edge yielding

many spurious SIFT-only detections. Note also that the tex-
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Figure 5. 3D Scene Shape: In this work we establish LiFF’s

ability to deliver more informative features by virtue of higher

selectivity and ability to image through partial occlusion. We

expect LiFF’s slope estimates will also be of substantial interest.

Here we see the 3D shape of each scene revealed through the

slopes of the detected LiFF features.

ture refracted through the water bottle triggers some SIFT-

only detections. The inconsistent apparent motion of re-

fracted features make them undesirable for SfM, and the

lack of a well-defined depth prevents LiFF from detecting

these as features.

The center row in Fig. 4 shows a scene with many spu-

rious SIFT detections near edges, but also at occlusion

boundaries. SIFT cannot distinguish between well-defined

shapes and those formed by the chance alignment of occlud-

ing objects. LIFF on the other hand rejects shapes formed

by occluding objects at different depths, as these do not have

a well-defined depth. A typical spurious occlusion feature

detected only by SIFT is highlighted in the inset.

The bottom row in Fig. 4 shows a scene for which LiFF

delivers more features than SIFT. Notice the increasing pro-

portion of LiFF-only features towards the back of the scene,

where most of the features are partially occluded by fore-

ground elements. In the inset we see an example of two

water droplets just visible through foreground occlusions,

detected only by LiFF. In more extreme cases, features may

be entirely blocked in some subimages but still visible to

LiFF. Note that the green circles in the inset are expanded

to aid clarity. This scene is repeated in Fig. 5, which pro-

vides visual confirmation that 3D structure is being reflected

in the LiFF slope estimates.

5. Conclusion

We presented LiFF, a feature detector and descriptor for

LFs that directly extends SIFT to operate on the entire LF.

The proposed detector is faster than the common practice of

repeating SIFT across multiple views, and produces more

correct detections and fewer spurious detections in chal-

lenging conditions. We demonstrate an 18× speed increase

on Lytro Illum-captured imagery compared with repeated

SIFT, and anticipate further optimization is possible via par-

allelization and implementation on GPU.

In SfM tests, we showed LiFF to outperform SIFT in

terms of absolute numbers of putative and inlier matches,

proportions of inlier matches, numbers of images through

which features are tracked, and the numbers of 3D points in

the reconstructed models. Our test dataset was not manipu-

lated to emphasize challenging scenes, these results are for

typical indoor and outdoor environments. We expect that

in more challenging conditions LiFF can even more dra-

matically improve the performance of 3D reconstruction,

and expand the range of applications in which feature-based

techniques can be applied.

As future work we expect that adaptive selection of focal

stack slopes could further improve the speed of LiFF. An in-

teresting benefit of the focal stack is that it can be trivially

extended to perform linear super-resolution [19], allowing

finer features to be detected, though at the cost of increased

processing time. An exploration of the application of LiFF

to directly captured focal stacks might also prove interest-

ing.

Recent work has shown that computing histograms over

multiple scales offers improved SIFT detector performance,

and this can also be applied to LiFF features [11, 36]. We

also anticipate the slope information that LiFF recovers to

be of interest. For a calibrated LF camera, slope yields an

absolute 3D position and absolute scale for each feature.

This absolute scale can be employed as a discriminator in

a scale-sensitive approach to feature matching. Finally, the

3D information retrieved by LiFF may be of significant util-

ity in directly informing 3D reconstruction.
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