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Abstract

One of the main challenges in feature learning using

Deep Convolutional Neural Networks (DCNNs) for large-

scale face recognition is the design of appropriate loss

functions that can enhance the discriminative power. Cen-

tre loss penalises the distance between deep features and

their corresponding class centres in the Euclidean space

to achieve intra-class compactness. SphereFace assumes

that the linear transformation matrix in the last fully con-

nected layer can be used as a representation of the class

centres in the angular space and therefore penalises the an-

gles between deep features and their corresponding weights

in a multiplicative way. Recently, a popular line of research

is to incorporate margins in well-established loss functions

in order to maximise face class separability. In this paper,

we propose an Additive Angular Margin Loss (ArcFace) to

obtain highly discriminative features for face recognition.

The proposed ArcFace has a clear geometric interpreta-

tion due to its exact correspondence to geodesic distance

on a hypersphere. We present arguably the most extensive

experimental evaluation against all recent state-of-the-art

face recognition methods on ten face recognition bench-

marks which includes a new large-scale image database

with trillions of pairs and a large-scale video dataset. We

show that ArcFace consistently outperforms the state of the

art and can be easily implemented with negligible com-

putational overhead. To facilitate future research, code

has been made available at: https://github.com/

deepinsight/insightface

1. Introduction

Face representation using Deep Convolutional Neural

Network (DCNN) embedding is the method of choice for

face recognition [30, 31, 27, 22]. DCNNs map the face im-

age, typically after a pose normalisation step [42], into a

* Equal contributions.

InsightFace is a nonprofit Github project for 2D and 3D face analysis.

Figure 1. Based on the centre [15] and feature [35] normalisation,

all identities are distributed on a hypersphere. To enhance intra-

class compactness and inter-class discrepancy, we consider four

kinds of Geodesic Distance (GDis) constraint. (A) Margin-Loss:

insert a geodesic distance margin between the sample and cen-

tres. (B) Intra-Loss: decrease the geodesic distance between the

sample and the corresponding centre. (C) Inter-Loss: increase the

geodesic distance between different centres. (D) Triplet-Loss: in-

sert a geodesic distance margin between triplet samples. In this

paper, we propose an Additive Angular Margin Loss (ArcFace),

which is exactly corresponded to the geodesic distance (Arc) mar-

gin penalty in (A), to enhance the discriminative power of face

recognition model. Extensive experimental results show that the

strategy of (A) is most effective.

feature that should have small intra-class and large inter-

class distance.

There are two main lines of research to train DCNNs for

face recognition. Some train a multi-class classifier which

can separate different identities in the training set, such by

using a softmax classifier [31, 22, 3], and the others learn

directly an embedding, such as the triplet loss [27]. Based

on the large-scale training data and the elaborate DCNN ar-

chitectures, both the softmax-loss-based methods [3] and

the triplet-loss-based methods [27] can obtain excellent per-

formance on face recognition. However, both the softmax

loss and the triplet loss have some drawbacks. For the soft-

max loss: (1) the size of the linear transformation matrix

W ∈ R
d×n increases linearly with the identities number

n; (2) the learned features are separable for the closed-set

classification problem but not discriminative enough for the

open-set face recognition problem. For the triplet loss: (1)
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there is a combinatorial explosion in the number of face

triplets especially for large-scale datasets, leading to a sig-

nificant increase in the number of iteration steps; (2) semi-

hard sample mining is a quite difficult problem for effective

model training.

Several variants [36, 6, 43, 15, 35, 33, 4, 32, 25] have

been proposed to enhance the discriminative power of the

softmax loss. Wen et al. [36] pioneered the centre loss, the

Euclidean distance between each feature vector and its class

centre, to obtain intra-class compactness while the inter-

class dispersion is guaranteed by the joint penalisation of

the softmax loss. Nevertheless, updating the actual centres

during training is extremely difficult as the number of face

classes available for training has recently dramatically in-

creased.

By observing that the weights from the last fully con-

nected layer of a classification DCNN trained on the soft-

max loss bear conceptual similarities with the centres of

each face class, the works in [15, 16] proposed a multiplica-

tive angular margin penalty to enforce extra intra-class com-

pactness and inter-class discrepancy simultaneously, lead-

ing to a better discriminative power of the trained model.

Even though Sphereface [15] introduced the important idea

of angular margin, their loss function required a series of ap-

proximations in order to be computed, which resulted in an

unstable training of the network. In order to stabilise train-

ing, they proposed a hybrid loss function which includes the

standard softmax loss. Empirically, the softmax loss dom-

inates the training process, because the integer-based mul-

tiplicative angular margin makes the target logit curve very

precipitous and thus hinders convergence. CosFace [35, 33]

directly adds cosine margin penalty to the target logit, which

obtains better performance compared to SphereFace but ad-

mits much easier implementation and relieves the need for

joint supervision from the softmax loss.

In this paper, we propose an Additive Angular Margin

Loss (ArcFace) to further improve the discriminative power

of the face recognition model and to stabilise the training

process. As illustrated in Figure 2, the dot product be-

tween the DCNN feature and the last fully connected layer

is equal to the cosine distance after feature and weight nor-

malisation. We utilise the arc-cosine function to calculate

the angle between the current feature and the target weight.

Afterwards, we add an additive angular margin to the tar-

get angle, and we get the target logit back again by the co-

sine function. Then, we re-scale all logits by a fixed feature

norm, and the subsequent steps are exactly the same as in

the softmax loss. The advantages of the proposed ArcFace

can be summarised as follows:

Engaging. ArcFace directly optimises the geodesic dis-

tance margin by virtue of the exact correspondence between

the angle and arc in the normalised hypersphere. We in-

tuitively illustrate what happens in the 512-D space via

analysing the angle statistics between features and weights.

Effective. ArcFace achieves state-of-the-art performance

on ten face recognition benchmarks including large-scale

image and video datasets.

Easy. ArcFace only needs several lines of code as given

in Algorithm 1 and is extremely easy to implement in the

computational-graph-based deep learning frameworks, e.g.

MxNet [5], Pytorch [23] and Tensorflow [2]. Furthermore,

contrary to the works in [15, 16], ArcFace does not need

to be combined with other loss functions in order to have

stable performance, and can easily converge on any training

datasets.

Efficient. ArcFace only adds negligible computational

complexity during training. Current GPUs can easily sup-

port millions of identities for training and the model parallel

strategy can easily support many more identities.

2. Proposed Approach

2.1. ArcFace

The most widely used classification loss function, soft-

max loss, is presented as follows:

L1 = −
1

N

N∑

i=1

log
e
WT

yi
xi+byi

∑n

j=1 e
WT

j
xi+bj

, (1)

where xi ∈ R
d denotes the deep feature of the i-th sample,

belonging to the yi-th class. The embedding feature dimen-

sion d is set to 512 in this paper following [36, 43, 15, 35].

Wj ∈ R
d denotes the j-th column of the weight W ∈ R

d×n

and bj ∈ R
n is the bias term. The batch size and the class

number are N and n, respectively. Traditional softmax loss

is widely used in deep face recognition [22, 3]. However,

the softmax loss function does not explicitly optimise the

feature embedding to enforce higher similarity for intra-

class samples and diversity for inter-class samples, which

results in a performance gap for deep face recognition under

large intra-class appearance variations (e.g. pose variations

[28, 44] and age gaps [19, 45]) and large-scale test scenarios

(e.g. million [12, 37, 18] or trillion pairs [1]).

For simplicity, we fix the bias bj = 0 as in [15]. Then,

we transform the logit [24] as WT
j xi = ‖Wj‖ ‖xi‖ cos θj ,

where θj is the angle between the weight Wj and the fea-

ture xi. Following [15, 35, 34], we fix the individual weight

‖Wj‖ = 1 by l2 normalisation. Following [26, 35, 34, 33],

we also fix the embedding feature ‖xi‖ by l2 normalisation

and re-scale it to s. The normalisation step on features and

weights makes the predictions only depend on the angle be-

tween the feature and the weight. The learned embedding

features are thus distributed on a hypersphere with a radius

of s.

L2 = −
1

N

N∑

i=1

log
es cos θyi

es cos θyi +
∑n

j=1,j 6=yi
es cos θj

. (2)
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Figure 2. Training a DCNN for face recognition supervised by the ArcFace loss. Based on the feature xi and weight W normalisation, we

get the cos θj (logit) for each class as WT
j xi. We calculate the arccosθyi and get the angle between the feature xi and the ground truth

weight Wyi . In fact, Wj provides a kind of centre for each class. Then, we add an angular margin penalty m on the target (ground truth)

angle θyi . After that, we calculate cos(θyi + m) and multiply all logits by the feature scale s. The logits then go through the softmax

function and contribute to the cross entropy loss.

Algorithm 1 The Pseudo-code of ArcFace on MxNet

Input: Feature Scale s, Margin Parameter m in Eq. 3, Class Number n, Ground-Truth ID gt.

1. x = mx.symbol.L2Normalization (x, mode = ’instance’)

2. W = mx.symbol.L2Normalization (W, mode = ’instance’)

3. fc7 = mx.sym.FullyConnected (data = x, weight = W, no bias = True, num hidden = n)

4. original target logit = mx.sym.pick (fc7, gt, axis = 1)

5. theta = mx.sym.arccos (original target logit)

6. marginal target logit = mx.sym.cos (theta + m)

7. one hot = mx.sym.one hot (gt, depth = n, on value = 1.0, off value = 0.0)

8. fc7 = fc7 + mx.sym.broadcast mul (one hot, mx.sym.expand dims (marginal target logit - original target logit, 1))

9. fc7 = fc7 * s

Output: Class-wise affinity score fc7.

As the embedding features are distributed around each

feature centre on the hypersphere, we add an additive angu-

lar margin penalty m between xi and Wyi
to simultaneously

enhance the intra-class compactness and inter-class discrep-

ancy. Since the proposed additive angular margin penalty is

equal to the geodesic distance margin penalty in the nor-

malised hypersphere, we name our method as ArcFace.

L3 = −
1

N

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j 6=yi
es cos θj

.

(3)
We select face images from 8 different identities contain-

ing enough samples (around 1,500 images/class) to train 2-

D feature embedding networks with the softmax and Ar-

cFace loss, respectively. As illustrated in Figure 3, the

softmax loss provides roughly separable feature embedding

but produces noticeable ambiguity in decision boundaries,

while the proposed ArcFace loss can obviously enforce a

more evident gap between the nearest classes.

2.2. Comparison with SphereFace and CosFace

Numerical Similarity. In SphereFace [15, 16], ArcFace,

and CosFace [35, 33], three different kinds of margin

penalty are proposed, e.g. multiplicative angular margin

m1, additive angular margin m2, and additive cosine mar-

(a) Softmax (b) ArcFace

Figure 3. Toy examples under the softmax and ArcFace loss on

8 identities with 2D features. Dots indicate samples and lines re-

fer to the centre direction of each identity. Based on the feature

normalisation, all face features are pushed to the arc space with

a fixed radius. The geodesic distance gap between closest classes

becomes evident as the additive angular margin penalty is incor-

porated.

gin m3, respectively. From the view of numerical analysis,

different margin penalties, no matter add on the angle [15]

or cosine space [35], all enforce the intra-class compactness

and inter-class diversity by penalising the target logit [24].

In Figure 4(b), we plot the target logit curves of SphereFace,

ArcFace and CosFace under their best margin settings. We

only show these target logit curves within [20◦, 100◦] be-

cause the angles between Wyi
and xi start from around 90◦

(random initialisation) and end at around 30◦ during Arc-

Face training as shown in Figure 4(a). Intuitively, there are

three factors in the target logit curves that affect the perfor-
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mance, i.e. the starting point, the end point and the slope.

(a) θj Distributions (b) Target Logits Curves

Figure 4. Target logit analysis. (a) θj distributions from start to

end during ArcFace training. (2) Target logit curves for softmax,

SphereFace, ArcFace, CosFace and combined margin penalty

(cos(m1θ +m2)−m3).

By combining all of the margin penalties, we implement

SphereFace, ArcFace and CosFace in an united framework

with m1, m2 and m3 as the hyper-parameters.

L4 = −
1

N

N∑

i=1

log
e
s(cos(m1θyi+m2)−m3)

e
s(cos(m1θyi+m2)−m3) +

∑n

j=1,j 6=yi
es cos θj

.

(4)
As shown in Figure 4(b), by combining all of the above-

motioned margins (cos(m1θ + m2) − m3), we can easily

get some other target logit curves which also have high per-

formance.

Geometric Difference. Despite the numerical similarity

between ArcFace and previous works, the proposed ad-

ditive angular margin has a better geometric attribute as

the angular margin has the exact correspondence to the

geodesic distance. As illustrated in Figure 5, we compare

the decision boundaries under the binary classification case.

The proposed ArcFace has a constant linear angular margin

throughout the whole interval. By contrast, SphereFace and

CosFace only have a nonlinear angular margin.

Figure 5. Decision margins of different loss functions under bi-

nary classification case. The dashed line represents the decision

boundary, and the grey areas are the decision margins.

The minor difference in margin designs can have “butter-

fly effect” on the model training. For example, the original

SphereFace [15] employs an annealing optimisation strat-

egy. To avoid divergence at the beginning of training, joint

supervision from softmax is used in SphereFace to weaken

the multiplicative margin penalty. We implement a new ver-

sion of SphereFace without the integer requirement on the

margin by employing the arc-cosine function instead of us-

ing the complex double angle formula. In our implementa-

tion, we find that m = 1.35 can obtain similar performance

compared to the original SphereFace without any conver-

gence difficulty.

2.3. Comparison with Other Losses

Other loss functions can be designed based on the angu-

lar representation of features and weight-vectors. For exam-

ples, we can design a loss to enforce intra-class compact-

ness and inter-class discrepancy on the hypersphere. As

shown in Figure 1, we compare with three other losses in

this paper.

Intra-Loss is designed to improve the intra-class compact-

ness by decreasing the angle/arc between the sample and

the ground truth centre.

L5 = L2 +
1

πN

N∑

i=1

θyi
. (5)

Inter-Loss targets at enhancing inter-class discrepancy by

increasing the angle/arc between different centres.

L6 = L2−
1

πN (n− 1)

N∑

i=1

n∑

j=1,j 6=yi

arccos(WT
yi
Wj). (6)

The Inter-Loss here is a special case of the Minimum

Hyper-spherical Energy (MHE) method [14]. In [14], both

hidden layers and output layers are regularised by MHE. In

the MHE paper, a special case of loss function was also pro-

posed by combining the SphereFace loss with MHE loss on

the last layer of the network.

Triplet-loss aims at enlarging the angle/arc margin between

triplet samples. In FaceNet [27], Euclidean margin is ap-

plied on the normalised features. Here, we employ the

triplet-loss by the angular representation of our features as

arccos(xpos
i xi) +m ≤ arccos(xneg

i xi).

3. Experiments

3.1. Implementation Details

Datasets. As given in Table 1, we separately employ CA-

SIA [41], VGGFace2 [3], MS1MV2 and DeepGlint-Face

(including MS1M-DeepGlint and Asian-DeepGlint) [1] as

our training data in order to conduct fair comparison with

other methods. Please note that the proposed MS1MV2

is a semi-automatic refined version of the MS-Celeb-1M

dataset [7]. To best of our knowledge, we are the first to em-

ploy ethnicity-specific annotators for large-scale face image

annotations, as the boundary cases (e.g. hard samples and

noisy samples) are very hard to distinguish if the annotator

is not familiar with the identity. During training, we explore

efficient face verification datasets (e.g. LFW [10], CFP-FP

[28], AgeDB-30 [19]) to check the improvement from dif-

ferent settings. Besides the most widely used LFW [10] and

YTF [38] datasets, we also report the performance of Ar-

cFace on the recent large-pose and large-age datasets(e.g.
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Datasets #Identity #Image/Video

CASIA [41] 10K 0.5M

VGGFace2 [3] 9.1K 3.3M

MS1MV2 85K 5.8M

MS1M-DeepGlint [1] 87K 3.9M

Asian-DeepGlint [1] 94 K 2.83M

LFW [10] 5,749 13,233

CFP-FP [28] 500 7,000

AgeDB-30 [19] 568 16,488

CPLFW [44] 5,749 11,652

CALFW [45] 5,749 12,174

YTF [38] 1,595 3,425

MegaFace [12] 530 (P) 1M (G)

IJB-B [37] 1,845 76.8K

IJB-C [18] 3,531 148.8K

Trillion-Pairs [1] 5,749 (P) 1.58M (G)

iQIYI-VID [17] 4,934 172,835

Table 1. Face datasets for training and testing. “(P)” and “(G)”

refer to the probe and gallery set, respectively.

CPLFW [44] and CALFW [45]). We also extensively test

the proposed ArcFace on large-scale image datasets (e.g.

MegaFace [12], IJB-B [37], IJB-C [18] and Trillion-Pairs

[1]) and video datasets (iQIYI-VID [17]).

Experimental Settings. For data prepossessing, we follow

the recent papers [15, 35] to generate the normalised face

crops (112 × 112) by utilising five facial points. For the

embedding network, we employ the widely used CNN ar-

chitectures, ResNet50 and ResNet100 [9, 8]. After the last

convolutional layer, we explore the BN [11]-Dropout [29]-

FC-BN structure to get the final 512-D embedding feature.

In this paper, we use ([training dataset, network structure,

loss]) to facilitate understanding of the experimental set-

tings.

We follow [35] to set the feature scale s to 64 and choose

the angular margin m of ArcFace at 0.5. All experiments in

this paper are implemented by MXNet [5]. We set the batch

size to 512 and train models on four NVIDIA Tesla P40

(24GB) GPUs. On CASIA, the learning rate starts from 0.1
and is divided by 10 at 20K, 28K iterations. The training

process is finished at 32K iterations. On MS1MV2, we di-

vide the learning rate at 100K,160K iterations and finish at

180K iterations. We set momentum to 0.9 and weight decay

to 5e− 4. During testing, we only keep the feature embed-

ding network without the fully connected layer (160MB for

ResNet50 and 250MB for ResNet100) and extract the 512-

D features (8.9 ms/face for ResNet50 and 15.4 ms/face for

ResNet100) for each normalised face. To get the embed-

ding features for templates (e.g. IJB-B and IJB-C) or videos

(e.g. YTF and iQIYI-VID), we simply calculate the feature

centre of all images from the template or all frames from

the video. Note that, overlap identities between the training

set and the test set are removed for strict evaluations, and

we only use a single crop for all testing.

3.2. Ablation Study on Losses

In Table 2, we first explore the angular margin setting

for ArcFace on the CASIA dataset with ResNet50. The best

margin observed in our experiments was 0.5. Using the pro-

posed combined margin framework in Eq. 4, it is easier to

set the margin of SphereFace and CosFace which we found

to have optimal performance when setting at 1.35 and 0.35,

respectively. Our implementations for both SphereFace and

CosFace can lead to excellent performance without observ-

ing any difficulty in convergence. The proposed ArcFace

achieves the highest verification accuracy on all three test

sets. In addition, we performed extensive experiments with

the combined margin framework (some of the best perfor-

mance was observed for CM1 (1, 0.3, 0.2) and CM2 (0.9,

0.4, 0.15)) guided by the target logit curves in Figure 4(b).

The combined margin framework led to better performance

than individual SphereFace and CosFace but upper-bounded

by the performance of ArcFace.

Besides the comparison with margin-based methods, we

conduct a further comparison between ArcFace and other

losses which aim at enforcing intra-class compactness (Eq.

5) and inter-class discrepancy (Eq. 6). As the baseline

we have chosen the softmax loss and we have observed

performance drop on CFP-FP and AgeDB-30 after weight

and feature normalisation. By combining the softmax with

the intra-class loss, the performance improves on CFP-FP

and AgeDB-30. However, combining the softmax with the

inter-class loss only slightly improves the accuracy. The

fact that Triplet-loss outperforms Norm-Softmax loss in-

dicates the importance of margin in improving the perfor-

mance. However, employing margin penalty within triplet

samples is less effective than inserting margin between sam-

ples and centres as in ArcFace. Finally, we incorporate the

Intra-loss, Inter-loss and Triplet-loss into ArcFace, but no

improvement is observed, which leads us to believe that Ar-

cFace is already enforcing intra-class compactness, inter-

class discrepancy and classification margin.

To get a better understanding of ArcFace’s superiority,

we give the detailed angle statistics on training data (CA-

SIA) and test data (LFW) under different losses in Table

3. We find that (1) Wj is nearly synchronised with em-

bedding feature centre for ArcFace (14.29◦), but there is

an obvious deviation (44.26◦) between Wj and the em-

bedding feature centre for Norm-Softmax. Therefore, the

angles between Wj cannot absolutely represent the inter-

class discrepancy on training data. Alternatively, the em-

bedding feature centres calculated by the trained network

are more representative. (2) Intra-Loss can effectively com-

press intra-class variations but also brings in smaller inter-

class angles. (3) Inter-Loss can slightly increase inter-class

discrepancy on both W (directly) and the embedding net-

work (indirectly), but also raises intra-class angles. (4) Ar-

cFace already has very good intra-class compactness and
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Loss Functions LFW CFP-FP AgeDB-30

ArcFace (0.4) 99.53 95.41 94.98

ArcFace (0.45) 99.46 95.47 94.93

ArcFace (0.5) 99.53 95.56 95.15

ArcFace (0.55) 99.41 95.32 95.05

SphereFace [15] 99.42 - -

SphereFace (1.35) 99.11 94.38 91.70

CosFace [35] 99.33 - -

CosFace (0.35) 99.51 95.44 94.56

CM1 (1, 0.3, 0.2) 99.48 95.12 94.38

CM2 (0.9, 0.4, 0.15) 99.50 95.24 94.86

Softmax 99.08 94.39 92.33

Norm-Softmax (NS) 98.56 89.79 88.72

NS+Intra 98.75 93.81 90.92

NS+Inter 98.68 90.67 89.50

NS+Intra+Inter 98.73 94.00 91.41

Triplet (0.35) 98.98 91.90 89.98

ArcFace+Intra 99.45 95.37 94.73

ArcFace+Inter 99.43 95.25 94.55

ArcFace+Intra+Inter 99.43 95.42 95.10

ArcFace+Triplet 99.50 95.51 94.40

Table 2. Verification results (%) of different loss functions ([CA-

SIA, ResNet50, loss*]).

NS ArcFace IntraL InterL TripletL

W-EC 44.26 14.29 8.83 46.85 -

W-Inter 69.66 71.61 31.34 75.66 -

Intra1 50.50 38.45 17.50 52.74 41.19

Inter1 59.23 65.83 24.07 62.40 50.23

Intra2 33.97 28.05 12.94 35.38 27.42

Inter2 65.60 66.55 26.28 67.90 55.94

Table 3. The angle statistics under different losses ([CASIA,

ResNet50, loss*]). Each column denotes one particular loss. “W-

EC” refers to the mean of angles between Wj and the correspond-

ing embedding feature centre. “W-Inter” refers to the mean of

minimum angles between Wj’s. “Intra1” and “Intra2” refer to the

mean of angles between xi and the embedding feature centre on

CASIA and LFW, respectively. “Inter1” and “Inter2” refer to the

mean of minimum angles between embedding feature centres on

CASIA and LFW, respectively.

inter-class discrepancy. (5) Triplet-Loss has similar intra-

class compactness but inferior inter-class discrepancy com-

pared to ArcFace. In addition, ArcFace has a more distinct

margin than Triplet-Loss on the test set as illustrated in Fig-

ure 6.

3.3. Evaluation Results

Results on LFW, YTF, CALFW and CPLFW. LFW [10]

and YTF [38] datasets are the most widely used benchmark

for unconstrained face verification on images and videos. In

this paper, we follow the unrestricted with labelled outside

data protocol to report the performance. As reported in Ta-

ble 4, ArcFace trained on MS1MV2 with ResNet100 beats

the baselines (e.g. SphereFace [15] and CosFace [35]) by

a significant margin on both LFW and YTF, which shows

(a) ArcFace (b) Triplet-Loss

Figure 6. Angle distributions of all positive pairs and random neg-

ative pairs (∼ 0.5M) from LFW. Red area indicates positive pairs

while blue indicates negative pairs. All angles are represented in

degree. ([CASIA, ResNet50, loss*]).

Method #Image LFW YTF

DeepID [30] 0.2M 99.47 93.20

Deep Face [31] 4.4M 97.35 91.4

VGG Face [22] 2.6M 98.95 97.30

FaceNet [27] 200M 99.63 95.10

Baidu [13] 1.3M 99.13 -

Center Loss [36] 0.7M 99.28 94.9

Range Loss [43] 5M 99.52 93.70

Marginal Loss [6] 3.8M 99.48 95.98

SphereFace [15] 0.5M 99.42 95.0

SphereFace+ [14] 0.5M 99.47 -

CosFace [35] 5M 99.73 97.6

MS1MV2, R100, ArcFace 5.8M 99.83 98.02

Table 4. Verification performance (%) of different methods on

LFW and YTF.

that the additive angular margin penalty can notably en-

hance the discriminative power of deeply learned features,

demonstrating the effectiveness of ArcFace.

Besides on LFW and YTF datasets, we also report the

performance of ArcFace on the recently introduced datasets

(e.g. CPLFW [44] and CALFW [45]) which show higher

pose and age variations with same identities from LFW.

Among all of the open-sourced face recognition models, the

ArcFace model is evaluated as the top-ranked face recog-

nition model as shown in Table 5, outperforming coun-

terparts by an obvious margin. In Figure 7, we illustrate

the angle distributions (predicted by ArcFace model trained

on MS1MV2 with ResNet100) of both positive and nega-

tive pairs on LFW, CFP-FP, AgeDB-30, YTF, CPLFW and

CALFW. We can clearly find that the intra-variance due

to pose and age gaps significantly increases the angles be-

tween positive pairs thus making the best threshold for face

verification increasing and generating more confusion re-

gions on the histogram.

Results on MegaFace. The MegaFace dataset [12] includes

1M images of 690K different individuals as the gallery set

and 100K photos of 530 unique individuals from FaceScrub

[21] as the probe set. On MegaFace, there are two testing

scenarios (identification and verification) under two proto-

cols (large or small training set). The training set is defined

as large if it contains more than 0.5M images. For the fair
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Method LFW CALFW CPLFW

HUMAN-Individual 97.27 82.32 81.21

HUMAN-Fusion 99.85 86.50 85.24

Center Loss [36] 98.75 85.48 77.48

SphereFace [15] 99.27 90.30 81.40

VGGFace2 [3] 99.43 90.57 84.00

MS1MV2, R100, ArcFace 99.82 95.45 92.08

Table 5. Verification performance (%) of open-sourced face recog-

nition models on LFW, CALFW and CPLFW.

(a) LFW (99.83%) (b) CFP-FP (98.37%) (c) AgeDB (98.15%)

(d) YTF (98.02%) (e) CPLFW (92.08%) (f) CALFW (95.45%)

Figure 7. Angle distributions of both positive and negative pairs on

LFW, CFP-FP, AgeDB-30, YTF, CPLFW and CALFW. Red area

indicates positive pairs while blue indicates negative pairs. All an-

gles are represented in degree. ([MS1MV2, ResNet100, ArcFace])

comparison, we train ArcFace on CAISA and MS1MV2

under the small protocol and large protocol, respectively.

In Table 6, ArcFace trained on CASIA achieves the best

single-model identification and verification performance,

not only surpassing the strong baselines (e.g. SphereFace

[15] and CosFace [35]) but also outperforming other pub-

lished methods [36, 14].

As we observed an obvious performance gap between

identification and verification, we performed a thorough

manual check in the whole MegaFace dataset and found

many face images with wrong labels, which significantly

affects the performance. Therefore, we manually refined

the whole MegaFace dataset and report the correct perfor-

mance of ArcFace on MegaFace. On the refined MegaFace,

ArcFace still clearly outperforms CosFace and achieves the

best performance on both verification and identification.

Under large protocol, ArcFace surpasses FaceNet [27]

by a clear margin and obtains comparable results on iden-

tification and better results on verification compared to

CosFace [35]. Since CosFace employs a private training

data, we retrain CosFace on our MS1MV2 dataset with

ResNet100. Under fair comparison, ArcFace shows supe-

riority over CosFace and forms an upper envelope of Cos-

Face under both identification and verification scenarios as

shown in Figure 8.

Results on IJB-B and IJB-C. The IJB-B dataset [37]

Methods Id (%) Ver (%)

Softmax [15] 54.85 65.92

Contrastive Loss[15, 30] 65.21 78.86

Triplet [15, 27] 64.79 78.32

Center Loss[36] 65.49 80.14

SphereFace [15] 72.729 85.561

CosFace [35] 77.11 89.88

AM-Softmax [33] 72.47 84.44

SphereFace+ [14] 73.03 -

CASIA, R50, ArcFace 77.50 92.34

CASIA, R50, ArcFace, R 91.75 93.69

FaceNet [27] 70.49 86.47

CosFace [35] 82.72 96.65

MS1MV2, R100, ArcFace 81.03 96.98

MS1MV2, R100, CosFace 80.56 96.56

MS1MV2, R100, ArcFace, R 98.35 98.48

MS1MV2, R100, CosFace, R 97.91 97.91

Table 6. Face identification and verification evaluation of different

methods on MegaFace Challenge1 using FaceScrub as the probe

set. “Id” refers to the rank-1 face identification accuracy with 1M

distractors, and “Ver” refers to the face verification TAR at 10−6

FAR. “R” refers to data refinement on both probe set and 1M dis-

tractors. ArcFace obtains state-of-the-art performance under both

small and large protocols.

(a) CMC (b) ROC

Figure 8. CMC and ROC curves of different models on MegaFace.

Results are evaluated on both original and refined MegaFace

dataset.

contains 1, 845 subjects with 21.8K still images and 55K

frames from 7, 011 videos. In total, there are 12, 115
templates with 10, 270 genuine matches and 8M impos-

tor matches. The IJB-C dataset [37] is a further extension

of IJB-B, having 3, 531 subjects with 31.3K still images

and 117.5K frames from 11, 779 videos. In total, there

are 23, 124 templates with 19, 557 genuine matches and

15, 639K impostor matches.

On the IJB-B and IJB-C datasets, we employ the VGG2

dataset as the training data and the ResNet50 as the embed-

ding network to train ArcFace for the fair comparison with

the most recent methods [3, 40, 39]. In Table 7, we compare

the TAR (@FAR=1e-4) of ArcFace with the previous state-

of-the-art models [3, 40, 39]. ArcFace can obviously boost

the performance on both IJB-B and IJB-C (about 3 ∼ 5%,

which is a significant reduction in the error). Drawing sup-

port from more training data (MS1MV2) and deeper neu-

ral network (ResNet100), ArcFace can further improve the
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Method IJB-B IJB-C

ResNet50 [3] 0.784 0.825

SENet50 [3] 0.800 0.840

ResNet50+SENet50 [3] 0.800 0.841

MN-v [40] 0.818 0.852

MN-vc [40] 0.831 0.862

ResNet50+DCN(Kpts) [39] 0.850 0.867

ResNet50+DCN(Divs) [39] 0.841 0.880

SENet50+DCN(Kpts) [39] 0.846 0.874

SENet50+DCN(Divs) [39] 0.849 0.885

VGG2, R50, ArcFace 0.898 0.921

MS1MV2, R100, ArcFace 0.942 0.956

Table 7. 1:1 verification TAR (@FAR=1e-4) on the IJB-B and IJB-

C dataset.

TAR (@FAR=1e-4) to 94.2% and 95.6% on IJB-B and IJB-

C, respectively. In Figure 9, we show the full ROC curves

of the proposed ArcFace on IJB-B and IJB-C , and ArcFace

achieves impressive performance even at FAR=1e-6 setting

a new baseline.

(a) ROC for IJB-B (b) ROC for IJB-C

Figure 9. ROC curves of 1:1 verification protocol on the IJB-B and

IJB-C dataset.

Results on Trillion-Pairs. The Trillion-Pairs dataset [1]

provides 1.58M images from Flickr as the gallery set and

274K images from 5.7k LFW [10] identities as the probe

set. Every pair between gallery and probe set is used

for evaluation (0.4 trillion pairs in total). In Table 8,

we compare the performance of ArcFace trained on dif-

ferent datasets. The proposed MS1MV2 dataset obvi-

ously boosts the performance compared to CASIA and even

slightly outperforms the DeepGlint-Face dataset, which has

a double identity number. When combining all identities

from MS1MV2 and Asian celebrities from DeepGlint, Arc-

Face achieves the best identification performance 84.840%
(@FPR=1e-3) and comparable verification performance

compared to the most recent submission (CIGIT IRSEC)

from the lead-board.

Results on iQIYI-VID. The iQIYI-VID challenge [17]

contains 565,372 video clips (training set 219,677, valida-

tion set 172,860, and test set 172,835) of 4934 identities

from iQIYI variety shows, films and television dramas. The

length of each video ranges from 1 to 30 seconds. This

dataset supplies multi-modal cues, including face, cloth,

voice, gait and subtitles, for character identification. The

https://github.com/deepinsight/insightface/tree/master/Evaluation/IJB

Method Id (@FPR=1e-3) Ver(@FPR=1e-9)

CASIA 26.643 21.452

MS1MV2 80.968 78.600

DeepGlint-Face 80.331 78.586

MS1MV2+Asian 84.840 (1st) 80.540

CIGIT IRSEC 84.234 (2nd) 81.558 (1st)

Table 8. Identification and verification results (%) on the Trillion-

Pairs dataset. ([Dataset*, ResNet100, ArcFace])

Method MAP(%)

MS1MV2+Asian, R100, ArcFace 79.80

+ MLP 86.40

+ Ensemble 88.26

+ Context 88.65 (1st)

Other Participant 87.66 (2nd)

Table 9. MAP of our method on the iQIYI-VID test set. “MLP”

refers to a three-layer fully connected network trained on the

iQIYI-VID training data.

iQIYI-VID dataset employs MAP@100 as the evaluation

indicator. MAP (Mean Average Precision) refers to the

overall average accuracy rate, which is the mean of the av-

erage accuracy rate of the corresponding videos of person

ID retrieved in the test set for each person ID (as the query)

in the training set.

As shown in Table 9, ArcFace trained on combined

MS1MV2 and Asian datasets with ResNet100 sets a high

baseline (MAP=(79.80%)). Based on the embedding fea-

ture for each training video, we train an additional three-

layer fully connected network with a classification loss to

get the customised feature descriptor on the iQIYI-VID

dataset. The MLP learned on the iQIYI-VID training set

significantly boosts the MAP by 6.60%. Drawing support

from the model ensemble and context features from the off-

the-shelf object and scene classifier [20], our final result sur-

passes the runner-up by a clear margin ( 0.99%).

4. Conclusions

In this paper, we propose an Additive Angular Margin

Loss function, which can effectively enhance the discrim-

inative power of feature embeddings learned via DCNNs

for face recognition. We demonstrate that our method con-

sistently outperforms the state of the art through the most

comprehensive experiments. Codes with detailed explana-

tions are released to facilitate reproduciblility of the results

reported in this paper.
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