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Abstract

With the advent of modern expert systems driven
by deep learning that supplement human experts (e.g.
radiologists, dermatologists, surveillance scanners), we
analyze how and when do such expert systems enhance
human performance in a fine-grained small target visual
search task. We set up a 2 session factorial experi-
mental design in which humans visually search for a
target with and without a Deep Learning (DL) expert
system. We evaluate human changes of target detection
performance and eye-movements in the presence of the
DL system. We find that performance improvements
with the DL system (computed via a Faster R-CNN with
a VGG16) interacts with observer’s perceptual abilities
(e.g., sensitivity). The main results include: 1) The DL
system reduces the False Alarm rate per Image on aver-
age across observer groups of both high/low sensitivity;
2) Only human observers with high sensitivity perform
better than the DL system, while the low sensitivity
group does not surpass individual DL system perfor-
mance, even when aided with the DL system itself; 3)
Increases in number of trials and decrease in viewing
time were mainly driven by the DL system only for the
low sensitivity group. 4) The DL system aids the human
observer to fixate at a target by the 3rd fixation, poten-
tially explaining boosts in performance. These results
provide insights of the benefits and limitations of deep
learning systems that are collaborative or competitive
with humans.

1. Introduction

Visual search is an ubiquitous activity that humans
engage in every day for a multitude of tasks. Some
of these search scenarios are explicit such as: search-
ing for our keys on our desk; while other are implicit
such as looking for pedestrians on the street while driv-
ing [13]. Visual search may also be trivial as in the
previous example or may require stronger degrees of

expertise accumulated even over many years such as
radiologists searching for tumours in mammograms, as
well as military surveillance operators, or TSA agents
who must go over a high collection of images in the
shortest amount of time. Indeed the successes of Deep
Learning Systems have already been shown to compete
with Dermatologists in [17] as well as Radiologists [35]
for cancerous tumor detections.

Most of the expert systems work has been explored in
the medical imaging domain, more specifically in radiol-
ogy. Litjens et al. [29] compiled an overview of 300 Deep
Learning papers applied to medical imaging. In the
work of Kooi et al., CNN’s and other Computer Aided
Detection and Diagnosis (CAD) classifiers are compared
to each other as automatic diagnosis agents [27]. They
find that deep learning systems rival expert radiologists,
as is the recent paper of Rajpurkar et al. when having
radiologists diagnosing pneumonia [35]. Arevalo et al.
benchmark CNN’s to classical computer vision models
such as HOG and explore the learned representations by
such deep networks in the first convolutional layer [3].
The majority of studies have evaluated automated in-
telligent agents via classical computer vision or end-
to-end deep learning architectures v.s. humans. See
Litjens et al. [29] for an overview of 300 Deep Learning
papers applied to medical imaging.

Other bodies of work regarding collaborative human-
machine scenarios in computer vision tasks include:
image annotation [39], machine teaching [40, 25], visual
conversational agents [6], cognitive optimization [12],
and fined-grained categorization [4]. Conversely, there
has also been a recent trend comparing humans against
machines in certain tasks with the goal of finding po-
tential biological constraints that are missing in deep
networks. These comparisons have been done in object
recognition [20, 14, 34], perceptual discrimination [16]
and visual attention [10].

In many applications, mixed DL and human teams
are a likely next step prior to replacement of the human
expert by the expert system [26, 17, 12, 42, 33]. Given
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Figure 1. An evaluation of potential DL Benefits. Left: The
original image with targets circled in red. Middle: Boxes
in Magenta are clicks that observers did on target location.
Right: Boxes in blue represent non-target detections and
boxes in red represent target detections of the DL System.
Middle and Right: Saccadic gaze pattern is plotted in cyan.

current paradigms in computer vision technology that
rely on bounding box candidate regions proposals and
evaluations of multiple regions of interest [31] as is the
case of models from HOG [9] and DPM [18] to Faster
R-CNN [38] and YOLO [36], how well do they integrate
with humans whose visual search system is foveated by
nature [11, 7, 2]? We are interested in evaluating the
influences of DL systems on human behavior working
together during visual search for a small target in
naturalistic scenes (see Figure 1).

Perhaps the most relevant work of human-machine
collaboration to ours is that of Kneusel & Mozer [26].
Such thorough study investigates the influence on hu-
man performance of the visualization of the intelligent
system’s cues used to indicate the likely target loca-
tions. target presence. Our main contribution is com-
plementary: 1) We argue for an interaction between
the human’s observer performance level and that of the
intelligent system in determining its influence on deci-
sions; 2) We present eye tracking analysis to evaluate
the influence of the Faster R-CNN on fixation strategies
and types of errors: target not fixated (fixation errors)
vs. targets fixated and missed (recognition errors).

In this paper we focus on these questions as there
is still ongoing debate in the field regarding the use of
expert Deep Learning systems supplementing human
experts.

2. Overview of Main Experiment

To analyze how man and machine work together in
a visual search task, we designed an experiment with
2 main conditions: Human [H], and Human + Deep
Learning [H+DL]. The search task was to find indi-
viduals holding weapons among groups of individuals
without weapons. The people were embedded in a com-
plex scene. In the following sub-sections, we describe in
detail the experiments (stimuli, experimental design &
apparatus). We evaluated the influence of the Faster-
RCNN on the following human behavioral measures
during visual search:

1. Target detection performance.

2. Receiver Operating Characteristic (ROC) curves.

3. Viewing time and number of trials.

4. Pattern of eye movements.

2.1. Creation of Stimuli

We selected 120 base images with no targets from the
dataset of Deza et al. [12] that contained a variety of
rendered outdoor scenes with different levels of clutter
and three levels of zoom. We then randomly picked 20
locations (uniformly distributed) within each image to
locate targets (individuals with weapon) and distrac-
tors (individuals without weapons). We ran a canny
edge detection [5] filter to compute major edges in each
images such as walls, trees and other structures. If one
of the previously randomly selected locations landed on
an edge, we would resample uniformly from any place
in the image until an edge-less location was found. Our
image generation model would also re-sample a candi-
date location if they were overlapping with a previous
person location. Once the 20 locations were verified, we
generated 4 different versions of the same background
image such that each version had k = {0, 1, 2, 3} targets
(totalling 4 × 120) with the rest of candidate locations
having non-targets (a.k.a. friends or persons without
weapons). We used Poisson blending [32] on each of the
locations to blend the inserted individuals into the back-
ground scene. Each image was rendered at 1024 × 760
px. Example scenes of the Low Zoom condition can be
seen in Figure 2, where the difficulty of trying to find a
target (a person with a weapon) is quite high.

2.2. Experimental Design

Our main experiment had a 2 × 2 factorial design
to dissociate improvements caused by the DL System
and those due to human learning. In the experimental
design each observer participated in two consecutive
sessions in one of the following orders: [H,H] (Human,
Human), [H,H+DL] (Human, Human + Deep Learn-
ing), [H+DL,H] (Human + Deep Learning, Human)
and [H+DL,H+DL] (Human + Deep Learning, Human
+ Deep Learning). Comparison of performance improve-
ments in the Human, Human + Deep Learning vs. the
Human, Human conditions allows determining whether
performance increases are due to the DL system or
simply human learning effects. In addition, we are in-
terested in dissecting learning and ordering effects as it
could be the case that the performance differences in
the second session are independent of the use of the DL
system.
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Figure 2. An example of a family of stimuli used in our experiment with the same image rendered with different number
of targets (from left to right). The figure is better viewed when zoomed in, and illustrates the difficulty of visual search.
Targets are individuals holding weapons, and they have been highlighted in red for visualization purposes.

To make a direct comparison between the DL System
and humans, the observers reported the number of
individuals with weapons (targets). Observers also
spatially localized the targets by clicking on the location
of the detected target individuals on a subsequently
presented image that contained the background image
and bounding box locations (but no individuals) of
all the potential target candidates. This evaluation
paradigm is well matched to the DL system which also
localizes targets with no apriori knowledge of how many
targets are present in an image. The number of target
per images was randomly selected with a truncated
Poisson Distribution where:

Pk = P (X = k) =
αke−α

k!
(1)

We fixed the value of α = 1 which represents the average
number of targets per trial, such that P0 = 0.375; P1 =
0.375; P2 = 0.1875 and P3 = 0.0625.

2.3. Apparatus

An EyeLink 1000 system (SR Research) was used
to collect Eye Tracking data at a frequency of 1000Hz.
Each participant was at a distance of 76 cm from a LCD
screen on gamma display, so that each pixel subtended a
visual angle of 0.022 deg /px. All images were rendered
at 1024 × 760 pixels (22.5 deg ×16.7 deg). Eye move-
ments with velocity over 22 deg /s and acceleration over
4000 deg /s2 were categorized as saccades. Every trial
began with a center fixation cross, where each subject
had to fixate the cross with a tolerance of 1 deg.

3. Training and Testing for Man and Ma-

chine

3.1. Human: Training and Testing

A total of 120 observers divided in four groups
of 30 performed the [H,H], [H,H+DL], [H+DL,H],
[H+DL,H+DL] sessions respectively.

Training: Each observer engaged in 3 practice trials
at the beginning of each session. Feedback was given

at the end of each practice trial analogous to providing
a supervised signal.

Testing: Observers were instructed to optimize two
general goals: The first was to maximize the total
number of trials on each of the 20 minute sessions.
The second was to maximize their performance when
engaging in visual search. We emphasized that they
had to do well maximizing both goals, such that they
should not rush over the trials and do a poor job, but
neither should they over dwell on search time for every
image. No feedback was given at the end of each trial.
See Figure 3 for experimental flow.

3.2. Deep Learning System: Training and Testing

We trained a Faster R-CNN object detection frame-
work [38] which uses a VGG-Net [41] for object detec-
tion and the candidate region proposals. We picked
Faster R-CNN over YOLO [36], SSD [30], R-FCN [8]
given the experiments done by Huang et al. where they
show that Faster-RCNN overperforms the other models
performance-wise [24]. While running multiple object
detectors in this experiment would have enriched our
evaluation, we are limited by the fact that we will need
multiple subjects to be ran for each DL system. One of
the other reasons we did not pick YOLO over Faster-
RCNN is that Real-Time detection in our experiments
is not an issue given that we saved all the detected
bounding boxes and scores in memory. In addition
YOLO might not perform as well as Faster-RCNN for
detecting small objects [37]. Finally, the wide-spread
of VGG-Net and Faster-RCNN make them both ideal
candidates for our experiments.

Training: We trained the network on tensorflow [1]
for over 5000 iterations as shown in Figure 4, after hav-
ing it pre-trained with 70000 iterations on a collection
of images from ImageNet achieving standard recogni-
tion performance. The images fed to the network for
training were 420 = 7 × 20 × 3 images, consisting of 7
rotated rotated versions and 20 person inputs (10/10
friends/foes) for each of the 3 target sizes. Small rota-
tions, crops, mirroring and translations were used for
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(a) Condition [H]: Human Observer. In this condition there is
no aid or cueing of targets. At the end of the trial, ground truth
person locations (colored in black) are overlayed in the image to
assist observers on clicking the location of potential targets.

(b) Condition [H+DL]: Human Observer + Deep Learning System.
In this condition, candidate targets are cued by the DL system
with color coded bounding boxes. Colors: Red is a potential foe,
and Blue a potential friend.

Figure 3. An overview of the 2 conditions tested in the multiple target search experiment where we evaluated the benefits of
a DL System in human visual search as well as the possible added benefits in terms of speed, accuracy and eye movements.
Targets in these images are displayed at 0.45 × 0.90 d.v.a. Data was collected for conditions [H,H]; [H,H+DL]; [H+DL,H];
and [H+DL,H+DL].

data augmentation. The images that were rendered for
testing had never been seen from the network, and were
rendered with a mix of randomly sampled individuals
with and without weapons from the held out dataset.
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Figure 4. Training loss for the Faster-RCNN trained after 50k
iterations. We used the model trained after 5000 iterations
to avoid over-fitting. Having a relatively high performing
(but not perfect) system is ideal to split observers into high
and low sensitivity groups for post-hoc analysis.

Testing: Candidate bounding boxes developed by
the system always overlayed on possible person locations
irrespective of whether the individual carried a weapon.
Thus the DL System never produced a Location-driven
False Alarm, all mistakes delivered by the system were
recognition/classification based. Bounding box candi-
dates with a threshold lower than η = 0.8 were dis-
carded, and overlaying bounding boxes (doubles) were
removed with non-maximal suppression (NMS).

With these configurations both the DL System and
the Human are prone to make the same type of judg-
ments and mistakes. For example: 1) Humans are not
allowed to click on the same locations more than twice

(computer as well given NMS); 2) The Human and DL
system both have a finite collection of possible locations
from where to select the target locations. In addition,
the experiment is free-recall for humans as they are
allowed to report any number of targets per image with-
out prior information. The DL system has the same
criteria since the computation of target location via the
Region Proposal Network (RPN) does not depend on
any prior of the number of targets seen in the image.

4. Results

The results shown in this paper focus on the subgroup
of trials that showed small targets given the greater
difficulty in detection for both man and machine.

Observer Sensitivity: We quantified the influence
of the DL system across groups of observers with dif-
ferent abilities to find the target (hit rate). We split
the participants from the [H,H+DL] condition into two
groups contingent on their sensitivity (hit rate): the
first group was the high sensitivity group who had a
hit rate higher than the DL system in the first ses-
sion, conversely the second group was the low sensi-
tivity group who had a lower hit rate than the DL
system. We ran an unpaired t-test to verify that there
were indeed performance differences, and found a sig-
nificant difference t(27) = 3.64, p = 0.0011 for the
high sensitivity group (MH = 83.16 ± 2.00%) and the
low sensitivity group (ML = 65.52 ± 4.04%). This ef-
fect was visible across all other conditions: [H+DL,H]
with t(28) = 3.40, p = 0.0020, (MH = 89.34 ± 2.15%),
(ML = 73.66 ± 3.67%); [H,H] with t(27) = 3.96, p <
0.001, (MH = 85.68 ± 2.06%), (ML = 65.75 ± 3.46%);
and [H+DL,H+DL] with t(27) = 2.21, p = 0.0351,
(MH = 85.24 ± 3.68%), (ML = 71.79 ± 2.45%).
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Figure 5. Partition of observer performance given by Sensitivity (Hit Rate) higher or lower than the machine. Hit Rate,
False Alarms per Image, Miss Search Rate and Miss Recognition Rate are shown for each group. Session color code: Blue:
Human without DL ; Orange: Human with DL ; Ocre: DL on 1st session; Purple: DL on 2nd session.

4.1. Target Detectability

In the following subsection we describe the collection
of the metrics used in our analysis that come from
the signal detection theory literature [22] and medical
imaging/radiology (search and recognition errors) [28].
We group such metrics contingent on the sensitivity of
each observer and plot these values in Figure 5.

1. Hit Rate per Image (HR): The total number of
targets correctly selected at divided by the total
number of targets in the image.

2. False Alarms per Image (FA): The total num-
ber of false positives (disctractor individuals with-
out weapons incorrectly labelled as targets).

3. Miss Rate per Image (MR): 1.0 - Hit Rate per
Image. We divide the Miss Rate in two types:

• Search Errors Rate per Image (SER):
The total number of targets that were not
foveated and missed divided by the total num-
ber of targets in the image. For the machine
we consider these as bounding boxes where
the output probability did not exceed the con-
fidence threshold (η), as one could otherwise
argue that the machine ‘foveates’ everywhere.

• Recognition Errors Rate per Image

(RER): The total number of targets that were
foveated, yet incorrectly perceived as friends
(when they are actually foes) divided by the

total number of targets in the image. It should
be observed that RER and SER should add
up to the Miss Rate per Image.

We performed two sets of mixed factor design
ANOVA’s for within conditions: [H] and [H+DL];
between conditions: order effects [H,H+DL] and
[H+DL,H]; and between subjects. Each mixed ANOVA
was ran separately for the high and low sensitivity
groups. We found the following results:

False Alarms per Image: A main effect of reduc-
tion of False Alarms with the presence of the DL system
for both the high and low sensitivity group: FH(1, 24) =
7.23, p = 0.01, and FL(1, 24) = 4.93, p = 0.03.

Search Error Rate: No significant differences in
terms of search error rate between conditions. Although
we did find that on average the search error rate was
lower for the high sensitivity group: unpaired, two-
tailed, t(116) = −3.633, p < 0.0001.

Recognition Error Rate: No reduction in recog-
nition error rate for the high sensitivity group, but a
marginal main effect for reduction in recognition error
rate for the low sensitivity group in the presence of the
DL system FL(1, 32) = 3.85, p = 0.058, as well as a
marginal ordering effect (showing [H+DL] or [H] first)
FL(1, 32) = 3.96, p = 0.055.

4.2. Assessment of the Human and Machine Receiv-
ing Operating Characteristics

Similar to the work of Esteva et al. [17], we decided
to investigate how do humans perform compared to
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Figure 6. ROC plots that compare the performance of the Human and the DL system separately and working collaboratively.
The plots are split by High / Low sensitivity, and Experimental Condition: [H,H+DL], [H+DL,H], [H,H] and [H+DL,H+DL].
ROC’s in ocre and purple show the performance of the DL System independently for the first and second session respectively.
The cross indicates the operating point along the curve at η = 0.8. For the human observer a circle is the first session, and a
square the second session. Blue and orange indicate presence of the DL system when engaging in visual search.

the DL system when the system performs individually
along its entire receiver operating characteristic (ROC)
curve, including its operation point at η = 0.8. It may
be possible that we find that the DL system performs
much better overall than the human observers even for
the high sensitivity group, as a higher sensitivity might
also imply high false alarm rates and thus less discrim-
inability. This is an effect that can usually be explained
within the context of signal detection theory [22]. If
the ROC point of the human observers with or with-
out assistance is outside of the DL ROC curve (ocre
and purple for the each of the 2 sessions respectively),
then we can say that the humans observers collectively
perform better than the machine.

To compute the ROC curve per image we require
both the TPR (True Positive Rate) and FPR (False
Positive Rate) per image I. Note that FPR is not
be confused with False Alarms per Image as plotted
in Figure 5. If h is the number of hits the observer
performs on the image, and f the number of false alarms
restricted to the clicked bounding box locations: We
will compute TPR = h/G, and FPR = f/(N − G),
where N = 20 is the total number of possible bounding
boxes that an observer has to choose from to make a
selection for target present, and G is the number of
true targets there are in the image (0, 1, 2 or 3). These
statistics were averaged for both the machine to plot an
entire ROC curve, and for the human observers plotting
the ROC points as depicted in Figure 6.

To analyze variability in the observers behaviour as
well as decision strategies we will use estimates of target
detectability (d′) and decision bias (λ) s.t.

d′ = Φ−1(TPR) − Φ−1(FPR) (2)

and
λ = −Φ−1(FPR) (3)

where Φ−1 is the inverse of the cumulative normal
distribution.

In what follows of the remaining subsection we focus
on comparing two types of conditions across each others
along previously mentioned metrics. These are mainly:
[H,H+DL] vs [H,H], to investigate how the observer
ROC changes in the second session with the presence of
the DL system, and also [H+DL,H] vs [H+DL,H+DL]
which investigates if the observer’s signal detectability
and criterion change as a function discarding/continuing
the DL system in the second session.

Detectability (d′): We performed an unpaired t-
test across the second sessions comparing [H,H+DL] vs
[H,H], and [H+DL,H] vs [H+DL,H+DL], and did not
find any statistically significant changes in d′.

Decision bias (λ): Only the high sensitivity group
showed differences in bias when the DL system was
removed in the second session t(24) = 2.62, p = 0.01.

λ̂H+DL = 2.09 ± 0.05 vs λ̂H+DL = 1.79 ± 0.12 in the
[H,H+DL] vs [H,H] condition.

We finally summarized the detectability and bias
scores across all observers, pooled over both sessions,
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and split by sensitivity and condition [H] vs [H+DL],
and compared these to the machine in Table 1:

detectability (d
′) bias (λ)

[H] [H+DL] [H] [H+DL]
High 2.84 ± 0.10 3.13 ± 0.09 1.82 ± 0.05 1.95 ± 0.04
Low 2.42 ± 0.10 2.62 ± 0.08 1.83 ± 0.03 2.00 ± 0.03
DL 2.78 ± 0.04 1.96 ± 0.02

Table 1. Human vs DL system performance

It is clear that when removing any learning effects
of session order, that only human observers with high
sensitivity perform better than the DL system, while
the low sensitivity group does not surpass individual
DL system performance, even when aided with the DL
system itself.

4.3. Analysis of Viewing Time and Number of Trials

Viewing Time: We found significant ordering ef-
fects for the high sensitivity group in viewing time
spent per trial F (1, 24), p = 0.05, but did not find any
effects for the presence of the DL system. However,
we did find an interaction for order and presence of
the DL system F (1, 24) = 24.00, p < 0.0001. As for
the low sensitivity group we did not find an order-
ing effect F (1, 32) = 0.74, p = 0.40, and rather did
find a main effect in the presence of the DL system
F (1, 32) = 10.56, p = 0.003. This effect is shown in
Figure 7 as a decrease in viewing time. In addition we
found an interaction of order and presence of the DL
system F (1, 32) = 5.6, p = 0.02.

Perhaps a striking and counter-intuitive difference
worth emphasizing is that the low sensitivity group
spends less time than the high sensitivity group viewing
each image when the system is on independent of order.
Although this is understandable as our splits are driven
by the performance of the observer on their first session
independent of the presence of the DL system or not. In
general, bad performing observers will very likely go over
the image faster than high performing observers which
are more careful when examining the image. Indeed, to
account for differences in the splits, we ran an unpooled
t-test to compare between all the [H+DL] sessions in the
high and low sensitivity groups (across all orders) and
found that the average viewing time (VT) differences
were V TH = 14.35±1.37 seconds, and V TL = 9.05±0.67
seconds, with t(117) = 3.84, p < 0.0001.

Number of Trials: All the results we found for
Viewing Time are analogous and statistically significant
when analyzing number of trials – as the total time per
session in the experiment is constricted to 20 minutes,
and both these quantities are inversely proportional to
each other. Figure 7 shows such equivalence and how a
low viewing time generally translates to a high number
of trials across all conditions.
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Figure 7. Viewing Time and Number of Trials split by high
and low sensitivity observers. Blue represents the human
observer [H], and orange represents the Human and Deep
Learning system working together [H+DL]. 1 star represents
a two-tailed independent t-test with p < 0.05, while 2 stars
represents p < 0.01.

4.4. Analysis of Eye-Movements

Performance metrics may change as a function of the
DL system as well as over each session, but how will
human behaviour change as a function of such condi-
tions? In this subsection we decided to investigate the
role of eye-movements in decision making and how they
may be related to performance levels. More specifically
we computed the euclidean distance in degrees of visual
angle between the observer’s fixation location f and the
closest of all possible targets t̄ as shown in Eq. 4:

D(f, t̄) = min(
⋃

i

||f − ti||) (4)

To investigate such question, we decided to create box-
plots of the first 5 fixations across all observers split
in each one of the viewing conditions and also by sen-
sitivity. This can be seen in Figure 8 which suggests
that generally, observers who are enhanced when the
DL system is on, fixate at a target (contingent to a
target being present) by the third fixation. Thus we
see how the DL system enhances fixating at the target
with fewer eye movements. Qualitative and complimen-
tary plots to this can be observed in Figure 9, where
we show sample gaze and scan path of observers when
performing search in all of these conditions.

What is most revealing about the homogeneity in
fixating first at a target with the DL system on, is that
this result might explain how most observers either from
the high or low sensitivity group may achieve a boost in
target detectability d′ as shown previously in Table 1.
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Figure 8. Boxplots of the fixation distance to the first target
foveated in degrees of visual angle (d.v.a). The Expert
System aids the human by assisting him/her to fixate the
target at ∼ 1 deg by the 3rd fixation (orange barplots).
This visual search strategy is only present when the Expert
System is on – independent of the session order.

Figure 9. Visualization of how visual search strategies change
when the DL system is on across all conditions. The lines
in cyan represent the saccadic trajectories starting from the
center. Boxes in blue are the DL system’s detection for
friend, and boxes in red are detections for targets. The
box in green shows the ground truth location of the target,
and circles in magenta represent the human observer’s click
(localization). All stimuli in this plot only have one target.
Figure better viewed when zoomed in.

5. Main Takeaways from Analysis

1. Target detection performance: The DL system
reduces the False Alarm rate per Image on average
across observer groups of both high/low sensitivity.

2. Receiving Operator Characteristics: We found an
interaction where only the human observers with

high sensitivity perform better than the DL system,
while the low sensitivity group does not surpass in-
dividual DL system performance, even when aided
with the DL system itself.

3. Viewing time and number of trials: The Deep
Learning system only increases the number of trials
for the low sensitivity group.

4. Pattern of eye movements: The DL system en-
courages fixating at the target by the 3rd fixation,
independent of other factors.

6. Discussion

While there has been a great maturation in terms
of success of deep learning systems regarding object
detection, there are still many limitations in object de-
tection, such as: adversarial examples [21], fine-grained
detection [23], small objects(targets) [15]. Adversarial
examples have clearly exposed important limitations
in current deep learning systems, and while having an
experimental setup of visual search with and without
adversarial examples would be interesting, it is not the
focus of our work. The outcome is somewhat predictable
and guaranteed: humans would achieve a higher recog-
nition rate than computers – yet we do not discard the
possibility that performing a study similar to ours with
the presence of adversarial images is relevant and should
be explored in future work. On the other hand, future
work regarding integrating human and machines in vi-
sual search in the presence of human-like adversarial
examples [16] might also be of great interest as explored
in the recent work of Finlayson et al. [19] applied to
medical images.

In this paper, we thus centered our efforts in studying
a more real and applicable problem which is fine-grained
small object detection and classification with a limited
number of training exemplars that uses a commonly
deployed pre-trained VGG16 [41]. We found that, for
a current DL system, its influence on human search
performance interacts with the observers’ sensitivity.
This highlights the complexity of integration of DL
systems with humans experts. It is likely that these
interactions also depends on the performance level of
the DL system as well as the observers’ trust on the DL
system.

With the recent surge of DL systems applied to
Medical imaging, we believe that these experimental
insights will be transferable to such and other human-
machine collaborative domains.
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