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Abstract

In this paper, we investigate the problem of zero-

shot sketch-based image retrieval (ZS-SBIR), where human

sketches are used as queries to conduct retrieval of photos

from unseen categories. We importantly advance prior arts

by proposing a novel ZS-SBIR scenario that represents a

firm step forward in its practical application. The new set-

ting uniquely recognizes two important yet often neglected

challenges of practical ZS-SBIR, (i) the large domain gap

between amateur sketch and photo, and (ii) the necessity

for moving towards large-scale retrieval. We first contribute

to the community a novel ZS-SBIR dataset, QuickDraw-

Extended, that consists of 330, 000 sketches and 204, 000
photos spanning across 110 categories. Highly abstract

amateur human sketches are purposefully sourced to max-

imize the domain gap, instead of ones included in existing

datasets that can often be semi-photorealistic. We then for-

mulate a ZS-SBIR framework to jointly model sketches and

photos into a common embedding space. A novel strategy

to mine the mutual information among domains is specif-

ically engineered to alleviate the domain gap. External

semantic knowledge is further embedded to aid semantic

transfer. We show that, rather surprisingly, retrieval per-

formance significantly outperforms that of state-of-the-art

on existing datasets that can already be achieved using a

reduced version of our model. We further demonstrate the

superior performance of our full model by comparing with a

number of alternatives on the newly proposed dataset. The

new dataset, plus all training and testing code of our model,

will be publicly released to facilitate future research†.

1. Introduction

In the context of retrieval, sketch modality has shown

great promise thanks to the pervasive nature of touchscreen

devices. Consequently, research on sketch-based image re-

trieval (SBIR) has flourished, with many great examples

addressing various aspects of the retrieval process: fine-

∗These authors contributed equally to this work.
†http://dag.cvc.uab.es/doodle2search/
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Figure 1. Qualitative comparison of sketch datasets, columns show

examples belonging the same class. Sketchy, TUBerlin and Quick-

Draw datasets orderly contain sketches with increasing level of

abstraction. It is worth noting that despite being the most abstract

dataset, QuickDraw sketches can still be reliably recognised.

grained matching [37, 30, 24], large-scale hashing [17, 16],

cross-modal attention [5, 30] to name a few.

However, a common bottleneck identified by almost all

sketch researches is that of data scarcity. Different to pho-

tos that can be effortlessly crawled for free, sketches have

to be drawn one by one by human being. As a result,

existing SBIR datasets suffer in both volume and variety,

leaving only less than thousand of sketches per category,

with maximum number of classes limited to few hundreds.

This largely motivated the problem of zero-shot SBIR (ZS-

SBIR), where one wishes to conduct SBIR on object cate-

gories without having the training data. ZS-SBIR is increas-

ingly being regarded as an important component in unlock-

ing the practical application of SBIR, since million-scale

datasets that have been used to train commercial photo-only

systems [4] might not be feasible.

The problem of ZS-SBIR is extremely challenging. It

shares all challenges laid out in conventional SBIR: (i) large

domain gap between sketch and image, and (ii) high degree
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of abstraction found in human sketches as a result of vari-

ant drawing skills and visual interpretations. Additionally,

it also needs the semantic transference from the seen to un-

seen categories for the purpose of zero-shot learning. Over

and above all, in this paper, we are interested in moving to-

wards the practical adaptation of ZS-SBIR technology. For

that, a more appropriate dataset that best capture all these

challenges is required.

Therefore, our first contribution is a new dataset to simu-

late the real application scenario of ZS-SBIR, which should

satisfy the following requirements. First, the dataset needs

to mimic the real-world abstraction gap between sketch and

photo. Such amateur sketches are very different from the

ones currently studied by existing datasets, which are ei-

ther too photo-realistic [7] or produced by recollection of

a reference images [27] (Figure 1 offers a comparative ex-

ample). Second, in order to learn a reliable cross-domain

embedding between amateur sketch and photo, the dataset

much faithfully capture of a full variety of sketch samples

from users having various drawing skills. Our proposed

dataset, QuickDraw-Extended, contains 330, 000 sketches

and 204, 000 photos in total spanning across 110 categories.

In particular, it includes 3, 000 amateur sketches per cate-

gory carefully sourced from the recently released Google

Quickdraw dataset [12] – six times more than the next

largest. It also has a search space stretching to 166million

total comparisons in the test set, compared to Sketchy-

Extended and TUBerlin-Extended with just 10 million and

1.9 million, respectively.

This dataset and the real-world scenario it mimics, es-

sentially make the ZS-SBIR task more difficult. This leads

to our second contribution which is a novel cross-domain

zero-shot embedding model that addresses all challenges

posed by this new setting. Our base network is a visually-

attended triplet ranking model that is commonly known in

the SBIR community to produce state-of-the-art retrieval

performances [37, 30]. To our surprise, just by adopting

such a triplet formulation, we can already achieve retrieval

performances drastically better than that of the previously

reported ZS-SBIR results on commonly used datasets. We

attribute this phenomena to previous datasets being too sim-

plistic in terms of the cross-domain abstraction gap and the

diversity of sketch samples. This further justifies the neces-

sity of a new practical dataset like ours. We then propose

two novel techniques to help learn a better cross-domain

transfer model. First, a domain disentanglement strategy

is designed to bridge gap between the domains by forcing

the network to learn a domain-agnostic embedding, where

a Gradient Reversal Layer (GRL) [8] encourages the en-

coder to extract mutual information from sketches and pho-

tos. Second, a novel semantic loss to ensure that semantic

information is preserved in the obtained embedding. By ap-

plying a GRL only to the negative samples at the input of

the semantic decoder helps the encoder network to separate

the semantic information of similar classes.

Extensive experiments are first carried out on the two

commonly used ZS-SBIR datasets, TUBerlin-Extended [6]

and Sketchy-Extended [27]. The results show that the even

a reduced version of our model can outperform current

state-of-the-arts by a significant margin. The superior per-

formance of the proposed method is further validated on our

own dataset, with ablative studies to draw insights towards

each of the proposed system components.

2. Related Work

SBIR Datasets. One of the key barriers towards large-scale

SBIR research is the lack of appropriate benchmarks. The

Sketchy dataset [27] is the mostly used one for this pur-

pose, which contains 75,471 hand-drawn sketches of 12,500

object photos belonging to 125 different categories. Later,

Liu et al. [17] collected 60,502 natural images from Im-

ageNet [4] in order to fit the task of large-scale SBIR.

This dataset having contained highly detailed or less ab-

stract sketches, models trained on Sketchy have high chance

of getting collapsed in real life scenario. Two more fine-

grained SBIR datasets with paired sketches and images

are shoe and chair datasets which were proposed in [37].

The shoe dataset contains altogether 6648 sketches and

2000 photos, whereas, the chair dataset altogether con-

tains 297 sketches and photos. However, being fine-grained

pairs these two datasets also have similar disadvantages as

the Sketchy dataset. TU-Berlin [6] being the other popu-

lar dataset originally contains 250 classes of hand-drawn

sketches, where each class roughly contains 80 instances.

It was extended with real images by [38] for SBIR pur-

poses. This dataset has a lot of confusion regarding the class

hierarchy, for an example, swan, seagull, pigeon,

parrot, duck, penguin, owl have substantial visual

similarity and commonality with standing bird and

flying bird which are another separate categories of

the TU-Berlin dataset. To obliterate, these difficulties faced

by the SBIR works, in this paper, we introduce QuickDraw-

Extended dataset, where we take the sketch classes of the

Google QuickDraw dataset [12] and provide the corre-

sponding set of images to facilitate the training of large-

scale SBIR system.

Sketch-based Image Retrieval (SBIR). The main chal-

lenge that most of the SBIR tasks address is bridging the

domain gap between sketch and natural image. In litera-

ture, these existing methods can be roughly grouped into

two categories: hand crafted and cross-modal deep learning

methods. The hand-crafted techniques mostly work with

Bag-of-Words representations of sketch and edge map of

natural image on top of some off-the-shelf features, such

as, SIFT [19], Gradient Field HOG [10], Histogram of

Edge Local Orientations [25] or Learned Key Shapes [26])
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etc. This domain shift issue is further addressed by cross-

domain deep learning-based methods [27, 37], where they

have used classical ranking losses, such as, contrastive loss,

triplet loss [32] or more elegant HOLEF loss [30] within

a siamese like network. Based on the problem at hand,

two separated tasks have been identified: (1) Fine-grained

SBIR (FG-SBIR) aims to capture fine-grained similarities of

sketch and photo [15, 27, 37] and (2) Coarse-grained SBIR

(CG-SBIR) performs a instance level search across multiple

object categories [38, 10, 11, 31, 38], which has received a

lot of attention due to its importance. Realising the need of

large-scale SBIR, some researchers have proposed a variant

of cross-modal hashing framework for the same [17, 39],

which also showed promising results in SBIR scenario. In

contrast, our proposed model overcomes this domain gap by

mining the modality agnostic features using a domain loss

along with a GRL.

Zero-Shot Sketch-based Image Retrieval (ZS-SBIR).

Early works on zero-shot learning (ZSL) were mostly fo-

cused on attribute based recognition [14], which is later

augmented by another major line that focus on learning a

joint embedding space for image feature representation and

class semantic descriptor [3, 34, 13, 35, 18]. Depending on

the selection of joint embedding space and type of projec-

tion function utilised between the visual to semantic space,

existing models can be divided into three groups: (i) pro-

jected from visual feature space to semantic space [14, 21],

(ii) projected from semantic space to the visual feature

space [3], and (iii) an intermediate space that both are si-

multaneously projected to [40]. In contrast to these existing

works, our model can be seen as a combination of the first

and second groups, where the embedding is on the visual

feature space, but asked to additionally recover its embod-

ied semantics with a decoder.

Although SBIR and ZSL have been extensively studied

among the research community, very few works have stud-

ied their combination. Shen et al. [28] propose a multi-

modal network to mitigate the sketch-image heterogeneity

and enhance semantic relations. Yelamarthi et al. [36] re-

sort to a deep conditional generative model, where a sketch

is taken as input and learned to generate its photo features

by stochastically filling the missing information. The main

motivation behind ZS-SBIR lies with sketches being costly

and labour-intensive to source – sketches need to be individ-

ually drawn by hand, other than crawled for free from the

internet. To enable rapid deployment on categories where

training sketches are not readily available, it is important to

leverage on existing sketch data from other categories. The

key difference between ZS-SBIR and other ZS tasks, which

is also the main difficulty of the problem, lies with the ad-

ditional modality gap between sketch and photo.

3. QuickDraw-Extended Dataset

Existing datasets do not cover all the challenges derived

from a ZS-SBIR system. Therefore, we propose a new

dataset named QuickDraw-Extended Dataset that is spe-

cially designed for this task. First we review the existing

datasets in the literature used for ZS-SBIR and motivate

the purpose of the new dataset. Thus, we provide a large-

scale ZS-SBIR dataset that overcomes the main problems of

the existing ones. Existing datasets were not originally de-

signed for a ZS-SBIR scenario, but they have been adapted

by a redefining the partitions setup. In addition, the main

limitations that we overcome with the new dataset are (i) the

large domain gap between amateur sketch and photo, and

(ii) the necessity for moving towards large-scale retrieval.

Sketchy-Extended Dataset [27]: Originally created as a

fine-grained association between sketches to particular pho-

tos for fine-grained retrieval. This dataset has been adapted

to the task of ZS-SBIR. On one hand, Shen et al. [28] pro-

posed to set aside 25 random classes as a test set whereas

the training is performed in the rest 100 classes. On the

other hand, Yelamarthi et al. [36] proposed a different par-

tition of 104 train classes and 21 test classes in order to

make sure that test is not present in the 1,000 classes of

ImageNet. Its main limitation for the task of ZS-SBIR is

its fine-grained nature, i.e., each sketch has a correspond-

ing photo that was used as reference at drawing time. Thus,

participants tended to draw the objects in a realistic fash-

ion, producing sketches resembling that of a true edge-map

very well. This essentially narrows the cross-domain gap

between sketch and photo.

TUBerlin-Extended Dataset [6]: It is a dataset that was

created for sketch classification and recognition bench-

marking. In this case, drawers were asked to draw the

sketches giving them only the name of the class. This allows

a semantic connection among sketches and avoids possible

biases. However, the number of sketches is scarce, con-

sidering the variability among the observations of a con-

cept in the real world. Also, some of the design decisions

on the selection of object categories prevent it to be ade-

quate for our zero-shot setting: (i) classes are defined both

in terms of a concept and an attribute (e.g., seagull,

flying-bird); (ii) different WordNet levels are used,

i.e. there are classes that are semantically included in others

(e.g., mug, beer-mug).

3.1. The Dataset

Taking into account the limitations of the previously

described datasets in a ZS-SBIR scenario, we contribute

to the community a novel large-scale dataset, QuickDraw-

Extended. We identified the following challenges of a prac-

tical ZS-SBIR, (i) the large domain gap between amateur

sketch and photo, and (ii) the necessity for moving towards

large-scale retrieval. According to this, the new dataset
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Table 1. Dataset comparison in terms of their size. Partition is pre-

sented in terms of number of classes used for each set, moreover, #

Comparisons stands for the number of comparisons sketch-image

performed in test.

Sketchy [27] TUBerlin [6] QuickDraw

Partition

(tr+va, te)
(104, 21) (220, 30) (80, 30)

# Sketch/class 500 80 3, 000
# Image/class 600-700 ∼ 764a ∼ 1, 854
# Comparisons ∼ 10Mill. ∼ 1.9Mill. ∼ 166Mill.

aExtremely imbalanced

must fulfil the following aspects: (i) to not have a direct

one-to-one correspondence between sketches and images,

i.e. sketches can be rough conceptual abstractions of im-

ages produced in an amateur drawing style; (ii) to avoid

ambiguities and overlapping classes; (iii) large intra-class

variability provided by the high abstraction level of differ-

ent drawers.

In order to accomplish these objectives, we took advan-

tage of the Google Quick, Draw! [12] data which is a huge

collection of drawings (50 millions) belonging to 345 cat-

egories obtained from the Quick, Draw!‡ game. In this

game, the user is asked to draw a sketch of a given cate-

gory while the computer tries to classify them. The way

sketches are collected provides the dataset a large variabil-

ity, derived from human abstraction. Moreover, it addresses

the large domain gap between non-expert drawers and pho-

tos that is not considered in previous benchmarks. Hence,

we propose to make use of a subset of sketches to con-

struct a novel dataset for large-scale ZS-SBIR containing

110 categories (80 for training and 30 for testing). Classes

such as circle of zigzag are directly discarded because

they can not be used in an appropriate SBIR. As a retrieval

gallery, we provide images extracted from Flickr tagged

with the corresponding label. Manual filtering is performed

to remove outliers. Moreover, following the idea introduced

in [36] for the Sketchy-Extended dateset, we provide a test

split which forces that test classes are not present in Im-

ageNet in case of using pre-trained models. Finally, this

dataset consists of 330,000 sketches and 204,000 photos

moving towards a large-scale retrieval. We consider that

this dataset will provide better insights about the real per-

formance of ZS-SBIR in a real scenario.

Table 1 provides a comparison of the three benchmarks

for the task of ZS-SBIR. To the best of our knowledge,

this is the first time that a real large-scale problem is ad-

dressed providing 6 times more sketches and more than the

double of photos per each class. Qualitatively QuickDraw-

Extended provides a high abstraction level than previous

‡https://quickdraw.withgoogle.com/
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Figure 2. Qualitative comparison of the datasets. The different lev-

els of abstraction in the sketches can be appreciated. From the top

to the bottom, the figure also shows the decrease in the alignment

between sketches and images.

benchmarks as it is shown in Figure 2.

4. A ZS-SBIR framework

4.1. Problem Formulation

Let C be the set of all possible categories in a given

dataset; X = {xi}
N
i=1 and Y = {yi}

M
i=1 be the set of pho-

tos and sketches respectively; lx : X → C and ly : Y → C
be two labelling functions for photos and sketches respec-

tively. Such that give an input sketch an optimal ranking

of gallery images can be obtained. In a zero-shot frame-

work, training and testing sets are divided according to seen

Cs ⊂ C and unseenCu ⊂ C categories, where Cs∩Cu = ∅.

Thus, the model needs to learn an aligned space between

sketches and photos to perform well on test data whose

classes have never been used in training. We define the set

of seen and unseen photos as X s = {xi; lx(xi) ∈ Cs}Ni=1

and X u = X \ X s. We define analogously the seen and

unseen sets for sketches, denoted as Ys and Yu.

The proposed framework is divided in two main compo-

nents. The encoder transforms the input image to the cor-

responding embedding space. The second component is the

cost function which guides the learning process to provide
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Figure 3. Proposed architecture for ZS-SBIR which maps sketches and photos in a common embedding space. It combines three losses:

(i) triplet loss, to learn a ranking metric; (ii) domain loss to merge images and sketches to an indistinguishable space making use of a GRL;

(iii) semantic loss forces the embeddings to contain semantic information by reconstructing the word2vec embedding of the class. It also

helps to distinguish semantically similar classes by means of a GRL on the negative example (best viewed in color).

the embedding with the desired properties. Figure 3 outlines

the proposed approach.

4.2. Encoder Networks

Given a distance function d(·, ·), the aim of our frame-

work is to learn two embedding functions φ : X → R
D

and ψ : Y → R
D which respectively map the photo and

sketch domain into a common embedding space. Later,

these embedding functions are used in the retrieval task dur-

ing the test phase, therefore, they should possess a rank-

ing property related to the considered distance function.

Hence, given two photos x1, x2 ∈ X and a sketch y ∈ Y ,

we expect the embedding fulfils the following condition:

d(φ(x1), ψ(y)) < d(φ(x2), ψ(y)), when lx(x1) = ly(y)
and lx(x2) 6= ly(y). In a retrieval scenario, our system is

able to provide a ranked list of images by the chosen dis-

tance function. In this framework, d has been set as ℓ2-

distance. During training, the two embedding φ(·) and ψ(·)
are trained with multi-modal information, therefore they

presume to learn a modality free representation.

Our embedding functions φ(·) and ψ(·) are defined as

two CNNs with attention where the last fully-connected

layer has been replaced to match the desired embedding

size D. The attention [33] mechanism helps our system

to localise the important features in both modalities. Soft-

attention is the widely used one because it is differentiable,

and hence it can be learned end-to-end with the rest of the

network. Our soft-attention model learns an attention mask

which assigns different weights to different regions of an

image given a feature map. These weights are used to high-

light important features, therefore, given an attention mask

att and a feature map f , the output of the attention module

is computed by f + f · att. The attention mask is com-

puted by means of 1 × 1 convolution layers applied on the

corresponding feature map.

4.3. Learning objectives

The learning objective of the proposed framework com-

bines: (i) Triplet Loss; (ii) Domain Loss, (iii) Semantic

Loss. These objective functions provide visual and seman-

tic information to the encoder network. Let us consider a

triplet {a, p, n} where a ∈ Ys, p ∈ X s and n ∈ X s are re-

spectively the anchor, positive and negative samples during

the training. Moreover, lx(p) = ly(a) and lx(n) 6= ly(a).
Triplet Loss: This loss aims to reduce the distance be-

tween embedded sketch and image if they belong to the

same class and increase it if they belong to different classes.

For simplicity, if we define the distances between the sam-

ples as δ+ = ‖ψ(a)− φ(p)‖2 and δ− = ‖ψ(a)− φ(n)‖2
for the positive and negative samples respectively, then, the

ranking loss for a particular triplet can be formulated as

λ(δ+, δ−) = max{0, µ+δ+−δ−} where µ > 0 is a margin

parameter. Batch-wise, the loss is defined as:

Lt =
1

N

N
∑

i=1

λ(δi+, δ
i
−). (1)

This loss measures the violation of the ranking order of the

embedded features. Therefore, the order aimed by this loss

is δ− > δ+ + µ, if this is the case, the network is not up-

dated, otherwise, the weights of the network are updated

accordingly. Triplet loss provides a metric space with rank-

ing properties based on visual features.

2183



Domain Loss: Triplet loss mentioned above does not ex-

plicitly enforce the mapping of sketch and image samples

to a common space. Therefore, at this end, to ensure that

the obtained embedding belong to the same space, we pro-

pose to use a domain adaptation loss [8]. The basic idea

of this loss is to obtain a domain-agnostic embedding that

does not contain enough information to decide whether it

comes from a sketch or photo. Given the embedding φ(·)
and ψ(·), we make use of a Multilayer Perceptron (MLP)

as a binary classifier trying to predict which was the initial

domain. Purposefully, in order to create indistinguishable

embedding we use a GRL defined as Rλ(·), which applies

the identity function during the forward pass Rλ(x) = x,

whereas during the backward pass it multiplies the gradi-

ents by the meta-parameter −λ, dRλ

d x
= −λI . This opera-

tion reverses the sign of the gradient that flows through the

CNNs. In this way, we encourage our encoders to extract

the shared representation from sketch and photo. For this

loss, we define a meta-parameter λd that changes from 0
(only trains the classifier but does not update the encoder

network) to 1 during the training according to a defined

function. In our case it is defined according to the iter-

ation i as zλ(i) = (i − 5)/20. Following the notation,

f : R
D → [0, 1] be the MLP and e ∈ R

D an embed-

ding coming from the encoders network. Then we can

define the binary cross entropy of one of the samples as

lt(e) = t log(f(Rλd
(e))) + (1 − t) log(1 − f(Rλd

(e))),
where e is the embedding obtained by the encoder network

and t is 0 and 1 for sketch and photo domains respectively.

Hence, the domain loss is defined as:

Ld =
1

3N

N
∑

i=1

(l0(ψ(ai)) + l1(φ(pi)) + l1(φ(ni))) (2)

Semantic Loss: A decoder network trying to reconstruct

the semantic information of the corresponding category

from the generated embedding is proposed. This recon-

struction forces that the semantic information is encoded

in the obtained embedding. In this case, we propose to

minimise the cosine distance with the reconstructed feature

vector and the semantic representation of the category. In-

spired by the idea presented by Gonzalez et al. [9] for cross-

domain disentanglement, we propose to exploit the negative

sample to foster the difference between similar semantic

categories. Hence, we apply a GRL Rλs
(·) to the negative

sample at the input of the semantic decoder and we train it

to reconstruct the semantics of the positive example. The

idea is to help the encoder network to separate the semantic

information of similar classes. In this case, we decided to

keep the meta-parameter λs to a fixed value among all the

training, in particular, it was set to 0.5.

Let c ∈ Cs be the corresponding category of the an-

chor a. The semantics of this category are obtained by the

word2vec [20] embedding trained on part of Google News

dataset (∼ 100 billion words), GloVe [23] and fastText [1]

(more results are available in supplementary materials ). Let

g : RD → R
300 be the semantic reconstruction network and

s = embedding(c) ∈ R
300 be the semantics of the given

category. Hence, given an image embedding e ∈ R
D the co-

sine loss is defined as lc(e, s) = 1
2

(

1− g(e)st

||g(e)||·||s||

)

. The

semantic loss is defined as follows:

Ls=
1

3N

N
∑

i=1

(lc(ψ(ai), si) + lc(φ(pi), si)

+lc(Rλs
(φ(ni)), si)) (3)

Therefore, the whole network will be trained by a combina-

tion of three proposed loss functions.

L = α1Lt + α2Ld + α3Ls, (4)

where the weighting factors α1, α2 and α3 are equal in

our model. Algorithm 1 presents the training algorithm fol-

lowed in this work. Γ(·) denotes the optimiser function.

Algorithm 1 Training algorithm for the proposed model .

Input: Photo-Sketch data {X ,Y}; Class semantics S;

λs = 0.5 and max training iterations T

Output: Encoder networks parameters {Θφ,Θψ}.

1: repeat

2: Get a random mini-batch {yi, x
p
i , x

n
i , si}

NB

i=1
; where

3: yi, x
p
i belong to the same class and xni does not.

4: λd ← clip(zλ(·),min = 0,max = 1)
5: L ← Eq. 4

6: Θ← Θ− Γ(∇ΘL)
7: until Convergence or max training iterations T

5. Experimental Validation

This Section experimentally validates the proposed ZS-

SBIR approach on three benchmarks Sketchy-Extended,

TUBerlin-Extended and QuickDraw-Extended, highlighting

the importance of the newly introduced dataset which is

more realistic for practical SBIR purpose. A detailed com-

parison with the state-of-the-art is also presented.

5.1. Zeroshot Experimental Setting

Implementation details: Our CNN-based encoder net-

works φ(·) and ψ(·) make use of a ImageNet pre-trained

VGG-16 [29] architecture. This can be replaced by any

model to enhance the extracted feature quality. Both, do-

main classifier f(·) and semantic reconstruction g(·) of the

proposed model makes use of 3 fully connected layers with

ReLU activation functions. The whole framework was im-

plemented with PyTorch [22] deep learning tool and is train-

able on single Pascal Titan X GPU card.
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Table 2. Comparison against the state-of-the-art with that of the proposed model. Note: the same train and test split are used for all

experiments on CVAE [36] and ours. ZSIH [28] did not report the specific details on their split (other than 25 classes were used for

testing), and we could not produce their results on QuickDraw-Extended due to the lack of publicly available code.

Method
Sketchy-Extended [27] TUBerlin-Extended [6] QuickDraw-Extended

mAP mAP@200 P@200 mAP mAP@200 P@200 mAP mAP@200 P@200

ZSIH [28] 0.2540a − − 0.2200 − − Not able to produce

CVAE [36] 0.1959 0.2250 0.3330 0.0050 0.0090 0.0030 0.0030 0.0060 0.0030

Ours 0.3691 0.4606 0.3704 0.1094 0.1568 0.1208 0.0752 0.0901 0.0675

aUsing a random partition of 25 test categories following the setting proposed in [26], we obtained 0.3521 for our model.

Table 3. Ablation study for the proposed model. As baseline, the triplet loss is used and the different modules are incrementally added.

Attn. Dom. Sem.
Sketchy-Extended [27] TUBerlin-Extended [6] QuickDraw-Extended

mAP mAP@200 P@200 mAP mAP@200 P@200 mAP mAP@200 P@200

- - - 0.3020 0.3890 0.3091 0.0590 0.1040 0.0682 0.0354 0.0546 0.0454
X - - 0.3207 0.4150 0.3342 0.0729 0.1141 0.1002 0.0456 0.0635 0.0496
X X - 0.3256 0.4113 0.3444 0.0845 0.1264 0.1080 0.0651 0.0881 0.0615
X - X 0.3392 0.4146 0.3586 0.1055 0.1496 0.1115 0.0693 0.0896 0.0625
X X X 0.3691 0.4606 0.3704 0.1094 0.1568 0.1208 0.0752 0.0901 0.0675

Training setting: Our system uses triplets to utilise the in-

herent ranking order. The training batches are constructed

in a way so that it can take the advantage of the semantic in-

formation in order to mine hard negative samples for a given

anchor class. This implies that semantically closer classes

will have a higher probability to be used during training and

thus they are likely to be disjoint in the final embedding.

We trained our model following an early stopping strategy

in validation to provide the final test result. The model is

trained end-to-end using the SGD [2] optimiser. The learn-

ing rate used throughout is 1e − 4. The epochs required to

train the model on different dataset is around 40.

Evaluation protocol: The proposed evaluation uses the

metrics used by Yelamarthi et al. [36]. Therefore, the evalu-

ation is performed taking into account the top 200 retrieved

samples. Moreover, we also provide metrics on the whole

dataset. Images labelled with the same category as that of

the query sketch, are considered as relevant. Note that this

evaluation does not consider visually similar drawings that

can be considered correct by human users. For the existing

datasets, we used the proposed splits in [36, 28].

5.2. Model Discussion

This section presents a comparative study with the

state-of-the-art followed by a discussion on the TUBerlin-

Extended results and finally the ablative study. As men-

tioned, our model is build on top of a triplet network. We

take this as a baseline and study the importance of the dif-

ferent components of the full model which includes the at-

tention mechanism, the semantic loss and the domain loss.

Comparison: Table 2 provides comparisons of our full

model results against those of the state-of-the-art. We report

a comparative study with regard to two methods presented

in Section 2, namely ZSIH [28] and CVAE [36]. Note that

we have not been able to reproduce the ZSIH model due

to lack of technical implementation details and the code be-

ing unavailable. Hence, the results on QuickDraw-Extended

dataset nor an evaluation using the top 200 retrieval could

be computed. The last row of the Table 2 shows the result of

our full model. From the Table 2 the results suggest the lim-

itation of the previous models regarding their ability in an

unconstrained domain where sketches have higher level of

abstractions. The CVAE [36] method trained with sketch-

image correspondence has difficulties to capture the intra-

class variability, the domain gap and also the ability to infer

unseen classes. The following conclusions are drawn: (i)

our base model outperforms all the state-of-the-art methods

in Sketchy-Extended Dataset; (ii) our model performs the

best overall on each metric and on almost all the datasets;

(iii) the gap between our model and the state-of-the-art

datasets is almost double in Sketchy-Extended Dataset; (iv)

the difference in the result in previous dataset points out the

need of a new well structured dataset for ZS-SBIR (v) the

new benchmark also provides the different aspects (i.e of se-

mantics, mutual information) that can play important role in

a real ZS-SBIR scenario; (vi) the evaluation shows the im-

portance of going towards large-scale ZS-SBIR where the

retrieval search space is in the range of 166 million compar-

isons (16 times of the current largest dataset).

Discussion on TUBerlin-Extended: As stated in Section 3,
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Sketchy [27] QuickDraw

Query Top-8 retrieved candidates Query Top-8 retrieved candidates

CVAE
[36]

Ours pear skyscraper

CVAE
[36]

Ours door helicopter

Figure 4. Top 8 image retrieval examples given a query sketch. All the examples correspond to a zero-shot setting, i.e. no example have

been seen in training. First row provides a comparison with CVAE [36] method against our pipeline. Note that in some retrieval cases,

for instance, door is confused with window images which can be true even for humans. Green and Red stands for correct and incorrect

retrievals. (Better viewed in pdf)

the results could be heavily affected by the chosen classes

for experiments. Since [28] did not report specific details

on their train and test split, we can not offer a fair compari-

son on TUBerlin-Extended. Instead, for both [36] and ours,

we resort to the commonly accepted median over random

splits setting. And it shows our method favourably beats

[36] by a clear margin. We did however observe a high

degree of fluctuation over the different splits on TUBerlin-

Extended, which re-affirms our speculation on how the cat-

egories included in TUBerlin-Extended might not be opti-

mal for the zero-shot setting (see Section 3). This could

explain the superior performance of [28], yet more experi-

ments are needed to confirm such suspicion. Unfortunately,

again such experiments would not be possible without de-

tails on their train and test split.

Ablation study: Here, we investigate the contribution of

each component to the model, as well as other issues of the

architecture. The first 5 rows of Table 3 present a study of

the contribution of each component to the whole proposed

model. From this Table we can draw the following conclu-

sions: (i) attention plays a major role in improving the base-

line result; (ii) the domain loss is able to alleviate to some

extend the domain gap, this is more remarkable in those

datasets where sketches are more abstract; (iii) as the diffi-

culty of the dataset increases, the semantic and the domain

losses start playing a major role in improving the baseline

result; (iv) semantics provide better extrapolation to unseen

data than domain loss which shows that either the mutual

information is very less or that the semantic information is

really needed in this extrapolation; (v) the poor performance

in the QuickDraw-Extended dataset shows that the practical

problem of ZS-SBIR is still indeed unsolved. It should be

noted, that the best model makes use of the three losses.

Qualitative: Some retrieval results are shown in Figure 4

for Sketchy-Extended and QuickDraw-Extended. We also

provide a qualitative comparison with CVAE proposed by

Yelamarthi et al. [36]. The qualitative results reinforce

that the combination of semantic, domain and triplet loss

fairs well in a dataset with substantial variances on visual

abstraction. We would also like to point out that the re-

trieved results for the class skyscraper show high visual

shape similarity with rectangle i.e. door and saw. The re-

trieved circular saw could also might be retrieved because

of the semantic rather than the visual similarity. Similar vi-

sual correspondences can also be noticed between the query

sketch helicopter and the retrieved result windmill.

6. Conclusions

This paper represents a first step towards a practical ZS-

SBIR task. Previous works on this task do not address

some of the important challenges that appear when mov-

ing to an unconstrained retrieval and do not tackle with the

large domain gap between amateur sketch and photo. In

this scenario, to overcome the lack of proper data, we have

contributed to the community a specifically designed large-

scale ZS-SBIR dataset, QuickDraw-Extended which pro-

vides highly abstract amateur sketches collected with the

Google Quick, Draw! game. Then, we have proposed a

novel ZS-SBIR system that combines visual as well as se-

mantic information to generate an image embedding. We

experimentally show that this novel framework overcomes

recent state-of-the-art methods in the ZS-SBIR setting.
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