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Abstract

We propose DeepMapping, a novel registration frame-

work using deep neural networks (DNNs) as auxiliary func-

tions to align multiple point clouds from scratch to a glob-

ally consistent frame. We use DNNs to model the highly

non-convex mapping process that traditionally involves

hand-crafted data association, sensor pose initialization,

and global refinement. Our key novelty is that “training”

these DNNs with properly defined unsupervised losses is

equivalent to solving the underlying registration problem,

but less sensitive to good initialization than ICP. Our frame-

work contains two DNNs: a localization network that es-

timates the poses for input point clouds, and a map net-

work that models the scene structure by estimating the oc-

cupancy status of global coordinates. This allows us to con-

vert the registration problem to a binary occupancy clas-

sification, which can be solved efficiently using gradient-

based optimization. We further show that DeepMapping

can be readily extended to address the problem of Lidar

SLAM by imposing geometric constraints between consec-

utive point clouds. Experiments are conducted on both

simulated and real datasets. Qualitative and quantitative

comparisons demonstrate that DeepMapping often enables

more robust and accurate global registration of multiple

point clouds than existing techniques. Our code is available

at https://ai4ce.github.io/DeepMapping/.

1. Introduction
Advances in deep learning have led to many state-of-the-

art methods for semantic computer vision tasks. Despite

those successes, their compelling improvements on the geo-

metric aspects of computer vision are yet to be fully demon-

strated (especially for registration and mapping). This is

perhaps because powerful deep semantic representations

have limitations in accurately estimating and modeling of

geometric attributes of the environment. This includes, but

is not limited to, estimating camera motions from a se-

quence of images, or registering multiple point clouds into

a complete model. As opposed to semantic attributes of
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Figure 1. DeepMapping achieves better registration quality than

other baselines on an example dataset. Best viewed in color.

objects/scenes that are often categorical and thus easily de-

scribed by human language, those geometric attributes are

more often continuous and can be better described numer-

ically, such as poses and shapes. These spatial properties

and relations between objects play as vital roles as seman-

tic ones in robotics, augmented reality, medical, and other

engineering applications.

Several works attempt to integrate deep learning meth-

ods into geometric vision problems [45, 52, 49, 20, 19, 29,

18]. Methods in [26, 9, 20] try to regress camera poses by

training a DNN, inside which a map of the environment is

implicitly represented. Methods in [45, 52] propose unsu-

pervised approaches that exploit inherent relationships be-

tween depth and motion. Despite different tasks, most ap-

proaches follow the same train-and-test pipeline that neural

networks are first learned from a set of training data (either

supervised or unsupervised), and then evaluated on a testing

set, expecting those DNNs to be able to generalize as much

as possible to untrained situations.

The essence of our discussion is an open question: Will

DNNs generalize well for geometric problems especially

for registration and mapping? Semantic tasks can benefit

from DNNs because those related problems are defined em-
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pirically, and thus modeled and solved statistically. How-

ever many geometric problems are defined theoretically,

and thus experiential solutions may not be adequate in terms

of accuracy. Think of a simple scenario: given two images

with overlapping field-of-views (FOV), without careful cal-

culation, how accurate would a normal person be able to

tell the Euclidean distance between the two camera centers?

One may argue that reasonable accuracy can be achieved

given adequate training. But if this means that it requires a

large amount of data collection and training at each new lo-

cation, the efficiency of this solution seems to be debatable.

Here we investigate another possibility of adopting pow-

erful DNNs for the mapping/registration task. What we

commonly agree from abundant empirical experiments and

some theorems is that DNNs can model many arbitrar-

ily complex mappings, and can be efficiently optimized

through gradient-based methods, at least for categorical

classification problems. This leads to our key idea in this

paper: we convert the conventionally hand-engineered map-

ping/registration processes into DNNs, and solve them as

if we are “training” them, although we do not necessar-

ily expect the trained DNNs to generalize to other scenes.

To make this meaningful, unlike the supervised training

in [26, 9, 20], we need to properly define unsupervised loss

functions that reflect the registration quality. Our explo-

ration towards this line of thought shows promising results

in our experiments, as shown in Figure 1. We summarize

our contributions as follows:

• We propose DeepMapping to solve the point cloud

mapping/registration problem as unsupervised end-to-

end “training” of two DNNs, which is easier for paral-

lel implementation compared to conventional methods

requiring hand-crafted features and data associations.

• We convert this continuous regression problem to bi-

nary classification without sacrificing registration ac-

curacy, using the DNNs and unsupervised losses.

• We demonstrate experimentally that DeepMapping is

less sensitive to pose initialization compared with con-

ventional baselines.

2. Related Work

Pairwise local registration: the methods for pairwise

point cloud registration can be generally categorized into

two groups: local vs. global methods. The local methods

assume that a coarse initial alignment between two point

clouds and iteratively update the transformation to refine the

registration. The typical methods that fall into this category

are the Iterative Closest Point (ICP) algorithms [6, 10, 34],

probabilistic-based approaches [23, 31, 12] that model the

point clouds as a probability distribution. The local meth-

ods are well-known for requiring a “warm start”, or a good

initialization, due to limited convergence range.

Pairwise global registration: the global methods [46,

3, 30, 50, 28, 14] do not rely on the “warm start” and can

be performed on point clouds with arbitrary initial poses.

Most global methods extract feature descriptors from two

point clouds. These descriptor are used to establish 3D-to-

3D correspondences for relative pose estimation. Robust

estimations, e.g., RANSAC [17], are typically applied to

handle the mismatches. The feature descriptors are either

hand-crafted such as FPFH [35], SHOT [43], 3D-SIFT [38],

NARF [40], PFH [36], spin images [25], or learning-based

such as 3DMatch [48], PPFNet [13], and 3DFeatNet [24].

Multiple registration: in addition to pairwise registra-

tion, several methods have been proposed for multiple point

clouds registration [42, 16, 22, 44, 11]. One approach is to

incrementally add new a point cloud to the model registered

from all previous ones. The drawback of the incremental

registration is the accumulated registration error. This drift

can be mitigated by minimizing a global cost function over

a graph of all sensor poses [11, 42].

Deep learning approaches: recent works explore the

idea of integrating learning-based approaches into mapping

and localization problems. Methods in [45, 52] propose

unsupervised approaches that exploit inherent relationships

between depth and motion. This idea is further explored

in [7, 49, 47, 29] using deep learning for visual odometry

and SLAM problems. For instance, CodeSLAM [7] repre-

sents the dense geometry using a variational auto-encoder

(VAE) for depth that is conditioned on the corresponding

intensity image, which is later optimized during bundle ad-

justment. Differently, DeepMapping does not require any

pre-training. [18] introduces a generative temporal model

with a memory system that allows the agent to memorize the

scene representation and to predict its pose in a partially ob-

served environment. Although this method and DeepMap-

ping are both able to determine the sensor pose from the

observed data, [18] requires a supervised training stage for

“loading” its memory, while DeepMapping is fully unsuper-

vised and does not follow the aforementioned train-and-test

pipeline. Methods in [20, 32] use the recurrent neural net-

work (RNN) to model the environment through a sequence

of images in a supervised setting. MapNet [20], for exam-

ple, develops a RNN for RGB-D SLAM problem where the

localization of camera sensor is performed using deep tem-

plate matching on the discretized spatial domain that has a

relatively small resolution. Unlike MapNet, the proposed

DeepMapping does not require any partition of the space

and is unsupervised.

Other related methods such as [26, 9] solve camera lo-

calization by training DNNs to regress camera poses and

test the performance in the same environment as the train-

ing images. Related to that is DSAC [8] as a differentiable

alternative to traditional RANSAC for its use in pose esti-

mation DNNs. For place recognition, semantic scene com-

pletion is used in [37] as an auxiliary task for training an im-
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Figure 2. DeepMapping pipeline. Point clouds appear in different colors. Each input point cloud is fed into the shared L-Net to compute

transformation parameters that map the input to the global coordinates where both occupied (colored solid circles) and unoccupied (gray

cross marks) locations are sampled. The M-Net predicts the occupancy probabilities of the sampled locations. The global occupancy loss

is the binary cross entropy (BCE) averaged over all sampled locations. DeepMapping is able to handle temporal information, if available,

by integrating Chamfer distance loss between consecutive scans. Best viewed in color.

age VAE for long-term robustness. The method in [19] pro-

poses an unsupervised approach with variational Bayesian

convolutional auto-encoder to model structures from point

clouds. In DeepMapping, we adopt this idea to model the

scene structure but use DNN rather than Bayesian inference.

Other prior works include: in [15] the generative query net-

work (GQN) shows the ability to represent the scene from a

given viewpoint and rendering it from an unobserved view-

point in the simple synthetic environments. A neuroscience

study [5] uses recurrent neural networks to predict mam-

malian spatial behavior.

As noted, most approaches follow a train-and-test

pipeline. Our approach adopts DNNs but differs from the

existing methods in the way that the process of “training” in

DeepMapping is equivalent to solving the point clouds reg-

istration and that once trained, we do not expect the DNNs

to generalize to other scenes.

3. Method

3.1. Overview

In this section, we describe the proposed DeepMapping

that uses DNNs for registering multiple point clouds. Let

S = {Si}
K
i=1 be the set of K input point clouds in the D-

dimensional space that are captured by Lidar scanners, and

the ith point cloud Si, represented as a Ni×D matrix, con-

tains Ni points in sensor local frame. Given K point clouds,

the goal is to register all point clouds in a common coordi-

nate frame by estimating the sensor poses T = {Ti}
K
i=1 for

each point cloud Si, where Ti ∈ SE(D).
Conventional methods [50, 16] formulate this as an op-

timization problem that directly seeks the optimal sensor

poses T to minimize the loss function

T⋆(S) = argmin
T

L (T,S) , (1)

where L (T,S) is the objective that scores the registration

quality. As explained in Section 1, instead of directly op-

timizing T, we propose to use a neural network, modeled

as an auxiliary function fθ(S), to estimate T for the in-

put point clouds S where θ are the auxiliary variables to be

optimized. The pose is then converted to a transformation

matrix that maps Si into its global version Gi.

Formally, we re-formulate this registration problem as

finding the optimal network parameters that minimize a new

objective function

(θ⋆, φ⋆) = argmin
θ,φ

Lφ (fθ (S) ,S) , (2)

where Lφ is an unsupervised learnable objective function

which will be explained in Section 3.2 and 3.4.

Figure 2 illustrates the pipeline for DeepMapping. At the

heart of DeepMapping are two networks, a localization net-

work (L-Net) and an occupancy map network (M-Net), that

estimates Ti and measures the registration quality, respec-

tively. The L-Net is a function fθ : Si 7→ Ti appeared

in (2) that estimates the sensor pose of a corresponding

point cloud, where the parameters θ in the L-Net are shared

among all point clouds. The point cloud Gi in global coor-

dinates is obtained using the estimated sensor pose. From

the transformed point clouds, we first sample both occu-

pied and unoccupied locations. Then the locations of these

samples are fed into the M-Net, to evaluate the registration

performance of the L-Net. The M-Net is a binary classifi-

cation network that predicts probabilities of input locations

being occupied. We denote M-Net as a function with learn-

able parameters φ. Those occupancy probabilities are used

for computing the unsupervised loss Lφ in (2) that measures

the global occupancy consistency of the transformed point

clouds and thus reflects the registration quality.

One may find that transforming from (1) to (2) could
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increase the dimensionality/complexity of the problem. In

fact, we provide a simple 1D version of this problem con-

version and show that using DNNs as auxiliary functions

and optimizing them in higher dimensional space using

gradient-based methods could enable faster and better con-

vergence than directly optimizing the original problem. De-

tails are included in the supplementary material.

3.2. DeepMapping Loss

We use the M-Net mφ to define the unsupervised loss

function Lφ that scores the registration quality. The M-Net

is a continuous occupancy map mφ : RD → [0, 1] that maps

a global coordinate to the corresponding occupancy proba-

bility, where φ are learnable parameters. If a coordinate in

the global frame is associated with a binary occupancy label

y indicating whether the location is occupied, then we can

calculate the loss of a global coordinate as the binary cross

entropy (BCE) B between the predicted occupancy proba-

bility p and the label y:

B [p, y] = −y log (p)− (1− y) log (1− p) . (3)

The question is how to determine the label y. We ap-

proach this question by considering the situation when all

point clouds are already globally aligned precisely. In such

a case, it is obvious that all observed/scanned points, in the

global frame, should be marked as occupied with the label

1, due to the physical principle of the Lidar scanner.

It is also clear now that points lie between the scanner

center and any observed points, i.e., on the line of sight,

should be marked as unoccupied with label 0. Figure 3 de-

picts the mechanism to sample unoccupied points for Lidar

scanners. The dash lines show the laser beams emitted from

the scanner. We denote s (Gi) as a set of sampled points

from Gi that lie on these laser beams, illustrated as cross

marks. These points are associated with label 0 indicating

unoccupied locations.

By combining the binary cross entropy and the sampling

function, the loss used in (2) is defined as an average of the

binary cross entropy over all locations in all point clouds:

Lcls =
1

K

K∑

i=1

B [mφ (Gi) , 1] +B [mφ (s (Gi)) , 0] , (4)

where Gi is a function of L-Net parameters θ, and with

a slight abuse of notation B [mφ (Gi) , 1] denotes the av-

erage BCE error for all points in point cloud Gi, and

B [mφ (s (Gi)) , 0] means the average BCE error for cor-

respondingly sampled unoccupied locations.

In Figure 3, we illustrate the intuition behind (4). The

loss function can achieve smaller values if registrations are

accurate, as shown in Figure 3 (a). Conversely, since mis-

aligned point clouds will lead to self-contradictory occu-

pancy status, the loss function will be larger due to the dif-

ficulties of the M-Net to model such noisy occupancy pat-

terns, as shown in Figure 3 (b).

(a) (b)
Figure 3. Illustration of sampling methods and self-contradictory

occupancy status. Blue and orange circles are two point clouds

in the global coordinates and cross marks represent the sampled

unoccupied points. (a) and (b) show the correctly aligned and mis-

aligned point clouds, respectively. The red arrows in (b) highlight

the points with self-contradictory occupancy status. Best viewed

in color.

Note that the loss in (4) is unsupervised because it relies

only on the inherent occupancy status of point clouds rather

than any externally labeled ground truth. For minimization,

we adopt the gradient-based optimization because the loss

function Lcls is differentiable for both θ and φ. In each

forward pass, unoccupied locations are randomly sampled.

It is also worth noting the potentials of M-Net in

robotics. Unlike prior works that use discrete occupancy

maps, we directly feed the M-Net with the floating num-

ber coordinates, resulting in a continuous occupancy map.

Therefore, the M-Net offers a new way to represent the en-

vironment at an arbitrary scale and resolution.

3.3. Network Architecture

L-Net: the goal of the localization network, L-Net, is to

estimate the sensor pose Ti in a global frame. The L-Net

consists of a latent feature extraction module followed by a

multi-layer perceptron (MLP) that outputs sensor pose Ti.

This module depends on the format of the input point cloud

Si. If Si is an organized point cloud that is generated from

range images such as disparity maps or depth images, then

Si is organized as an array of points in which the spatial re-

lationship between adjacent points is preserved. Therefore,

we apply a convolutional neural network (CNN) to extract

the feature vector of point cloud followed by a global pool-

ing layer to aggregate local features to a global one. In the

case where the inputs are a set of unorganized point clouds

without any spatial order, we adopt PointNet [33] architec-

ture for extracting features from the point cloud. We re-

move the input and feature transformations appeared in [33]

and use a shared MLP that maps each D-dimensional point

coordinate to a high dimensional feature space. A global

pooling layer is applied across all points for feature aggre-

gation.The extracted latent feature vector is processed with

an MLP with the output channels corresponding to the de-

gree of freedom of sensor movement.

M-Net: the occupancy map network, M-Net, is a binary

classification network that takes as input a location coor-
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dinate in the global space and predicts the corresponding

occupancy probability for each input location. The M-Net

is an MLP with a D-channel input and a 1-channel output

from a sigmoid function, shared across all points.

3.4. Extension to Lidar SLAM

The loss function in (4) treats the input point clouds S

as an unordered set of scans instead of a temporally ordered

sequence. In some applications, the temporal information

may be available. For example, Lidar SLAM uses laser

scanners to explore the unknown environment and captures

an ordered sequence of point clouds at different time t.

Now we extend DeepMapping to exploit such a temporal

relationship. The underlying assumption is that the consec-

utive scans of point clouds are expected to have a reason-

able overlapping with each other , which normally holds in

the SLAM settings [41, 39]. We utilize the geometric con-

straints among point clouds that are temporally close to each

other. Specifically, we adopt the Chamfer distance as the

metric that measures the distance between two point clouds

X and Y in the global coordinates

d (X,Y ) =
1

|X|

∑

x∈X

min
y∈Y

‖x− y‖2

+
1

|Y |

∑

y∈Y

min
x∈X

‖x− y‖2.

(5)

The Chamfer distance measures the two-way average dis-

tance between each point in one point cloud to its nearest

point in the other. The minimization of the Chamfer dis-

tance d (Gi, Gj) results in a pairwise alignment between

point clouds Gi and Gj . To integrate the Chamfer distance

into DeepMapping, we modify the objective in (2) as

(θ⋆, φ⋆) = argmin
θ,φ

Lcls + λLch, (6)

where λ is a hyperparameter to balance the two losses and

Lch is defined as the average Chamfer distance between

each point cloud Gi and its temporal neighbors Gj

Lch =

K∑

i=1

∑

j∈N (i)

d (Gi, Gj) . (7)

3.5. Warm Start

Optimizing (6) with random initialization of network pa-

rameters (i.e., “cold start”) could take a long time to con-

verge, which is undesirable for real-world applications. For-

tunately, DeepMapping allows for seamless integration of a

“warm start” to reduce the convergence time with improved

performance. Instead of starting from scratch, we can first

perform a coarse registration of all point clouds using any

existing methods, such as incremental ICP, before further

refinement by DeepMapping. Figure 1 shows an example

result of registration error versus optimization iterations.

With such a warm start, DeepMapping converges much

faster and more stable than the one starting from scratch

and is more accurate and robust.

4. Experiments

We evaluate DeepMapping on two datasets: a simu-

lated 2D Lidar point cloud dataset and a real 3D dataset

called Active Vision Dataset (AVD) [4]. We implemented

DeepMapping with PyTorch [2]. The network parameters

are optimized using Adam optimizer [27] with a learning

rate of 0.001 on an Nvidia TITAN XP.

For quantitative comparison, we use two metrics: the ab-

solute trajectory error (ATE) and the point distance between

a ground truth point cloud and a registered one. The ATE

assesses the global consistency of the estimated trajectory,

and the point distance is the average distance of correspond-

ing points between the ground truth and the registered point

cloud. Since the estimated position can be defined in an

arbitrary coordinate, a rigid transformation is determined

to map the points in estimated coordinates to the ground

truth coordinates using the closed-form solution proposed

in [21]. The metrics are calculated after such a registration.

4.1. Experiments on 2D Simulated Point Cloud

Dataset: to simulate the 2D Lidar point clouds captured

by a virtual Lidar scanner, we create a large environment

represented by a 1024×1024 binary image, as shown in Fig-

ure 4. The white pixels indicate the free space whereas the

black ones correspond to obstacles. We assume a moving

robot equipped with a horizontal Lidar scanner to explore

this environment. We first sample the trajectory of the robot

movement that consists of a sequence of poses. The rotation

perturbation between two scans are randomly selected from

−10◦ to 10◦, and the translation perturbation on average is

approximately 8.16 pixels. At each pose in the trajectory,

the Lidar scanner spreads laser beams over the FOV and the

laser beam is reflected back whenever it hits the obstacles

within its path. Each observed point is computed as the in-

tersection point between the laser ray and the boundary of

obstacles. The scanning procedure yields a set of 2D points

in the robot’s local coordinate frame.

In this experiment, we set the FOV of the Lidar scan-

ner to 360◦ and assume an ideal scanner with an unlimited

sensing range 1. If no object exists along the laser ray, we

return the point where the ray hits the image boundary. We

create 3 binary maps of the virtual environment and sam-

ple in total 75 trajectories. 50 trajectories have 128 poses

and the remaining 25 trajectories contain 256 poses where

point clouds are scanned. Each scan contains 256 points.

1We tested the robustness of DeepMapping by imposing a limited sens-

ing range, while our resulting performance does not change significantly.
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Figure 4. Illustration of 4 scans captured at time 20, 70, 120, 170.

Left: the binary image shows the simulated environment with a

size of 1024 × 1024. The sensor poses are shown in red circles

and blue arrows. The green dash line indicates the trajectory of the

sensor. Right: observed point clouds captured at corresponding

poses. Best viewed in color.

The transformation Ti is parameterized by a 2D translation

vector (tx, ty) and a rotation angle α.

Baseline: we compare DeepMapping with the follow-

ing baselines: incremental iterative closest point (ICP) with

point-to-point distance metrics [6] and point-to-plane dis-

tance metrics [10], GoICP [46], and a particle swarm op-

timization PSO [1]. To justify the advantage of the neural

network based optimization, we also test another baseline

method, referred to as the direct optimization. Specifically,

we remove the L-Net fθ and perform the optimization of

the same loss function with respect to the sensor poses T

rather than network parameters θ.

Implementation: the detailed architecture of the L-

Net consists of C(64)-C(128)-C(1024)-M(1024)-FC(512)-
FC(256)-FC(3), where C(n) denotes 1D atrous convolu-

tions that have kernel size 3, dilation rate of 2 and n-channel

outputs, M(n) denotes 1D global max-pooling over n chan-

nels, FC(n) denotes fully-connected layer with n-channel

output. The M-Net can be described as FC(64)-FC(512)-
FC(512)-FC(256)-FC(128)-FC(1). We did not optimize

the network architectures. More ablation studies are in-

cluded in the supplementary material. To sample unoccu-

pied points, we randomly select 19 points on each laser

ray. We run PSO for multiple rounds until they consume

the same time as DeepMapping. To compare DeepMap-

ping with the direct optimization, we use the same opti-

mizer and the learning rate. To ensure the same initial-

ization between DeepMapping and the direct optimization,

we run DeepMapping with only on forward pass (no back-

propagation is performed) and save the output sensor poses.

These poses are used as the starting point for the direct op-

timization. The hyper-parameter λ is chosen based on the

prior knowledge of the dataset. For the 2D dataset where

sequential frames have reasonable overlaps, we assign more

weights to Chamfer loss by setting λ to 10. The batch size

is 128, and the optimization speed is approximately 100

epochs per minute on an Nvidia TITAN XP.

Results: Figure 5 shows the qualitative comparison of

3 trajectories simulated from the dataset. As shown, the

baseline method, direct optimization on sensor pose, fails

to find the transformations, leading to globally inaccurate

registration. While the incremental ICP algorithms are able

to procedure a noisy registration, errors of the incremen-

tal ICP algorithms accumulate over frames. As opposed to

the baselines, the proposed DeepMapping accurately aligns

multiple point clouds by utilizing neural networks for the

optimization. Once the registration is converged, we feed

all points (both occupied and unoccupied) in the global co-

ordinates into the M-Net to estimated the occupancy prob-

ability, which is then converted to an image of occupancy

map shown in the third column in Figure 5. The unexplored

regions are shown in gray. The estimated occupancy map

agrees with registered point clouds.

The box plots in Figure 6 show the quantitative results of

the ATE and the point distance. Note that the data is plotted

with the logarithmic scale for the y-axis. DeepMapping has

the best performance in both metrics, achieving a median

ATE of 5.7 pixels and a median point distance of 6.5, which

significantly outperforms the baseline methods.

Generalization of L-Net: while we do not expect the

trained DeepMapping to generalize to other scenes, it is

worth emphasizing that, to some extent, the “trained” L-Net

is able to perform coarse re-localization for an unseen point

cloud that is captured close to the “training” trajectory and

has a similar orientation. For demonstration, we simulate

local point clouds at all possible positions (e.g., all white

pixels in Figure 4) and use the “trained” L-Net to estimate

the sensor location. Figure 7 shows the re-localization er-

rors of two L-Nets “trained” on different trajectories, thus

having different generalization abilities. Only the point

clouds captured close to the “training” trajectories have low

errors. The ability of coarse re-localization without “re-

training” has potential usages in robotic applications, such

as the kidnapped robot problem.

4.2. Experiments on the Active Vision Dataset

Dataset: DeepMapping is also tested on a real 3D

dataset: Active Vision Dataset [4] that provides RGB-D

images for a variety of scans of the indoor environment.

Unlike other RGB-D datasets [41, 39] that capture RGB-D

videos around the scene, the AVD uses a robotic platform

to visit a set of discrete points on a rectangular grid with a

fixed width of 300mm. At each point, 12 views of images

are captured by rotating the camera every 30◦. This data

collection procedure leads to a low frame rate and relatively

small overlapping between two images.

The ground truth camera intrinsic and extrinsic parame-

ters are provided. We use the camera intrinsic parameters

to covert the depth map to point cloud representation and

do not use any information provided by color images. We
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Figure 5. Qualitative results from the 2D simulated dataset. The black lines are the sensor trajectories. The third column shows the

occupancy maps for each trajectory that are estimated by the M-Net. The black, white, and gray pixels show the occupied, unoccupied,

and unexplored locations, respectively. While the results of each trajectory are defined in arbitrary coordinate systems, we aligned them

with the ground truth coordinates for a clear comparison. More visualization results are included in supplementary material. Best viewed

in color.
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Figure 6. Box plots of the ATE and the point distance on the 2D

simulated dataset. In each box, the red line indicates the median.

The top and bottom blue edges of the box show the first (25th

percentile) and the third (75th percentile) quartiles, respectively.

Note the logarithmic scale for the y-axis.

randomly move or rotate the camera sensor in the space and

collect 105 trajectories from the dataset. Each trajectory

contains either 8 or 16 point clouds.

Baseline: we compare DeepMapping with the baseline

method of multiway registration [11]. The ICP algorithms

perform poorly because of the low overlapping rate between

consecutive point clouds and thus are not included in this

section. The multiway registration aligns multiple point

clouds via pose graph optimization where each node repre-

sents an input point cloud and the graph edges connect two

point clouds. We follow the same procedure in Section 4.1

to test the performance of direct optimization with respect

Figure 7. Re-localization errors of two L-Nets (black is better).

Cyan points show the trajectories used in the “training” stage. Best

viewed in color.

to sensor pose on the AVD. For DeepMapping and the di-

rect optimization, we compare two loss functions: only the

BCE loss Lbce (by setting λ to 0), and the combination of

the BCE loss Lbce and the Chamfer distance Lch. For the

latter, we set λ to 0.1 because of the small overlapping be-

tween two scans.

Implementation: the L-Net architecture con-

sists of C(64)-C(128)-C(256)-C(1024)-AM(1)-FC(512)-
FC(256)-FC(3), where AM(1) denotes 2D adaptive max-

pooling layer. The M-Net has the same structure as that

used in Section 4.1, except for the input layer that has 3

nodes rather than 2. We sample 35 points on each laser

ray. The multiway registration [11] is implemented using

Open3D library [51]. The batch size is 8, and the optimiza-
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Ground Truth DeepMapping Multiway Direct Optimization

Figure 8. Qualitative results of multiple point clouds registration tested on the AVD [4] dataset. The black ellipses highlight the misaligned

parts in baselines. Each color represents one point cloud. More visualizations are shown in supplementary material. Best viewed in color.

tion speed is approximately 125 epochs per minute on an

Nvidia TITAN XP.

Results: The visual comparison of multiple point clouds

registrations for different algorithms is shown in Figure 8.

The misaligned point clouds are highlighted with black el-

lipses. The stairs from the direct optimization, for exam-

ple, are not correctly registered, as shown in the second

row in Figure 8. The multiway registration [11] and the

direct optimization fails to align several planar structures

that are shown in the last row in Figure 8. Failure cases of

DeepMapping are shown in the supplementary material.

We show the box plots of the ATE and the point distance

in Figure 9. The multiway registration [11] performs poorly

that has large errors in both metrics. Comparing the direct

optimization with DeepMapping, we show the advantage of

using neural networks for optimization. In addition, inte-

grating Chamfer distance into DeepMapping is also helpful

to improve the registration accuracy.

5. Conclusion

In this paper, we propose DeepMapping to explore a pos-

sible direction for integrating deep learning methods into

multiple point clouds registration that could also be infor-

mative for other related geometric vision problems. The

DeepMap. (Ch)
DeepMap.

Direct Opt.
Direct Opt. (Ch)

Multiway
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A
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Active Vision Dataset

(a)

DeepMap. (Ch)
DeepMap.

Direct Opt.
Direct Opt. (Ch)

Multiway
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o
in

t 
D
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ta

n
c
e

Active Vision Dataset

(b)
Figure 9. Box plots of the ATE and the point distance on the

AVD [4]. The methods with “Ch” combine the Chamfer and the

BCE losses. Legends are the same as those in Figure 5. Note the

logarithmic scale for the y-axis.

novelty of our approach lies in the formulation that con-

verts solving the registration problem into “training” some

DNNs using properly defined unsupervised loss functions,

with promising experimental performances.

Acknowledgment

The authors gratefully acknowledge the helpful com-

ments and suggestions from Yuichi Taguchi, Dong Tian,

Weiyang Liu, and Alan Sullivan.

8657



References

[1] Particle swarm optimization.

https://github.com/iralabdisco/pso registration. 6

[2] PyTorch. https://pytorch.org/. 5

[3] Dror Aiger, Niloy J Mitra, and Daniel Cohen-Or. 4-points

congruent sets for robust pairwise surface registration. In

ACM Trans. Graphics, volume 27, page 85, 2008. 2

[4] Phil Ammirato, Patrick Poirson, Eunbyung Park, Jana

Kosecka, and Alexander C. Berg. A dataset for develop-

ing and benchmarking active vision. In Proc. the IEEE Intl.

Conf. on Robotics and Auto., 2017. 5, 6, 8

[5] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blun-

dell, Timothy Lillicrap, Piotr Mirowski, Alexander Pritzel,

Martin J Chadwick, Thomas Degris, Joseph Modayil, et al.

Vector-based navigation using grid-like representations in ar-

tificial agents. Nature, 557(7705):429, 2018. 3

[6] P. J. Besl and N. D. McKay. A method for registration of 3-D

shapes. IEEE Trans. Pattern Anal. Mach. Intel., 14(2):239–

256, 1992. 2, 6

[7] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan

Leutenegger, and Andrew J. Davison. CodeSLAM - learn-

ing a compact, optimisable representation for dense visual

SLAM. In IEEE Intl. Conf. Comp. Vision and Pattern Recog.,

June 2018. 2

[8] Eric Brachmann, Alexander Krull, Sebastian Nowozin,

Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten

Rother. DSAC - differentiable ransac for camera localiza-

tion. In IEEE Intl. Conf. Comp. Vision and Pattern Recog.,

July 2017. 2

[9] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays,

and Jan Kautz. Geometry-aware learning of maps for camera

localization. In IEEE Intl. Conf. Comp. Vision and Pattern

Recog., June 2018. 1, 2

[10] Yang Chen and Gérard Medioni. Object modelling by regis-

tration of multiple range images. Image and Vision Comput-

ing, 10(3):145–155, 1992. 2, 6

[11] Sungjoon Choi, Q. Zhou, and V. Koltun. Robust reconstruc-

tion of indoor scenes. In IEEE Intl. Conf. Comp. Vision and

Pattern Recog., June 2015. 2, 7, 8

[12] Martin Danelljan, Giulia Meneghetti, Fahad Shahbaz Khan,

and Michael Felsberg. A probabilistic framework for color-

based point set registration. In IEEE Intl. Conf. Comp. Vision

and Pattern Recog., pages 1818–1826, 2016. 2

[13] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet:

Global context aware local features for robust 3D point

matching. In IEEE Intl. Conf. Comp. Vision and Pattern

Recog., June 2018. 2

[14] Gil Elbaz, Tamar Avraham, and Anath Fischer. 3D point

cloud registration for localization using a deep neural net-

work auto-encoder. In IEEE Intl. Conf. Comp. Vision and

Pattern Recog., pages 2472–2481. IEEE, 2017. 2

[15] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,

Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Ru-

derman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,

et al. Neural scene representation and rendering. Science,

360(6394):1204–1210, 2018. 3

[16] Georgios D Evangelidis, Dionyssos Kounades-Bastian, Radu

Horaud, and Emmanouil Z Psarakis. A generative model for

the joint registration of multiple point sets. In Euro. Conf. on

Comp. Vision, pages 109–122. Springer, 2014. 2, 3

[17] Martin A Fischler and Robert C Bolles. Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Commun. ACM,

24(6):381–395, 1981. 2

[18] Marco Fraccaro, Danilo Jimenez Rezende, Yori Zwols,

Alexander Pritzel, SM Eslami, and Fabio Viola. Generative

temporal models with spatial memory for partially observed

environments. In Intl. Conf. on Mach. Learning, 2018. 1, 2

[19] Vitor Guizilini and Fabio Ramos. Learning to reconstruct

3D structures for occupancy mapping from depth and color

information. Intl. J. of Robotics Research, 2018. 1, 3

[20] Joao F Henriques and Andrea Vedaldi. MapNet: An allocen-

tric spatial memory for mapping environments. IEEE Intl.

Conf. Comp. Vision and Pattern Recog., 2018. 1, 2

[21] Berthold KP Horn. Closed-form solution of absolute orien-

tation using unit quaternions. J. Opt. Soc. Am. A, 4(4):629–

642, 1987. 5

[22] Shahram Izadi, David Kim, Otmar Hilliges, David

Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie

Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

et al. Kinectfusion: real-time 3D reconstruction and inter-

action using a moving depth camera. In ACM Symp. User

Interface Software and Technology, pages 559–568, 2011. 2

[23] Bing Jian and Baba C Vemuri. A robust algorithm for point

set registration using mixture of gaussians. In IEEE Intl.

Conf. Comp. Vision, volume 2, pages 1246–1251, 2005. 2

[24] Zi Jian Yew and Gim Hee Lee. 3DFeat-Net: Weakly super-

vised local 3D features for point cloud registration. In Euro.

Conf. on Comp. Vision, September 2018. 2

[25] Andrew E Johnson and Martial Hebert. Using spin images

for efficient object recognition in cluttered 3D scenes. IEEE

Trans. Pattern Anal. Mach. Intel., (5):433–449, 1999. 2

[26] Alex Kendall, Matthew Grimes, and Roberto Cipolla.

PoseNet: A convolutional network for real-time 6-DOF cam-

era relocalization. In IEEE Intl. Conf. Comp. Vision, Decem-

ber 2015. 1, 2

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Intl. Conf. Learning Representa-

tions, 2015. 5

[28] Huan Lei, Guang Jiang, and Long Quan. Fast descriptors and

correspondence propagation for robust global point cloud

registration. IEEE Trans. Image Proc., 26(8):3614–3623,

2017. 2

[29] J. Li, H. Zhan, B. M. Chen, I. Reid, and G. H. Lee. Deep

learning for 2D scan matching and loop closure. In IEEE

Intl. Conf. Intel. Robots and Sys., pages 763–768, Sept 2017.

1, 2

[30] Nicolas Mellado, Dror Aiger, and Niloy J Mitra. Super 4PCS

fast global pointcloud registration via smart indexing. In

Comp. Graphics Forum, volume 33, pages 205–215, 2014.

2

[31] A Myronenko and Xubo Song. Point set registration: Co-

herent point drift. IEEE Trans. Pattern Anal. Mach. Intel.,

32(12):2262–2275, 2010. 2

8658



[32] Emilio Parisotto, Devendra Singh Chaplot, Jian Zhang, and

Ruslan Salakhutdinov. Global pose estimation with an

attention-based recurrent network. In IEEE Intl. Conf. Comp.

Vision and Pattern Recog. Wksp., pages 237–246, 2018. 2

[33] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In IEEE Intl. Conf. Comp. Vision and Pat-

tern Recog., July 2017. 4

[34] Szymon Rusinkiewicz and Marc Levoy. Efficient variants

of the ICP algorithm. In 3D Digital Imaging and Modeling,

pages 145–152, 2001. 2

[35] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast

point feature histograms (FPFH) for 3D registration. In Proc.

the IEEE Intl. Conf. on Robotics and Auto., pages 3212–

3217, 2009. 2

[36] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and

Michael Beetz. Aligning point cloud views using persistent

feature histograms. In IEEE Intl. Conf. Intel. Robots and

Sys., pages 3384–3391, 2008. 2

[37] Johannes L Schönberger, Marc Pollefeys, Andreas Geiger,

and Torsten Sattler. Semantic visual localization. ISPRS J.

Photographic and Remote Sensing, 2018. 2

[38] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-

dimensional SIFT descriptor and its application to action

recognition. In ACM Intl. Conf. Multimedia, pages 357–360,

2007. 2

[39] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.

Sun RGB-D: A RGB-D scene understanding benchmark

suite. In IEEE Intl. Conf. Comp. Vision and Pattern Recog.,

pages 567–576, 2015. 5, 6

[40] Bastian Steder, Radu Bogdan Rusu, Kurt Konolige, and Wol-

fram Burgard. NARF: 3D range image features for object

recognition. In Wksp. on Defining and Solving Realistic Per-

ception Problems in Personal Robotics at IEEE Intl. Conf.

Intel. Robots and Sys., volume 44, 2010. 2

[41] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of RGB-D SLAM sys-

tems. In IEEE Intl. Conf. Intel. Robots and Sys., Oct. 2012.

5, 6

[42] Pascal Willy Theiler, Jan Dirk Wegner, and Konrad

Schindler. Globally consistent registration of terrestrial laser

scans via graph optimization. ISPRS J. Photographic and

Remote Sensing, 109:126–138, 2015. 2

[43] Federico Tombari, Samuele Salti, and Luigi Di Stefano.

Unique signatures of histograms for local surface descrip-

tion. In Euro. Conf. on Comp. Vision, pages 356–369, 2010.

2

[44] Andrea Torsello, Emanuele Rodola, and Andrea Albarelli.

Multiview registration via graph diffusion of dual quater-

nions. In IEEE Intl. Conf. Comp. Vision and Pattern Recog.,

pages 2441–2448, 2011. 2

[45] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-

laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas

Brox. DeMoN: Depth and motion network for learning

monocular stereo. In IEEE Intl. Conf. Comp. Vision and Pat-

tern Recog., volume 5, page 6, 2017. 1, 2

[46] J. Yang, H. Li, D. Campbell, and Y. Jia. Go-ICP: A glob-

ally optimal solution to 3D ICP point-set registration. IEEE

Trans. Pattern Anal. Mach. Intel., 38(11):2241–2254, Nov

2016. 2, 6

[47] Nan Yang, Rui Wang, Jörg Stückler, and Daniel Cremers.

Deep virtual stereo odometry: Leveraging deep depth pre-

diction for monocular direct sparse odometry. In Euro. Conf.

on Comp. Vision, pages 835–852, 2018. 2

[48] Andy Zeng, Shuran Song, Matthias Nießner, Matthew

Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3Dmatch:

Learning local geometric descriptors from RGB-D recon-

structions. In IEEE Intl. Conf. Comp. Vision and Pattern

Recog., pages 199–208, 2017. 2

[49] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.

DeepTAM: Deep tracking and mapping. In Euro. Conf. on

Comp. Vision, September 2018. 1, 2

[50] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global

registration. In Euro. Conf. on Comp. Vision, pages 766–782,

2016. 2, 3

[51] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A

modern library for 3D data processing. arXiv:1801.09847,

2018. 7

[52] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In IEEE Intl. Conf. Comp. Vision and Pattern Recog.,

volume 2, page 7, 2017. 1, 2

8659


