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Abstract

Image captioning is an ambiguous problem, with many

suitable captions for an image. To address ambiguity, beam

search is the de facto method for sampling multiple cap-

tions. However, beam search is computationally expensive

and known to produce generic captions [8, 10]. To address

this concern, some variational auto-encoder (VAE) [32]

and generative adversarial net (GAN) [5, 25] based meth-

ods have been proposed. Though diverse, GAN and VAE are

less accurate. In this paper, we first predict a meaningful

summary of the image, then generate the caption based on

that summary. We use part-of-speech as summaries, since

our summary should drive caption generation. We achieve

the trifecta: (1) High accuracy for the diverse captions as

evaluated by standard captioning metrics and user stud-

ies; (2) Faster computation of diverse captions compared

to beam search and diverse beam search [28]; and (3) High

diversity as evaluated by counting novel sentences, distinct

n-grams and mutual overlap (i.e., mBleu-4) scores.

1. Introduction

In this paper we show how to force an image caption-

ing system to generate diverse captions by conditioning on

different high-level summaries of the image. Our sum-

maries are quantized part-of-speech (POS) tag sequences.

Our system generates captions by (a) predicting different

summaries from the image then (b) predicting captions con-

ditioned on each summary. This approach leads to captions

that are accurate, quick to obtain, and diverse. Our system

is accurate, because it is able to steer a number of narrow

beam searches to explore the space of caption sequences

more efficiently. It is fast because each beam is narrow. And

the captions are diverse, because depending on the sum-

mary (i.e., part-of-speech) the system is forced to produce

captions that contain (for example) more or less adjectives.

This means we can avoid the tendency to produce minimal

or generic captions that is common in systems that try to

∗ Denotes equal contribution.

Method Fast Diverse Accurate

Beam search × × X

Diverse beam search [28] × × X

AG-CVAE [32] X X ×
Ours (POS) X X X

Table 1: We show that our part-of-speech (POS) based

method achieves the trifecta of high accuracy, fast com-

putation and more diversity. Beam search and diverse

beam search are slow. They also produce captions with high

mutual overlap and lower distinct n-grams than POS (see

mBleu-4, div-1 and div-2 in Tab. 5). POS and AG-CVAE

are fast, however POS does better on captioning metrics in

Fig. 3 and is therefore more accurate.

optimize likelihood without awareness of language priors

(like part-of-speech).

A large body of literature has focused on developing pre-

dictive image captioning techniques, often using recurrent

neural nets (RNN) [20, 29, 34, 12, 2]. More recently [3, 33],

demonstrate predictive captioning with accuracy similar to

RNNs while using convolutional networks. An essential

feature of captioning is that it is ambiguous – many captions

can describe the same image. This creates a problem, as

image captioning programs trained to maximize some score

may do so by producing strongly non-committal captions. It

also creates an opportunity for research – how can one pro-

duce multiple, diverse captions that still properly describe

the image? Our method offers a procedure to do so.

Tractable image captioning involves factoring the se-

quence model for the caption. Inference then requires beam

search, which investigates a set of captions determined by

local criteria to find the caption with highest posterior prob-

ability. Finding very good captions requires a wide beam,

which is slow. Moreover, beam search is also known to

generate generic captions that lack diversity [8, 10]. Vari-

ational auto-encoder (VAE) [32] and generative adversar-

ial net (GAN) [5, 25, 14] formulations outperform beam

search on diversity metrics. VAE and GAN-based methods

sample latent vectors from some distribution, then generate

captions conditioned on these samples. The latent variables

have no exposed semantics, and captions tend not to score

as well (on captioning metrics) as those produced by beam
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search (e.g., Tab. 1 of [25]).

This paper offers an alternative. First predict a meaning-

ful summary of the image, then generate the caption based

on that summary. For this to work, the summary needs to

be able to drive language generation (for the caption gen-

erator), and must be predictable. We find quantized part of

speech tag sequences to be very effective summaries. These

sequences can clearly drive language generation (e.g., forc-

ing a captioner to produce adjectives in particular loca-

tions). More surprisingly, one can predict quantized tag

sequences from images rather well, likely because such se-

quences do summarize the main action of the image. For

example, compare determiner-noun-verb with determiner-

adjective-noun-verb-adjective-noun. In the first case, some-

thing appears in the image, in the second, a subject with a

noteworthy attribute is doing something to an object with a

noteworthy attribute. Consequently, the two images appear

quite different.

Contributions: We show that image captioning with

POS tag sequences is fast, diverse and accurate (Tab. 1).

Our POS methods sample captions faster and with more di-

versity than techniques based on beam search and its vari-

ant diverse beam search [28] (Tab. 5). Our diverse cap-

tions are more accurate than their counterparts produced by

GANs [25] (Tab. 4) and VAEs [32] (Tab. 3, Fig. 3).

2. Related Work

In the following, we first review works that generate a

single (or best-1) caption before discussing diverse image

captioning methods which produce k different (or a set of

best-k) captions.

2.1. Image Captioning

Most image captioning approaches [12, 29, 34] use a

convolutional neural net pre-trained on classification [26]

to represent image features. Image features are fed into

a recurrent net (often based on long-short-term-memory

(LSTM) units) to model the language word-by-word. These

networks are trained with maximum likelihood. To obtain

high performance on standard image captioning metrics,

Yao et al. [35] use a network trained on COCO-attributes

in addition to image features. Anderson et al. [2] develop

an attention-based network architecture. Aneja et al. [3]

change the language decoder from an LSTM-net to a con-

voluational network and show that they obtain more diver-

sity. Similarly, Wang et al. [33] also use a convolutional

language decoder. Since diversity is of interest to us, we use

the convolutional language decoder similar to [3, 33]. We

leave incorporation of techniques such as attribute vectors

specific to the COCO dataset, and a sophisticated attention

mechanism from [35, 2] for further performance gains to

future work.

Apart from exploring different network architectures,

some prior works focus on using different training losses.

Reinforcement learning has been used in [19, 24, 17], to di-

rectly train for non-differentiable evaluation metrics such as

BLEU, CIDEr and SPICE. In this paper, we use maximum

likelihood training for our methods and baselines to ensure

a fair comparison. Training our POS captioning network in

a reinforcement learning setup can be investigated as part of

future work.

Notable advances have been made in conditioning image

captioning on semantic priors of objects by using object de-

tectors [18, 30]. This conditioning is only limited to the

objects (or nouns) in the caption and ignores the remain-

der, while our POS approach achieves coordination for the

entire sentence.

2.2. Diverse Image Captioning

Four main techniques have been proposed to generate

multiple captions and rank them to obtain a set of best-k

captions.

Beam search. Beam search is the classical method to sam-

ple multiple solutions given sequence models for neural

machine translation and image captioning. We compare

to beam search on the same base captioning network as

POS, but without part-of-speech conditioning. We find that

though beam search is accurate, it is slow (Tab. 3) and lacks

diversity (Tab. 5). Our base captioning network uses a con-

volutional neural net (CNN) [3] and is equivalent to the

standard LSTM based captioning network of Karpathy et

al. [12] in terms of accuracy.

Diverse beam search. Vijayakumar et al. [28] augment

beam search with an additional diversity function to gen-

erate diverse outputs. They propose a hamming diversity

function that penalizes expanding a beam with the same

word used in an earlier beam. In our results, we compare

to this diverse beam search (Div-BS). Note, beam search

and diverse beam search are local search procedures which

explore the output captioning space word-by-word. While,

POS tag sequences act as global probes that permit to sam-

ple captions in many different parts of the captioning space.

GAN. More recent work on diverse image captioning fo-

cuses on using GANs. Adversarial training has been em-

ployed by [5, 14, 25] to generate diverse captions. [5, 14]

train a conditional GAN for diverse caption generation. [5]

uses a trainable loss which differentiates human annotations

from generated captions. Ranking based techniques, which

attempt to score human annotated captions higher than gen-

erated ones, are demonstrated in [14]. Shetty et al. [25]

use adversarial training in combination with an approximate

Gumbel sampler to match the generated captions to the hu-

man annotations.

Generally, GAN based methods improve on diversity,

but suffer on accuracy. For example, in Tab. 1 of [25], ME-
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TEOR and SPICE scores drop drastically compared to an

LSTM baseline. In Tab. 4, we compare GAN [25] and our

POS-based method which is more accurate.

VAE. Wang et al. [32] propose to generate diverse captions

using a conditional variational auto-encoder with an addi-

tive Gaussian latent space (AG-CVAE) instead of a GAN.

The diversity obtained with their approach is due to sam-

pling from the learned latent space. They demonstrate im-

provements in accuracy over the conventional LSTM base-

line. Due to the computational complexity of beam search

they used fewer beams for the LSTM baseline compared to

the number of captions sampled from the VAE, i.e., they

ensured equal computational time. We compare to AG-

CVAE [32] and show that we obtain higher best-1 caption

accuracy (Tab. 3) and our best-kth caption accuracy (k = 1
to 10) outperforms AG-CVAE (Fig. 3). Note, best-k scores

in Tab. 3 and Fig. 3 denote the score of the kth ranked cap-

tion given the same number of sampled captions (20 or 100)

for all methods. For fairness, we use the same ranking pro-

cedure (i.e., consensus re-ranking proposed by [7] and used

in [32]) to rank the sampled captions for all methods.

3. Background

Problem Setup and Notation. The goal of diverse cap-

tioning is to generate k sequences y1, y2, . . . , yk, given

an image. For readability we drop the super-script and

focus on a single sequence y. The methods we discuss

and develop will sample many such sequences y and rank

them to obtain the best-k – y1, y2, . . . , yk. A single cap-

tion y = (y1, . . . , yN ) consists of a sequence of words yi,

i ∈ {1, . . . , N} which accurately describe the given image

I . For each caption y, the words yi, i ∈ {1, . . . , N} are

obtained from a fixed vocabulary Y , i.e., yi ∈ Y . Addi-

tionally, we assume availability of a part-of-speech (POS)

tagger for the sentence y. More specifically, the POS tagger

provides a tag sequence t = (t1, . . . , tN ) for a given sen-

tence, where ti ∈ T is the POS tag for word yi. The set

T encompasses 12 universal POS tags – verb (VERB), noun

(NOUN), pronoun (PRON), etc.1

To train our models we use a dataset D = {(I, y, t)}
which contains tuples (I, y, t) composed of an image I ,

a sentence y, and the corresponding POS tag sequence t.

Since it is not feasible to annotate the ∼ .5M captions of

MSCOCO with POS tags, we use an automatic part-of-

speech tagger.1

Classical Image Captioning. Classical techniques factor

the joint probabilistic model pθ(y|I) over all words into a

product of conditionals. They learn model parameters θ∗ by

1 See https://www.nltk.org/book/ch05.html for POS tag

and automatic POS tagger details

.
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Figure 1: Illustration of beam search and POS-sampling to

expand the best-k captions (y1i , y
2
i , . . . y

k
i ) from word posi-

tion i to i+ 1. See Sec. 3 for notation and other details.

maximizing the likelihood over the training set D, i.e.,

max
θ

∑

(I,y)∈D

log pθ(y|I), where pθ(y|I)=
N∏

i=1

p(yi|y<i, I).

(1)

The factorization of the joint probability distribution en-

forces a temporal ordering of words. Hence, word yi at the

ith time-step (or word position) depends only on all previ-

ous words y<i. This probability model is represented using

a recurrent neural network or a feed-forward network with

temporal (or masked) convolutions. Particularly the latter,

i.e., temporal convolutions, have been used recently for dif-

ferent vision and language tasks in place of classical recur-

rent neural nets, e.g., [3, 9, 4].

During training, we learn the optimal parameters θ∗.

Then for test image I , conditional word-wise posterior

probabilities pθ∗(yi|y<i, I) are generated sequentially from

i = 1 to N . Given these posteriors, beam search is applica-

ble and forms our baseline. Fig. 1 illustrates beam search

with a beam width of k from word position yi to yi+1.

Here, beam search maintains best-k (incomplete) captions

ordered by likelihood. It expands the best-k captions at ev-

ery word greedily from start to end of the sentence.

More specifically, for beam search from word position i,

we first generate posteriors p
j
θ∗(yi+1|y

j

<(i+1), I) based on

the current top-k list containing y
j

<(i+1), j ∈ {1, . . . , k}.

We then obtain new top-k captions by expanding each of

the k entries y
j

<(i+1) in the list using the computed posterior

p
j
θ∗(yi+1|y

j

<(i+1), I). We call this ‘expand top-k.’ The time

complexity for a single expand top-k operation is identical

to obtaining the sorted top-k values from an array of size

|Y|.2 The time complexity of all expand top-k operations is

O(k2 + |Y|k log k).

2https://www.geeksforgeeks.org/

k-largestor-smallest-elements-in-an-array/
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y< i  = a  very nice kitchen with stainless steel appliances and wood 
PREVIOUS WORDS

LSTM
DET ADV ADJ NOUN ADP ADJ

NOUN  NOUN  
CONJ NOUN NOUN

PART OF SPEECH CLASSIFICATION

(Sampled Part of
Speech Tag Sequence)

Distribution over 
 1024 exemplar  
POS templates

1. Separate
Training (POS) 

 or 
    2. Gumbel     
     Softmax       
(POS+Joint) 

Faster
RCNN

FC­7 Features

Object Vectors

IMAGE REPRESENTATION

CAPTIONING NETWORK

 
 

CNN  
(Temporal
Conv) 

yi  = cabinets

VGG­16

VGG­16

Figure 2: An illustration of our POS captioning method on a test image. For the image representation, fc7 features are

extracted from VGG-16 and embedded into 512 dimensional vectors. For object vectors, we use the 80 dimensional class

vector from faster rcnn [22] (same as [32]). For part-of-speech classification, we use VGG-16 with two linear layers and a

1024-way softmax. Then, we encode sampled POS via an LSTM-net to a 512 dimensional vector. Our captioning network

uses temporal convolutions and operates on image representation, part-of-speech vector, object vector and previous words in

the caption (y<i) to produce the next word (yi). The network is trained for 20 epochs using the ADAM optimizer [13] (initial

learning rate of 5e−5 and a decay factor of .1 after 15 epochs). The part of speech classification step can be trained separately

(POS) or jointly using a gumbel softmax (POS+Joint). Note, image representation is same for our method and baselines.

We merge all the expanded top-k captions to the final

top-k captions using the log sum of the posterior probability

at word position i + 1. We call this operation merge. The

merge operation has a complexity of O(k+ k log k), which

is identical to merging k sorted arrays.3 In Sec. 4, we show

that our inference with POS has better time complexity.

4. Image Captioning with Part-of-Speech

In our approach for image captioning, we introduce a

POS tag sequence t, to condition the recurrent model given

in Eq. (1). More formally, we use the distribution

pθ(y|t, I) =

N∏

i=1

pθ(yi|t, y<i, I). (2)

Following classical techniques, we train our POS-

conditioned approach by maximizing the likelihood (similar

to Eq. (1)), i.e., we want to find the parameters

θ∗ = argmax
θ

∑

(I,t,y)∈D

log pθ(y|t, I). (3)

Importantly, note that we use the entire POS tag sequence in

the conditional above, because it allows global control over

the entire sentence structure.

Training involves learning the parameters θ∗ for our

conditional captioning model (Eq. (3)). During test time,

conditioning on POS tags provides a mechanism for di-

verse image captioning, i.e., given a test image I , we ob-

tain k diverse captions by sampling k POS tag sequences

3https://www.geeksforgeeks.org/

merge-k-sorted-arrays/

t1, t2, . . . , tk. Note that every sequence is a tuple of POS

tags, i.e., ti = (ti1, t
i
2, . . .), i ∈ {1, . . . , k}.

Since a large number of possible POS tag sequences ex-

ists, in Sec. 4.1, we discuss how we obtain quantized POS

tag sequences q1, q2, . . . , qk given the input image. These

quantized sequences approximate the actual POS tag se-

quences t1, t2, . . . , tk.

Concretely, during inference we sample k quantized

POS tag sequences given the image. This is shown as the

part-of-speech classification step in Fig. 2. Then, we encode

each sampled POS tag sequence q using an LSTM model.

The encoded POS tag sequence, along with object vector,

image features (fc7 of VGG-16) and previous words (y<i)

forms the input to the temporal convolutions-based caption-

ing network. This captioning network implements our pos-

terior probability pθ(yi|y<i, q, I), which is used to predict

the next word y∗i = argmaxyi
pθ(yi|y<i, q, I).

Fast inference with POS. For every sampled tag sequence

qj , j ∈ {1, 2, · · · , k} (i.e. quantization of tag sequence tj),

we maximize the learned probabilistic model, i.e., y
j
i =

argmaxy pθ∗(yi|y<i, q
j , I) greedily. As just discussed, we

simply use the maximum probability word at every word

position. Fig. 1 compares this computationally much more

effective method, which has a time complexity of O(k|Y|),
to the breadth first approach employed by beam search.

Note that POS-based sampling requires only a single

max-operation at every step during inference (our effec-

tive beam size is 1), making it faster than beam search with

wide beams. It is also faster than diverse beam search (with

group size parameter set to 1 as in our results) which per-

forms the k ‘expand top-k’ operations sequentially using an

augmented diversity function.
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Method Beam size

or #samples

Best-1 Oracle Accuracy Speed

(s/img)

Speed Accuracy

B4 B3 B2 B1 C R M S

Beam search

20

0.489X 0.626X 0.752X 0.875X 1.595X 0.698X 0.402X 0.284X 3.74× × X

Div-BS [28] 0.383× 0.538× 0.687× 0.837 1.405 0.653 0.357 0.269 3.42 × ×
AG-CVAE [32] 0.471 0.573 0.698 0.834× 1.308× 0.638× 0.309× 0.244× - - ×
POS 0.449 0.593 0.737 0.874 1.468 0.678 0.365 0.277 0.21 X X

POS+Joint 0.431 0.581 0.721 0.865 1.448 0.670 0.357 0.271 0.20X X X

Beam Search

100

0.641X 0.742X 0.835X 0.931X 1.904X 0.772X 0.482X 0.332X 20.33 × X

Div-BS [28] 0.402× 0.555× 0.698× 0.846× 1.448× 0.666× 0.372 0.290 19.05 × ×
AG-CVAE [32] 0.557 0.654 0.767 0.883 1.517 0.690 0.345× 0.277× - - ×
POS 0.578 0.689 0.802 0.921 1.710 0.739 0.423 0.322 1.29 X X

POS+Joint 0.550 0.672 0.787 0.909 1.661 0.725 0.409 0.311 1.27X X X

Table 2: Best-1 accuracy by oracle re-ranking. Our POS methods are faster at sampling than beam search and they also

generate a higher scoring best-1 caption than AG-CVAE [32] and Div-BS [28]. Beam search obtains the best scores, however

it is slow. From all sampled captions (#samples = 20 or 100), we use oracle to pick the best-1 caption for every metric. This

gives an estimate of the upper bound on captioning accuracy for each method. We use standard captioning metrics, BLEU

(B1-B4) [21], CIDEr (C) [27], ROUGE (R) [15], METEOR (M) [6] and SPICE (S) [1]. Note, Xindicates good performance

on the metric for the corresponding column and × indicates bad performance.

4.1. Image to Part­of­Speech Classification

Because our model conditions sentence probabilities on

a POS tag sequence, we need to compute it before perform-

ing inference. Several ways exist to obtain the POS tag se-

quence. E.g., choosing a POS tag sequence by hand, sam-

pling from a distribution of POS tag sequences seen in the

dataset D, or predicting POS tag sequences conditioned on

the observed image I . The first one is not scalable. The sec-

ond approach of sampling from D without considering the

provided image is easy, but generates inaccurate captions.

We found the third approach to yield most accurate results.

While this seems like an odd task at first, our experiments

suggest very strongly that image based prediction of POS

tag sequences works rather well. Indeed, intuitively, infer-

ring a POS tag sequence from an image is similar to pre-

dicting a situation template [36] – one must predict a rough

template sketching what is worth to be said about an image.

To capture multi-modality, we use a classification model

to compute our POS predictions for a given image I . How-

ever, we find that there are > 210K POS tag sequences in

our training dataset D of |D| > 500K captions. To main-

tain efficiency, we therefore quantize the space of POS tag

sequences to 1024 exemplars as discussed subsequently.

Quantizing POS tag sequences. We perform a hamming

distance based k-medoids clustering to obtain 1024-cluster

centers. We use concatenated 1-hot encodings (of POS tags)

to encode the POS tag sequence. We observe our clusters

to be tight, i.e., more than 75% of the clusters have an av-

erage hamming distance less than 3. We use the cluster

medoids as the quantized POS tag sequences for our clas-

sifier. Given an input tag sequence t we represent it using

its nearest neighbor in quantized space, which we denote by

q = Q(t). Note, in our notation the quantization function

Q(t), reduces t to its quantized tag sequence q.

Our image to part-of-speech classifier (shown in Fig. 2)

learns to predict over quantized POS sequence space by

maximizing the likelihood, pφ(q|I). Formally, we look for

its optimal parameters φ∗ via

φ∗ = argmax
φ

∑

(I,t)∈D

log pφ(q|I), (4)

where log pφ(q|I) =
1024∑
i=1

δ[qi = Q(t)] log pφ(q
i|I).

4.2. Separate vs. Joint Training

Training involves learning the parameters θ of the cap-

tioning network (Eq. (3)) and the parameters φ of the POS

classification network (Eq. (4)). We can trivially train these

two networks separately and we call this method POS.

We also experiment with joint training by sampling from

the predicted POS posterior pφ(t|I) using a Gumbel soft-

max [11] before subsequently using its output in the cap-

tioning network. Inconsistencies between sampled POS se-

quence and corresponding caption y will introduce noise

since the ground-truth caption y may be incompatible with

the sampled sequence q. Therefore, during every training it-

eration, we sample 50 POS tag sequences from the Gumbel

soft-max and only pick the one q with the best alignment

to POS tagging of caption y. We refer to this form of joint

training via POS+Joint. In Sec. 5.1 and Sec. 5.2, we show

that POS+Joint (i.e., jointly learning θ and φ) is useful and

produces more accurate captions.

5. Results

In the following, we compare our developed approach

for diverse captioning with POS tags to competing baselines

for diverse captioning. We first provide information about

the dataset, the baselines and the evaluation metrics before

presenting our results.

Dataset. We use the MS COCO dataset [16] for our ex-

periments. For the train/val/test splits we follow: (1) M-

RNN [20] using 118,287 images for training, 4,000 images
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Method Beam size

or #samples

Best-1 Consensus Re-ranking Accuracy Speed

(s/img)

Speed Accuracy

B4 B3 B2 B1 C R M S

Beam search

(w. Likelihood)

20

0.305 0.402× 0.538× 0.709× 0.947× 0.523 0.248 0.175 3.19 × ×

Beam search 0.319 0.423 0.564 0.733 1.018 0.537X 0.255 0.185 7.41 × X

Div-BS [28] 0.320X 0.424X 0.562 0.729 1.032X 0.536 0.255X 0.184 7.60× × X

AG-CVAE [32] 0.299× 0.402× 0.544 0.716 0.963 0.518× 0.237× 0.173× - - ×
POS 0.306 0.419 0.570X 0.744X 1.014 0.531 0.252 0.188X 1.13X X X

POS+Joint 0.305 0.415 0.563 0.737 1.020 0.531 0.251 0.185 1.13X X X

Beam search

(w. Likelihood)

100

0.300× 0.397× 0.532× 0.703× 0.937× 0.519× 0.246 0.174× 18.24 × ×

Beam search 0.317 0.419 0.558 0.729 1.020 0.532 0.253 0.186 40.39× × X

Div-BS [28] 0.325X 0.430X 0.569X 0.734 1.034 0.538X 0.255X 0.187 39.71 × X

AG-CVAE [32] 0.311 0.417 0.559 0.732 1.001 0.528 0.245× 0.179 - - ×
POS 0.311 0.421 0.567 0.737 1.036 0.530 0.253 0.188X 7.54 X X

POS+Joint 0.316 0.425 0.569X 0.739X 1.045X 0.532 0.255X 0.188X 7.32 X X

Table 3: Best-1 accuracy by consensus re-ranking. Our POS methods obtain higher scores on captioning metrics than

AG-CVAE [32]. This demonstrates our POS natural language prior is more useful than the abstract latent vector used by

VAE-based methods. POS methods obtain comparable accuracy to Beam Search and Div-BS [28], and they are more com-

putationally efficient at sampling (i.e., high speed). Note, we also outperform the standard beam search that uses likelihood

based ranking. For these results, consensus re-ranking [7] is used to pick the best-1 caption from all sampled captions (unless

‘w. Likelihood’ is specified). For fair comparison, each method uses the same 80-dimensional object vector from faster

rccn [23] and the same image features/parameters for consensus re-ranking. The captioning metrics are the same as in Tab. 2.

Note, Xindicates good performance on the metric for the corresponding column and × indicates bad performance.

Method #samples Meteor Spice

Beam Search (with VGG-16) 5 .247 .175

GAN (with Resnet-152) 5 .236 .166

POS+Joint (with VGG-16) [25] 5 .247 .180

Table 4: Comparison to GAN-based method. To com-

pare to GAN, we train our POS+Joint on another split

of MSCOCO by Karpathy et al. [12]. Our POS+Joint

method samples more accurate best-1 captions than the

GAN method. POS+Joint also obtains better SPICE score

on this split compared to beam search. Our accuracy may

improve with the use of Resnet-152 features. For fair com-

parison, we use the same 80-dimensional object vectors

from faster rcnn [23] and rank the generated captions with

likelihood for all methods.

for validation, and 1,000 images for testing; and (2) Karpa-

thy et al. [12] using 113,287 images for training, 5,000 im-

ages for validation and 5,000 images for testing. The latter

split is used to compare to GAN-based results in Tab. 4.

Methods. In the results, we denote our approach by POS,

and our approach with joint training by POS+Joint (see

Sec. 4.2 for the differences). We compare to the addi-

tive Gaussian conditional VAE-based diverse captioning

method of Wang et al. [32], denoted by AG-CVAE. Our

captioning network is based on [3]. For a fair compari-

son to beam search we also compare to convolutional cap-

tioning [3] with beam search. This is referred to as beam

search. We compare to diverse beam search denoted de-

noted by Div-BS. The abbreviation GAN is used to denote

the GAN-based method in [25].

Evaluation criteria. We compare all methods using four

criteria – accuracy, diversity, speed, human perception:

• Accuracy. In Sec. 5.1 (Best-1 Accuracy) we com-

pare the accuracy using the standard image captioning

task of generating a single caption. Subsequently, in

Sec. 5.2 (Best-kth Accuracy), we assess the accuracy

of k captions on different image captioning metrics.

• Diversity. We evaluate the performance of each

method on different diversity metrics in Sec. 5.3.

• Speed. In addition to accuracy, in Sec. 5.4, we also

measure the computational efficiency of each method

for sampling multiple captions.

• Human perception. We do a user study in Sec. 5.5.

5.1. Best-1 Accuracy

We use two ranking methods – oracle and consensus re-

ranking – on the set of generated captions and pick the best-

1 caption. Our results for oracle re-ranking in Tab. 2 and

for consensus re-ranking in Tab. 3 show that, beam search

and diverse beam search are accurate however slow. POS

is both fast and accurate. POS outperforms the accuracy of

AG-CVAE.

Oracle re-ranking. The reference captions of the test set

are used and the generated caption with the maximum score

for each metric is chosen as best-1 (as also used in [32]).

This metric permits to assess the best caption for each met-

ric and the score provides an upper bound on the achievable

best-1 accuracy. Higher oracle scores are also indicative of

the method being a good search method in the space of cap-

tions. Results in Tab. 2 show that beam search obtains the

best oracle scores. However, it is painfully slow (∼ 20s

per image to sample 100 captions). POS, POS+Joint obtain

higher accuracy than AG-CVAE and comparable accuracy

to beam search with faster runtime.

Consensus re-ranking scores. In a practical test setting,
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Figure 3: Best-10 CIDEr and SPICE accuracy. Our POS and POS+Joint achieve best-k accuracy comparable to Beam

Search and Div-BS [28] with faster computation time. We outperform the best-k scores of AG-CVAE [32], demonstrating

part-of-speech conditioning is better than abstract latent variables of a VAE. Note, this figure is best viewed in high-resolution.

Method Beam size Distinct # Novel sentences mBleu-4 n-gram Diversity (Best-5) Overall Diversity

or #samples Captions (Best-5) (Best-5) Div-1 Div-2

Beam search

20

100% 2317 0.777 0.21 0.29 ×
Div-BS [28] 100% 3106 0.813 0.20 0.26 ×
AG-CVAE [32] 69.8% 3189 0.666 0.24 0.34 X

POS 96.3% 3394 0.639 0.24 0.35 X

POS+Joint 77.9% 3409 0.662 0.23 0.33 X

Beam search

100

100% 2299 0.781 0.21 0.28 ×
Div-BS [28] 100% 3421 0.824 0.20 0.25 ×
AG-CVAE [32] 47.4% 3069 0.706 0.23 0.32 X

POS 91.5% 3446 0.673 0.23 0.33 X

POS+Joint 58.1% 3427 0.703 0.22 0.31 X

Human 5 99.8% - 0.510 0.34 0.48

Table 5: Diversity statistics. For each method, we report the number of novel sentences (i.e., sentences not seen in the

training set) out of at most best-5 sentences after consensus re-ranking. Though Beam Search showed high accuracy in

Tab. 2, 3 and Fig. 3, here, we see that it produces less number of novel sentences than our POS methods. Therefore, beam

search is more prone to regurgitating training data. Low mBleu-4 indicates lower 4-gram overlap between generated captions

and more diversity in generated captions. POS has the lowest mBleu-4 and therefore high diversity in generated captions.

For details on other metrics see Sec. 5.3.

reference captions of the test set won’t be available to rank

the best k captions and obtain best-1. Therefore, in con-

sensus re-ranking, the reference captions of training images

similar to the test image are retrieved. The generated cap-

tions are ranked via the CIDEr score computed with respect

to the retrieved reference set [7].

We use the same image features [31] and parameters

for consensus re-ranking as [32]. Tab. 3 shows that our

methods POS and POS+Joint outperform the AG-CVAE

baseline on all metrics. Moreover, our methods are faster

than beam search and diverse beam search. They pro-

duce higher CIDEr, Bleu-1,2, METEOR and SPICE scores.

Other scores are comparable and differ in the 3rd decimal.

Note, our POS+Joint achieves better scores than POS, espe-

cially for 100 samples. This demonstrates that joint training

is useful.

We also train our POS+Joint method on the train/test

split of Karpathy et al. [12] used by the GAN method [25].

In Tab. 4, we show that we obtain higher METEOR and

SPICE scores than those reported in [25].

Baseline Method POS Wins Baseline Method Wins

Beam search 57.7% 42.2%

Diverse beam search [28] 45.3% 54.6%

AG-CVAE [32] 64.8% 35.1%
Table 6: We show the user captions sampled from best-k

(same kth ranked, k = 1 to 5) for baseline methods and our

POS. The user is allowed to pick the caption that best de-

scribes the image. Note, user is not aware of the method

that generated the caption. Here, we observe that our POS

method outperforms Beam search and AG-CVAE on our

user study. Our user study has 123 participants with on av-

erage 23.3 caption pairs annotated by each user.

5.2. Best­kth Accuracy

Our captioning method can be conditioned on different

part-of-speech tags to generate diverse captions. For diverse

image captioning, in addition to best-1 accuracy, best-kth

accuracy should also be measured. Best-kth accuracy is the

score of the kth ranked caption, therefore it is lower than the

best-1 score. All k generated captions should be accurate

and therefore it is desirable to have high best-kth scores.

This metric has not been reported previously [25, 32].
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POS:

- two people are standing on the back of an elephant.

- a man and a woman are on the back of an elephant.

- two people standing on top of an elephant.

- a group of people riding an elephant in a park.

- two people are riding an elephant on a dirt road.

Beam Search:

- a couple of people standing on top of an elephant.

- a couple of people are standing on top of an 

elephant.

- a man and a woman standing next to an elephant.

- a man and woman standing next to an elephant.

- a group of people standing next to an elephant.
Diverse Beam Search:

- two people are standing next to an elephant.

- a couple of people standing next to an elephant.

- a couple of people standing next to an elephant on

a dirt road.

- a couple of people that are standing next to an 

elephant.

- a couple of people standing next to an elephant on 

top of a.

AG-CVAE:

- a group of people riding on top of an elephant.

- a man and a man riding on top of an elephant.

- a large group of people riding on top of an 

elephant.

- a man riding on the back of a elephant.

- a group of people standing on top of an 

elephant.

POS:

- a rear view mirror on the side of a car window.

- a side view mirror of a car with a bird on the

window.

- a rear view mirror hanging on the side of a car.

- a side view of a car with birds in the side mirror.

- a view of a mirror of a car looking at a mirror.

Diverse Beam Search:

- a close up of a bird on a car mirror. 

- a bird is sticking its head out of a car window. 

- a close up of a bird on a car. 

- a close up of a bird on the back of a car. 

- a bird that is sitting in the back of a car.

Beam Search:

- a reflection of a bird on the back of a truck. 

- a close up of a bird on the back of a vehicle. 

- a bird is perched on the back of a car. 

- a bird is sitting in the seat of a car. 

- a bird that is sitting in the back seat of a car.

AG-CVAE:

- a dog is looking out the window of a car.

- a dog is sitting in the window of a car.

- a small bird sitting on the side of a car.

- a dog sitting on the side of a car.

- a bird sitting on the back of a car.

(a) Qualitative Comparison (b) Diversity (or Overlap) Comparison

Figure 4: In figure on left, notice POS captions contain things like rear/side view mirror, dirt road, the quantifier ‘two’ which

is less common in other methods. The inaccuracies are highlighted in red and the novel parts in green. In figure on right, we

compare the diversity (or overlap) of captions. The mBleu-4 score measures 4-gram overlap between one generated caption

and the rest. Lower is better, e.g., 0 means caption has no 4-gram overlap to other sentences. POS is better than BS and

Div-BS in the plots above (lower mBleu-4 scores). Note, ground-truth 5 captions all have 0 overlap to each other for this

example. On our 1000 image test set with 10 captions generated per image, POS generates 10.94% sentences with 0 overlap;

in contrast Div-BS generates 1.02% and Beam Search 2.4%. Figure best viewed in high-resolution.

In Fig. 3, we compare best-kth (k = 1 to 10) scores for

all methods. Note, the accuracy of AG-CVAE drops dras-

tically on both CIDEr and Spice, while our POS methods

maintain accuracy comparable to beam search. This proves

that our POS image summaries are better at sampling accu-

rate captions than the abstract latent variables of a VAE.

5.3. Evaluation of Diversity

In Tab. 5 we compare methods on diversity metrics.

(1) Uniqueness. The number of unique sentences gener-

ated after sampling. Beam search and diverse beam search

always sample a unique sentence. Note, our POS also sam-

ples a high number of unique sentences 19.26 (96.3%) out

of 20, 91.55 out of 100. The uniqueness reduces for joint

training. This is because, generation of a caption while

training POS+Joint is based on a noisy POS tag sequence

sampled from the Gumbel softmax. Therefore, the caption

may not be compatible with this noisy POS tag sequence

which leads to an overly smooth latent representation for

the POS tag. Therefore, different POS tags may produce

the same latent code and hence the same caption.

(2) Novel sentences. We measure the number of novel sen-

tences (not seen in train), and find that our POS-based meth-

ods produce more novel sentences than all other methods.

Beam search produces the least number of novel sentences.

(3) Mutual overlap. We also measure the mutual overlap

between generated captions. This is done by taking one cap-

tion out of k generated captions and evaluating the average

Bleu-4 with respect to all other k−1 captions. Lower value

indicates higher diversity. POS is the most diverse. Note,

the average score is computed by picking every caption vs.

the remaining k − 1 captions.

(4) n-gram diversity (div-n). We measure the ratio of dis-

tinct n-grams per caption to the total number of words gen-

erated per image. POS outperforms other methods.

5.4. Speed

In Fig. 1 we showed that our POS based methods have

better time complexity than beam search and diverse beam

search. The time complexity of our POS-based approach

is the same as sampling from a VAE or GAN, provided the

max probability word is chosen at each word position (as

we do). The empirical results in Tab. 2 and Tab. 3 show that

POS methods are 5× faster than beam search methods.

5.5. User Study

Fig. 4 compares the captions generated by different

methods and in Tab. 6, we provide the results of a user study.

A user is shown two captions sampled from two different

methods. The user is asked to pick the more appropriate

image caption. Tab. 6 summarizes our results. We observe

POS outperforms AG-CVAE and Beam search.

6. Conclusion
The developed diverse image captioning approach con-

ditions on part-of-speech. It obtains higher accuracy (best-

1 and best-10) than GAN and VAE-based methods and

is computationally more efficient than the classical beam

search. It performs better on different diversity metrics

compared to other methods.
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