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Figure 1. Comparison of different object detection algorithms

according to their mean Average Precision and speed (Frames

Per Second). Our improvements (YOLOv2+ and YOLOv3+,

highlighted using circles and bold face type) outperform original

YOLOv2 and YOLOv3 in terms of accuracy. In terms of speed,

our technique is identical to YOLOv2 and YOLOv3. We have

evaluated YOLOv3+ on three different image resolutions.

Abstract

We present a simple and effective learning technique that

significantly improves mAP of YOLO object detectors with-

out compromising their speed. During network training,

we carefully feed in localization information. We excite

certain activations in order to help the network learn to

better localize (Figure 2). In the later stages of training,

we gradually reduce our assisted excitation to zero. We

reached a new state-of-the-art in the speed-accuracy trade-

off (Figure 1).

∗equally contributed

Figure 2. An illustration of our proposed Assisted Excitation Mod-

ule. We manually excite certain activations during training. These

activations help improve localization. We excite activations based

on object locations. We applied our technique to YOLO object

detectors.

Our technique improves the mAP of YOLOv2 by 3.8% and

mAP of YOLOv3 by 2.2% on MSCOCO dataset.This tech-

nique is inspired from curriculum learning. It is simple

and effective and it is applicable to most single-stage object

detectors.

1. Introduction

Modern object detectors use Convolutional Neural Net-

works [22, 29, 30]. Most of modern object detectors

fall into one of two categories: Single-stage detectors

(YOLO [27, 28, 29], SSD [24] and Retina-Net [22]) and

two-stage detectors (R-CNN [13] and variants [12, 30]).

Two-stage detectors first generate a number of proposals

and then classify them. In contrast, single-stage detectors

perform detection in one pass, straight from raw images
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Table 1. Comparison of the architectures and the characteristics of the three versions of YOLO object detector.

Model Backbone Structure Detection Resolution
Detections

Per Grid

YOLOv1
Darknet inspired by GoogleNet [33]

(without inception module) and NIN [20]

24 convolutional layers followed

by 2 fully connected layers
Grid of 7× 7 2

YOLOv2 Darknet19 inspired by VGG [31] and NIN [20]
FCN [32] with 19 convolution

layers and 5 max-pooling
Grid with stride=32 5

YOLOv3 Darknet53 inspired by ResNet [16] and FPN [21]
FPN with 75 convolutional layers

without max-pooling
Grids with strides of 32, 16 and 8 3

to final detections. Figure 1 compares a number of no-

table object detectors according to speed and accuracy.

YOLO (You Only Look Once) [27] is one of the most

successful object detector families. These detectors are

developed by Redmon et al. [27, 28, 29] in three ver-

sions: YOLOv1 (2016) [27], YOLOv2 (2017) [28], and

YOLOv3 (2018) [29]. YOLO detectors are fast and accu-

rate at the same time. They work in real-time and produce

high-accuracy detections [25].

While YOLO detectors are very successful, they face

two challenges: 1- difficulty in localization [27, 28, 29], and

2- foreground-background class imbalance at training [22].

All versions of YOLO face these challenges. In the latest

work, Redmon et al. [29] reported: “The performance drops

significantly as the IOU threshold increases, indicating

YOLOv3 struggles to get the boxes perfectly aligned with

the object.”

Localization problem occurs because YOLO performs

classification and localization simultaneously. The last con-

volutional layer is typically rich in terms of semantics. This

is ideal for classification; however, the last convolutional

layer is often spatially course for localization. Thus com-

pared to other successful object detectors, YOLO makes

more localization errors.

Unlike two-stage detectors, single-stage detectors do not

reduce search space to a limited number of candidate pro-

posals. Instead, their search space includes a large number

of possible bounding-boxes (around 104 to 105). Most

of these bounding-boxes are negative examples and most

of negative examples are easy to classify. As a result, a

detector’s loss is overwhelmed with easy negative examples

while being trained.

This problem was described by Lin et al. [22] as

foreground-background class imbalance problem. They

offered “focal loss” to dynamically focus on more difficult

negative examples. This loss function greatly improved

detection accuracy and resulted in a new model named

RetinaNet. Redmon et al. [29] examined focal loss for

YOLOv3, however, they reported that focal loss has been

unable to improve YOLOv3.

1.1. Overview of our Solution

We propose a solution to address these challenges in

YOLO. We only change the way these networks are trained.

We propose a technique to excite certain activation maps in

the network during training. We do not change network ar-

chitecture during inference; we do not change loss function;

and we do not manipulate network input or output.

We test our technique on the training of YOLOv2 and

YOLOv3 detectors. During the first epochs of training, we

manually excite certain activations in feature maps. Then,

in the later epochs of training, we gradually reduce excita-

tion levels to zero. During the last epochs of training, we

stop exciting activations. Therefore, the network learns to

perform detection without assisted excitation. This strategy

is inspired by curriculum learning [2]; it simplifies the task

of detection and localization in the early stages of training

and gradually makes the task more difficult and realistic.

We excite activations corresponding to object locations

(extracted from ground truth) in feature maps. While we

excite these activations, detection becomes easier because

our model receives feedback from ground-truth. Therefore,

we argue that these excitations help the network 1- improve

localization and 2- focus on hard negatives rather than easy

negatives. We refer to our method as Assisted Excitation

(AE) because we manually excite activations to assist with

training.

Our technique helps YOLOv2 improve by 3.8% mAP

and YOLOv3 by 2.2% mAP on MSCOCO, without any loss

of speed.

2. Related Works

YOLO: Through a sequence of advances, Redmon et

al. [27, 28, 29] proposed three versions of YOLO. The

performance of the latest model is on par with the state-of-

the-art. Moreover, YOLO sits at the faster end of the speed-

accuracy trade-off. We briefly compare the architecture and

characteristics of these versions of YOLO in Table 1.

Augmenting auxiliary information into CNNs:

Introducing auxiliary information into CNNs has shown to

be useful in certain applications [35, 26, 3, 19, 17]. A

number of works concluded that joint learning of object

detection and semantic segmentation can improve both re-

sults. These works fall into two categories. The first
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(a) (b) (c) (d)

Figure 3. Illustration of our Assisted Excitation process. (a) Reference image; (b) Map of object bounding-boxes used to mask excitations;

(c) Averaged activation before Assisted Excitation Layer; (d) Averaged activation after Assisted Excitation Layer. Please note that excited

locations correspond to the object map.

category [14, 6] attempts to perform simultaneous detection

and segmentation and improve the performance of both

tasks [14, 6, 8, 34, 5]. This combined task is known as

instance-aware semantic segmentation.

The second category [14, 15, 10, 11, 36] aims to

only boost object detection by introducing segmentation

features. Gidaris and Komodakis [11] added semantic

segmentation-aware CNN features to detection features at

the highest level of R-CNN model. Their model used the

auxiliary segmentation information to refine localization.

He et al. [15] proposed Mask R-CNN which extends Faster

R-CNN [30].They added a branch for predicting an object

segmentation mask in parallel with the existing detection

branch. Zhang et al. [36] extended an SSD-based object

detection model by adding a segmentation branch. How-

ever, this branch was trained by weak segmentation ground-

truth (box-level segmentation), thus no extra annotation was

required.

Several works [7, 4] used the approach of joint seg-

mentation and detection in the application of pedestrian

detection. Brazil et al. [4] also offered multi-task learning

on pedestrian detection and semantic segmentation based on

the extension of R-CNN. In this model, the weak box-based

segmentation mask is infused with both stages of R-CNN

model.

Among the reviewed studies, our proposed method is

more related to [4, 36]. Similar to their approaches, we

also employ weak segmentation ground-truth only during

training and the model efficiency is not affected in our

inference phase. Another similarity lies in the fact that there

is no need for extra annotation rather than weakly annotated

boxes in the detection annotation.

Although the previous studies [4, 36] developed their

models based on R-CNN and SSD respectively, our model

is built on top of YOLO model. These studies augmented

auxiliary segmentation layers with an extra loss function.

Our proposed method does not impose extra computational

burden in the training phase. Our main novelty lies in the

way of incorporating the ground truth information into the

CNN.

3. Challenges in Single-stage Detectors

In Section 1.1 we described two challenges that YOLO

architecture faces. Here we describe them in more details:

1. Localization Problem: For the sake of speed, YOLO

performs localization and classification at the same

time. Final layers of YOLO architecture produce

high-level feature maps. These feature maps are ideal

for classification because they are semantic and high-

level. However, They are not ideal for localization

because they are spatially too course. YOLOv3 tries to

address this problem by passing on low-level features

(from earlier stages) into localization process. How-

ever, Redmon et al. acknowledge that all three versions

of YOLO suffer from localization problem.

2. Foreground-Background class imbalance problem:

Two-stage detectors first identify a limited number of

object proposals and then classify them. The first stage

takes care of most of the localization task. Therefore,

the search space in the second stage is limited to a

number of proposals that have proper localization.

In contrast, single-stage detectors need to search

through a large number possible bounding-boxes (104

to 105). Many of these bounding-boxes include an

object, but most of those containing an object are

not localized properly. Therefore, the detector has to

search through all of these bounding-boxes and find

the single bounding-box that localizes the object the

best. this problem is described by Lin et. al. [22] They

propose a new loss function to address this problem.

Redmon et al. [29]examined focal loss for YOLOv3,

however, it did not work out.
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Figure 4. Assisted excitation layer: This layer takes an activation

tensor as input. It first averages out all activation maps in input

tensor. Then, it masks the results according to object bounding

box locations. The excitation value is multiplied by Excitation

factor α. The result is finally added to each channel of the input

tensor and is passed on to the next layer.

4. Assisted Excitation Process

We propose a technique to address these challenges. Our

technique only applies to the learning process. We neither

change network architecture nor we change the detection

process.

During training, we manually excite certain activations

corresponding to object locations. During the initial epochs

of training, we perform this additional excitation, however,

we gradually decrease the excitation level in the later epochs

to zero, see Figure 4.

In the initial epochs of training, our manual activation

gives a boost to the best localization bounding-box. This

activation helps distinguish the best bounding-box from

slightly misplaced bounding-boxes. As we decrease exci-

tation level during the next epochs of training, our model

continues to distinguish the best bounding-box from mis-

placed ones.

We manually excite activations at the locations that we

know some object exists. We know where objects exist from

the ground-truth annotation, see Figure 3. Ground-truth

information is known only during training. Therefore, our

final trained model cannot depend on ground-truth. Since

we stop manual excitation in the latest stages of training, our

model learns to work independent of ground-truth. How-

ever, during the initial stages of training, our model depends

on a manual excitation that is guided by ground-truth.

These excitations guide the model to 1- improve local-

ization and 2- focus on hard negatives rather than easy neg-

atives. We call our proposed method as Assisted Excitation.

Our technique falls into curriculum learning framework

described by Bengio et al. [2]. The idea behind curriculum

learning is that learning space is non-convex, and learning

can fall into a bad local-minima. They argue that if we first

learn easier tasks and the continue with more complex tasks,

we get better performance in terms of the quality of local-

minima and generalization.

4.1. Assisted Excitation using Ground­Truth

Assisted excitation can be viewed as a network layer that

manipulates neural activations. We can describe an assisted

excitation module as follows:

al+1
(c,i,j) = al(c,i,j) + α(t) e(c,i,j) (1)

where al and al+1 are activation tensors at levels l and l+1.

e is excitation tensor and α is excitation factor that depends

on epoch number t. Also (c, i, j) refer to channel number,

row and column. During training, α(t) starts with a non-

zero value for initial epochs and gradually decays to zero. e

is a function of al and ground-truth. To compute e, we first

construct a bounding-box map g as follows:

g(i,j) =

{

1, If some bbox exists at cell(i, j)
0, If no bbox exists at cell(i, j).

The excitation e in bbox locations can be applied based on

different strategies. The straight forward excitation strategy

is as follows:

e(c,i,j) =
g(i,j)

d
a(c, i, j) (2)

This strategy excites the activation of bbox location in each

channel. Alternative strategy can inhibit out of bbox lo-

cations which makes the activations in the bbox locations

relatively highlighted.

e(c,i,j) = −(1− g(i,j))a(c,i,j) (3)

These two strategies highlight the activation of bbox lo-

cations in each channel independently. We have tried a

few variants of this excitation strategy. However, the best

performance is not achieved based on these independent

manipulation but with the excitation by shared information

of bbox locations over all channels. In our method, e(c,i,j)
takes an average over all channels of al(c,i,j). Therefore, it

is identical for all values of c. We compute excitation tensor

e as follows:

e(c,i,j) =
g(i,j)

d

d
∑

c=1

a(c,i,j) (4)

where d refers to the number of feature channels. All the

mentioned strategies improve localization. However, the

last strategy (Eq 4) outperformed the others.

α(t) = .5×
1 + Cos(π.t)

Max Iteration
(5)

Figure 4 illustrates our AE layer in more details.
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Figure 5. YOLOv2+ architecture. YOLOv2 architecture is modified with our new assisted excitation layer. AE can be added at the end

of each stage; Our experiments show that the end of stage 4 is the optimal place for AE. Each stage is composed of a series of activation

tensors which have similar resolutions. For example, assume that the input image size is 480x480. Stage 1, stage 2, stage 3, stage 4, stage

5 and stage 6 contain tensors with resolutions 240x240, 120x120, 60x60, 30x30 and 15x15 respectively.

Figure 6. YOLOv3+ architecture. YOLOv3 architecture, which was inspired by [1], is augmented with an assisted excitation layer. The

new layer is added to the end of stage 8.

4.2. Inference

During inference, α = 0 and the output of AE layer

is identical to its input. Therefore, AE layer is essentially

removed during inference. During the final epochs of train-

ing, our model learns to function without requiring input

from ground-truth. Therefore, we do not use ground-truth

information.

In practice, our model architecture is identical to YOLO

during inference. Our trained model differs from the stan-

dard YOLO model only in model weights. This has two

major benefits:

1. Our trained model is plug and play. We can reuse the

heavily optimized detectors developed for all devices.

2. Our inference time remains identical to the original

YOLO detectors while we get better accuracy.

4.3. Assisted Excitation in YOLOv2 and YOLOv3

We used Assisted Excitation in YOLOv2 and YOLOv3.

For each of the detectors, we performed an ablation study

to examine the improvement if we place AE at each stage.

We report the results in Experiments section. Figure 5 il-

lustrates the optimal stage for AE in YOLOv2 architecture.

Figure 6 illustrates the optimal stage for AE in YOLOv3

architecture.

5. Experiments and Results

Datasets: We applied our technique on YOLOv2 and

YOLOv3. We evaluated the techniques using two bench-

marks: MSCOCO [23] and PASCAL VOC 2007, 2012 [9].

Similar to the convention of the original YOLO papers [28,

29], we compare YOLOv2+ with YOLOv2, on PASCAL
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Figure 7. Left: comparison of our proposed methods, YOLOv2+ and YOLOv3+, with their baselines, YOLOv2 and YOLOv3, based

on prediction size. As shown, the larger an object is, the more improvement we obtain. Right: comparison of our proposed methods,

YOLOv2+ and YOLOv3+, with their baselines, YOLOv2 and YOLOv3, based on Intersection over Union (IoU) threshold.

Table 2. The results of applying AE module through different

stages of YOLOv2+. Our proposed model significantly improved

the accuracies where applied on the different stages. However, the

best accuracy in all terms of AP is achieved in the stage 4.

Method Stage AP AP50 AP75

YOLOv2 - 21.6 44.0 19.2

YOLOv2+ (480) stage 2 24.6 44.8 24.6

YOLOv2+ (480) stage 3 25 46 24.9

YOLOv2+ (480) stage 4 25.4 46.9 25.1

Table 3. The results of different AE strategies in YOLOv2+.

Method Strategy AP AP50 AP75

YOLOv2 - 21.6 44.0 19.2

YOLOv2+ (544) strategy in Eq. 2 25.1 45.8 25.8

YOLOv2+ (544) strategy in Eq. 3 24.8 45 25

YOLOv2+ (544) strategy in Eq. 4 26 47.9 25.8

VOC 2007, 2012 and MSCOCO 2014. Also, we compare

YOLOv3+ with YOLOv3 on MSCOCO 2017. Moreover,

we also compare with other state-of-the-art detectors on

these datasets.

Training: For training, we trained YOLOv2+ and

YOLOv3+ from scratch according to the best practices in

their original studies [28, 29]. We used Darknet19 [28]

and Darknet53 [29] that were pre-trained on IMAGENET

dataset, as backbones. Then, we trained whole architectures

using Adam [18] with initial learning rate of 10−5, weight

decay of 0.0005, and batch size of 48.

Table 4. The comparison results of YOLOv2+ with YOLOv2

and the other state-of-the-art detectors on MSCOCO test dev-set

2015. The results for the other methods were adapted from. Our

proposed YOLOv2+ achieved better accuracies in all terms of APs

compared to the previous state-of-the-art detection results.

Method data AP AP50 AP75

Fast RCNN [12] train 19.7 35.9 -

Faster RCNN [30] trainval 24.2 45.3 23.5

SSD512 [24] trainval35k 26.8 46.5 27.8

YOLOv2 [28] (544) trainval35k 21.6 44.0 19.2

YOLOv2+ (480) trainval35k 25.4 46.9 25.1

YOLOv2+ (544) trainval35k 26 47.9 25.8

YOLOv2+ (608) trainval35k 27 50.9 26

5.1. YOLOv2+

In order to figure out which layer is the optimal place for

our Assisted Excitation module, we performed an ablation

study. Table 2 lists the accuracy of YOLOv2+ with Assisted

Excitation module placed in different stages.

The best accuracy in all terms of AP is achieved when

Advanced Excitation is place in stage 4. We also examined

different excitation strategies discussed in Section 4.1. As

shown in Table 3, the AE strategy in Eq. 4 achieved the best

result. We will further discuss the results. In the following

experiments, we use this configuration (AE on stage 4) as

the default configuration of YOLOv2+.

Based on this setting, we compare YOLOv2+ with

YOLOv2 and other current state-of-the-art detectors on

MSCOCO test dev-set 2015. The results are compared in

Table 4.

We compare YOLOv2+ with YOLOv2 using different

9206



Table 5. The results for comparison of YOLOv2+ with YOLOv2

in different input resolutions on PASCAL VOC 2007 and 2012.

These results were also compared with state-of-the-art detectors

on this dataset. Our proposed model significantly improved the

accuracy of YOLOv2 in all tested resolutions. YOLOv2+ also

achieved high accuracy compared to the previous state-of-the-art

detection results.

Detection Frameworks Train mAP FPS

Fast R-CNN 2007+2012 70.0 44.0

Faster R-CNN ResNet 2007+2012 76.4 48.4

YOLO 2007+2012 63.4 26.7

SSD500 2007+2012 76.8 26.7

YOLOv2 (416) 2007+2012 76.8 26.7

YOLOv2 (480) 2007+2012 77.8 26.7

YOLOv2 (544) 2007+2012 78.6 26.7

YOLOv2+ (416) 2007+2012 80.6 26.7

YOLOv2+ (480) 2007+2012 81.7 26.7

YOLOv2+ (544) 2007+2012 82.6 26.7

image resolutions on PASCAL VOC 2007 and VOC 2012.

Table 4 compares our results with state-of-the-art works

on PASCAL. Table 5 lists more comprehensive detection

results for different resolutions in PASCAL VOC 2007 and

2012.

5.2. YOLOv3+

Similar to the original YOLOv3 paper [29], we con-

ducted several experiments on MSCOCO2017 test-dev

dataset. We first report our ablation study on placing As-

sisted Excitation module on different stages of YOLOv3+.

We compared YOLOv3+ with YOLOv3 in Table 6. As

shown in the results, the best performance was achieved

where Assisted Excitation module is placed on stage 4.

In the remaining experiments, we place AE module on

stage 4. Based on this setting, we also compare differ-

ent image resolutions. Table 7 compares YOLOv3+ and

YOLOv3 on different input resolutions.Table 8 compares

our proposed YOLOv3+ with state-of-the-art detectors on

MSCOCO2017 test dev-set.

5.3. Localization

Improvement in localization can be seen in qualita-

tive results. Figure compares localization results between

YOLOv2 and YOLOv2+. Figure compares localization

results between YOLO32 and YOLOv3+.

Figure 7 right, compares YOLOv2, YOLOv3,

YOLOv2+ and YOLOv3+ in terms of mAP versus

intersection over union threshold. Figure 7 left, show

that our improvement rates increase as the objects become

larger. These results in addition to the mentioned theoretical

analysis implies that the proposed technique improves the

localization ability of YOLO, in specific on medium and

large objects.

Figure 8. Visual Comparison of YOLOv2+ and YOLOv2 pre-

diction. As shown, Our proposed method (red bounding box)

localizes objects better with respect to YOLOv2’s prediction (blue

bounding box). In addition to localization, our proposed method

increases the number of true positive bounding boxes.

Figure 9. Visual Comparison of YOLOv3+ and YOLOv3 pre-

diction. As shown, Our proposed method (red bounding box)

localizes objects better with respect to YOLOv3’s prediction (blue

bounding box).

Our experimental results show that the AE technique

improved the accuracy regardless of what stage it is placed

at. Further, our experiments show that best improvements

are achieved were AE is placed in the mid-level stages.

In YOLOv2+, the best performance was achieved by

placing AE in stage 4 (stride=16). This stage is located

in the mid-layers of the model including both localization

information and semantic information. In YOLOv3+, the

best performance was achieved by placing AE in stage 3

(stride=8). This stage is also located in the mid-layers of

the model. The excitation in this stage affects not only in

the first detection head but also in both second and third

heads because of the skip connections.
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Table 6. The comparison results of YOLOv2+ with state-of-the-art detectors on PASCAL VOC 2012. The results for the other detectors

were adapted from [28]. Our proposed YOLOv2+ achieved better accuracies in all terms of APs compared to the previous state-of-the-art

detection results.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast R-CNN 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

Faster R-CNN 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

YOLO 57.9 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8

SSD512 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0

YOLOv2 544 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7

YOLOv2+ 544 75.6 87.9 85.1 76.1 62.0 53.7 81.2 79.2 93.1 53.9 81.1 59.4 90.6 84.7 85.6 84.7 51.4 79.8 64.7 86.7 71.3

Table 7. The results for applying AE module in different stages

of YOLOv3+ on MSCOCO2017 test dev-set. These results were

compared with original YOLOv3. Our proposed YOLOv3+ im-

proved the accuracies in all tested stages. However, the best

accuracies were achieved for stage 3.

Excitation Stage Stage AP AP50 AP75

YOLOv3 (608) - 33.0 57.9 34.4

YOLOv3+ (608) Stage3 35.2 58.4 38.4

YOLOv3+ (608) Stage4 35.1 58.2 38.4

YOLOv3+ (608) Stage5 34.2 56.1 37.6

YOLOv3+ (608) Stage7 34.5 58.0 37.9

YOLOv3+ (608) Stage9 33.5 54.6 37.1

Table 8. Ablation study on improvement of YOLOv3+ in different

input resolutions.

Method AP AP50 AP75

YOLOv3 (320) 28.2 47.7 30.0

YOLOv3+(320) 29.1 50.2 30.8

YOLOv3 (416) 31.0 51.0 34.1

YOLOv3+(416) 32.0 53.0 34.8

YOLOv3 (480) 31.6 51.2 34.5

YOLOv3+(480) 32.4 53.0 35.2

YOLOv3 (544) 33.1 51.8 35.9

YOLOv3+(544) 33.8 55.5 37.3

6. Discussions

Excite object regions vs suppress non-object regions?

We discussed foreground-background class imbalance

problem in Section 3. According to this problem, bulk of

our search space consists of negative examples. We pro-

posed different object excitations vs non-object suppression

strategies in Section 4.1. If we suppress non-object regions,

we will affect a large fraction of search space. After we

reduce curriculum factor to zero at the end of training,

the network will need to re-score most of the candidates

in search space. In contrast, when we only excite object

regions, the network will only need to keep track of much

fewer positive examples. Therefore, the model can more

easily handle such a change and yield better results, as

shown and compared in Table 3.

Table 9. The comparison results of YOLOv3+ with state-of-the-art

detectors on MSCOCO2017 test dev-set. The results for the other

detectors were adapted from [29, 22].Our proposed YOLOv2+

achieved better accuracies in all terms of APs compared to the

previous state-of-the-art detection results.

Method data AP AP50 AP75

Faster RCNN+++ [16] train 34.9 55.7 37.4

Faster RCNN w FPN [21] train 36.2 59.1 39.0

RetinaNet (800) [22] trainval35k 40.8 61.1 44.1

YOLOv3 (608) [29] trainval35k 33.0 57.9 34.4

YOLOv3+ (608) trainval35k 35.2 58.4 38.4

What happens during back-propagation?

Our Assisted Excitation module has an effect on back-

propagation. Since AE amplifies certain activations, the ef-

fect of the receptive field gets amplified as well. Therefore,

Positive examples and mislocalized examples will have a

higher effect on training (in contrast to easy negative exam-

ples that will have lower effect). This is similar to the idea

behind Focal Loss. The authors show that increasing focus

on positive and hard negative examples improves accuracy.

Curriculum learning

Our technique is similar to curriculum learning because

we start from an easier task and gradually move toward

more complex tasks. However, there is a subtle difference

here. Curriculum learning moves from easy to difficult by

introducing increasingly difficult examples. In contrast, we

move from easy to difficult by first injecting ground-truth

information to the model and gradually removing this in-

formation. In other words, our tasks are easier in the initial

stages not because the examples are easier, but because we

help boost the correct answer. This version of curriculum

learning has room to be investigated in further applications.

Applicability

Our technique is applicable not only to other single-stage

detectors, but also to two-stage detectors. Moreover, the

AE module can be integrated in different CNN architec-

tures for different computer vision problems, e.g., image

classification(Fine-grained), segmentation, and synthesis.
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