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Abstract

Object detection in aerial images is an active yet chal-

lenging task in computer vision because of the bird’s-eye

view perspective, the highly complex backgrounds, and the

variant appearances of objects. Especially when detecting

densely packed objects in aerial images, methods relying on

horizontal proposals for common object detection often in-

troduce mismatches between the Region of Interests (RoIs)

and objects. This leads to the common misalignment be-

tween the final object classification confidence and local-

ization accuracy. In this paper, we propose a RoI Trans-

former to address these problems. The core idea of RoI

Transformer is to apply spatial transformations on RoIs

and learn the transformation parameters under the super-

vision of oriented bounding box (OBB) annotations. RoI

Transformer is with lightweight and can be easily embed-

ded into detectors for oriented object detection. Simply ap-

ply the RoI Transformer to light-head RCNN has achieved

state-of-the-art performances on two common and chal-

lenging aerial datasets, i.e., DOTA and HRSC2016, with

a neglectable reduction to detection speed. Our RoI Trans-

former exceeds the deformable Position Sensitive RoI pool-

ing when oriented bounding-box annotations are available.

Extensive experiments have also validated the flexibility and

effectiveness of our RoI Transformer.

1. Introduction

Object detection in aerial images aims at locating ob-

jects of interest (e.g., vehicles, airplanes) on the ground

and identifying their categories. With more and more

aerial images being available, object detection in aerial im-

ages has been a specific but active topic in computer vi-

sion [3, 29, 36, 6]. However, unlike natural images that

are often taken from horizontal perspectives, aerial images

are typically taken from bird’s-eye view, which implies

that objects in aerial images are always arbitrary oriented.

Moreover, the highly complex backgrounds and variant ap-

pearances of objects further increase the difficulty of ob-

ject detection in aerial images. These problems have been
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Figure 1. Horizontal (top) v.s. Rotated RoI warping (bottom) il-

lustrated in an image with many densely packed objects. One hori-

zontal RoI often contains several instances, which leads ambiguity

to the subsequent classification and location task. By contrast, a

rotated RoI warping usually provides more accurate regions for

instances and enables to better extract discriminative features for

object detection.

often approached by an oriented and densely packed ob-

ject detection task [37, 31, 12], which is new while well-

grounded and have attracted much attention in the past

decade [27, 30, 26, 18, 1].

Many of recent progress on object detection in aerial im-

ages have benefited a lot from the R-CNN frameworks [9,

8, 32, 2, 29, 38, 6, 12, 16]. These methods have re-

ported promising detection performances, by using hori-

zontal bounding boxes as region of interests (RoIs) and

then relying on region features for category identifica-

tion [2, 29, 6]. However, as observed in [37, 28], these

horizontal RoIs (HROIs) typically lead to misalignments

between the bounding boxes and objects. For instance, as

shown in Fig. 1, due to the oriented and densely-distributed

properties of objects in aerial images, several instances are

often crowded and contained by one HRoI. As a result, it

usually turns to be difficult to train a detector for extracting

object features and identifying the object’s accurate local-

ization.

Instead of using horizontal bounding boxes, oriented

bounding boxes have been employed to give more accu-

rate locations of objects [37, 23, 28]. In order to achieve
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high recalls at the phase of RRoI generation, a large num-

ber of anchors are required with different angles, scales and

aspect ratios. These methods have demonstrated promis-

ing potentials on detecting sparsely distributed objects [26,

43, 27, 30]. However, due to the highly diverse directions

of objects in aerial images, it is often intractable to acquire

accurate RRoIs to pair with all the objects in an aerial im-

age by using RRoIs with limited directions. Consequently,

the elaborate design of RRoIs with as many directions and

scales as possible usually suffers from its high computa-

tional complexity at region classification and localization

phases.

As the regular operations in conventional networks for

object detection [8] have limited generalization to rotation

and scale variations, it is required of some orientation and

scale-invariant in the design of RoIs and corresponding ex-

tracted features. To this end, Spatial Transformer [14] and

deformable convolution and RoI pooling [5] have been pro-

posed to model the geometry variations. However, they

are mainly designed for the general geometric deformation

without using the oriented bounding box annotation. In

the field of aerial images, there is only rigid deformation,

and oriented bounding box annotation is available. Thus,

it is natural to argue that it is important to extract rotation-

invariant region features and to eliminate the misalignment

between region features and objects especially for densely

packed ones.

In this paper, we propose a module called RoI Trans-

former, targeting to achieve detection of oriented and

densely-packed objects, by supervised RRoI learning and

feature extraction based on position sensitive alignment

through a two-stage framework [9, 8, 32, 4, 10]. It con-

sists of two parts. The first is the RRoI Learner, which

learns the transformation from HRoIs to RRoIs. The sec-

ond is the Rotated Position Sensitive RoI Align, which ex-

tracts the rotation-invariant features from the RRoI for fol-

lowing objects classification and location regression. To

further improve efficiency, we adopt a light head structure

for all RoI-wise operations. We extensively test and evalu-

ate the proposed RoI Transformer on two public datasets

for object detection in aerial images i.e. DOTA [37] and

HRSC2016 [28], and compare it with state-of-the-art ap-

proaches, such as deformable PS RoI pooling [5]. In sum-

mary, our contributions are three-fold:

• We propose a supervised rotated RoI learner, which is

a learnable module that can transform Horizontal RoIs

to RRoIs. This design can not only effectively alleviate

the misalignment between RoIs and objects, but also

avoid a large number of anchors designed for oriented

object detection.

• We design a Rotated Position Sensitive RoI Align-

ment module for spatially invariant feature extraction,

which can effectively boost the object classification

and location regression. The module is a crucial design

when using the light-head RoI-wise operation, which

grantees efficiency and low complexity.

• We achieve state-of-the-art performance on several

public large-scale datasets for oriented object detec-

tion in aerial images. Experiments also show that the

proposed RoI Transformer can be easily embedded in

different backbones with significant detection perfor-

mance improvements.

2. Related Work

2.1. Oriented Bounding Box Regression

Detecting oriented objects is an extension of general hor-

izontal object detection. The task is to locate and classify an

object with orientation information, which is mainly tack-

led with methods based on region proposals. The HRoI

based methods [15, 37] usually use a normal RoI Warp-

ing to extract feature from a HRoI, and regress position off-

sets relative to the ground truths. The HRoI based method

exists a problem of misalignment between region feature

and instance. The RRoI based methods [30, 26] usually

use a Rotated RoI Warping to extract feature from a RRoI,

and regress position offsets relative to the RRoI, which can

avoid the problem of misalignment in a certain. However,

the RRoI based method involves generating a lot of rotated

proposals. The [26] adopted the method in [27] for ro-

tated proposals. The SRBBS [27] is hard to be embedded in

the neural network, which would cost extra time for rotated

proposal generation. The [30, 43, 41, 1] used a design of ro-

tated anchor in RPN [32]. However, the design is still time-

consuming due to the dramatic increase in the number of an-

chors (num scales×num aspect ratios×num angles).

For example, 3× 5× 6 = 90 anchors at a location. A large

amount of anchors increases the computation of parameters

in the network, while also degrades the efficiency of match-

ing between proposals and ground truths at the same time.

Furthermore, directly matching between oriented bounding

boxes (OBBs) is harder than that between horizontal bound-

ing boxes(HBBs) because of the existence of plenty of re-

dundant rotated anchors. Therefore, in the design of rotated

anchors, both the [30, 24] used a relaxed matching strat-

egy. There are some anchors that do not achieve an IoU

above 0.5 with any ground truth, but they are assigned to

be True Positive samples, which can still cause the problem

of misalignment. In this work, we still use horizontal an-

chors. The difference is that when the HRoIs are generated,

we transform them into RRoIs by a light fully connected

layer. Based on this strategy, it is unnecessary to increase

the number of anchors. And a lot of precisely RRoIs can

be acquired, which will boost the matching process. So we

directly use the IoU between OBBs as a matching criterion,

which can effectively avoid the problem of misalignment.
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2.2. Spatialinvariant Feature Extraction

CNN has the property of translation-invariant while

showing poor performance on rotation and scale variations.

For image feature extraction, the Spatial Transformer [14]

and deformable convolution [5] are proposed to model ar-

bitrary deformation. They are learned from the target tasks

without extra supervision. For region feature extraction, the

deformable RoI pooling [5] is proposed, which is achieved

by offset learning for sampling grid of RoI pooling. It can

better model the deformation at instance level compared to

regular RoI warping [8, 10, 4]. The STN and deformable

modules are widely used for recognition in the field of scene

text and aerial images [40, 33, 19, 34, 39]. As for object de-

tection in aerial images, there are more rotation and scale

variations, but hardly nonrigid deformation. Therefore, our

RoI Transformer only models the rigid spatial transforma-

tion, which is learned in the format of (dx, dy, dw, dh, dθ).
However, different from deformable RoI pooling, our RoI

Transformer learns the offset with the supervision of ground

truth. And the RRoIs can also be used for further rotated

bounding box regression, which can also contribute to the

object localization performance.

2.3. Light RoIwise Operations

The roi-wise operation is the bottleneck of efficiency

on two-stage algorithms because the computations are not

shared. The Light-head R-CNN [17] is proposed to address

this problem by using a larger separable convolution to get

a thin feature. It also employs the PS RoI pooling [4] to

reduce the dimensionality of feature maps further. A sin-

gle fully connected layer is applied on the pooled features

with the dimensionality of 10, which can significantly im-

prove the speed of two-stage algorithms. In aerial images,

there exist scenes where the number of instances is large.

For example, there may be over 800 instances on a single

1024× 1024 image. Our approach is similar to Deformable

RoI pooling [5] where the RoI-wise operations are con-

ducted twice. The light-head design is also employed for

efficiency guarantee.

3. RoI Transformer

In this section, we present details of our proposed RoI

Transformer, which contains two parts, RRoI Learner and

RRoI Warping. The RRoI Learner is a PS RoI Align fol-

lowed by a fully connected layer with the dimension of 5,

which regress the offsets of Rotated Ground Truths (RGTs)

relative to HRoIs. The RRoI Warping warp the rotated re-

gion features to maintain the rotation invariance. Both of

these two layers are differentiable for the end-to-end train-

ing. The architecture is shown in Fig.2.

3.1. RRoI Learner

The RRoI learner aims at learning rotated RoIs (RRoIs)

from the feature map of horizontal RoIs (HRoIs). Suppose

Figure 2. The architecture of RoI Transformer. For each HRoI,

it is passed to a RRoI learner. The RRoI learner in our network

is a PS RoI Align followed by a fully connected layer with the di-

mension of 5 which regresses the offsets of Rotated Ground Truths

(RGTs) relative to HRoI. The Box decoder is at the end of RRoI

Learner, which takes the HRoI and the offsets as input and out-

puts the decoded RRoIs. Then the feature map and the RRoI are

passed to the RRoI warping for geometry robust feature extraction.

The combination of RRoI Learner and RRoI warping form a RoI

Transformer. The geometry robust pooled feature from the RoI

Transformer is then used for classification and RRoI regression.

we have got n HRoIs denoted by {Hi} with the format of

(x, y, w, h) for predicted 2D locations, width and height of

a HRoI, the corresponding feature maps can be denoted as

{Fi}. Since every HRoI is the external rectangle of a RRoI

in ideal scenarios, we are trying to infer the geometry of

RRoIs from every feature map Fi by using the fully con-

nected layers. We first give the regression targets of offsets

relative to general RRoIs as

t∗x = 1
wr

(

(x∗ − xr) cos θr + (y∗ − yr) sin θr
)

,

t∗y = 1
hr

(

(y∗ − yr) cos θr − (x∗ − xr) sin θr
)

,

t∗w = log w∗

wr
, t∗h = log h∗

hr
,

t∗θ = 1
2π

(

(θ∗ − θr) mod 2π
)

,

(1)

where (xr, yr, wr, hr, θr) is a stacked vector for represent-

ing location, width, height and orientation of a RRoI and

(x∗, y∗, w∗, h∗, θ∗) is the ground truth parameters of an ori-

ented bounding box (OBB). The mod is used to adjust the

angle offset target t∗θ in [0, 2π) for the convenience of com-

putation. Indeed, the target for regression offsets relative to

HRoI is a special case of Eq. (1) if θ∗ = 3π
2 . The general

relative offsets are illustrated in Fig. 3 as an example. To

derive the Eq. (1), you need to translate the coordinates of

OBB from global coordinate sysetm to local coordinate

system (for example, x1O1y1). Mathematically, the fully

connected layer output a vector (tx, ty, tw, th, tθ) for every

feature map Fi by

t = G(F ; Θ), (2)

where G represents the fully connected layer and Θ is the

weight parameters of G and F is the feature map for every

HRoI.
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Figure 3. An example explaining the relative offset. There are

three coordinate systems. The XOY is the global coordinate

system bound to the image. The x1O1y1 and x2O2y2 are local

coordinate systems bound to two RRoIs (blue rectangle) respec-

tively. The (∆x,∆y) represents the offset between the center

of RRoI and RGT. The yellow rectangle represents the Rotated

Ground Truth (RGT). The right two rectangles are obtained from

the left two rectangles by translation and rotation while keeping

the relative position unchanged. The (∆x1,∆y1) is not equal to

(∆x2,∆y2) if we observe in the coordinates XOY . They are the

same if we observe (∆x1,∆y1) in x1O1y1 and (∆x2,∆y2) in

(x2O2y2). The α1 and α2 denote the angles for two RRoIs re-

spectively.

Figure 4. Rotated RoI warping The shape of the warped fea-

ture is a horizontal rectangle (we use 3 × 3 for example here.)

The sampling grid for RoI warping is determined by the RRoI

(xr, yr, w, h, θ). We employ the image instead of the feature map

for a better explanation. After the RRoI warping, the extracted

features are geometry robust. (The orientations of all the vehicles

are the same).

During the training, we have to match the input HRoIs

and the ground truth of oriented bounding boxes (OBBs).

For efficiency, the matching process is made between the

HRoI and axis-aligned bounding boxes over original ground

truth. Once an HRoI is matched with a ground truth of

OBB, we set the t∗ directly by definition in Eq. (1). We

use the Smooth L1 loss [9] function for the regression loss.

For the predicted t in every forward pass, we decode it from

offsets to the parameters of RRoI. That is to say, our pro-

posed RRoI learner can learn the parameters of RRoI from

the HRoI feature map F .

3.2. RRoI Warping

Once we have the parameters of RRoI, we can extract

the rotation-invariant deep features for Oriented Object De-

tection by RRoI Warping. Here, we propose the module

of Rotated Position Sensitive (RPS) RoI Align as the con-

crete RRoI Warping, since our baseline (more details in

Sec. 2.3) is Light-Head R-CNN [17]. Given the input fea-

ture map D with shape of (H,W,K ×K × C) and a RRoI

(xr, yr, wr, hr, θr), where (xr, yr) denotes the center of

the RRoI and (wr, hr) denotes the width and height of the

RRoI. The θr gives the orientation of the RRoI. The RPS

RoI Align divides the Rotated RoI into K × K bins and

outputs a feature map Y with the shape of (K,K,C). For

the bin with index (i, j) (0 ≤ i, j < K) of the output chan-

nel c(0 ≤ c < C), we have

Yc(i, j) =
∑

(x,y)∈bin(i,j)

Di,j,c(Tθ(x, y))/n, (3)

where the Di,j,c is a feature map out of the K × K × C
feature maps. The channel mapping from the input to out-

put is the same as the original Position Sensitive RoI pool-

ing [4]. The n × n is the number of sampling locations in

the bin. The bin(i,j) denote the coordinates set {iwr

k
+(sx+

0.5) wr

k×n
; sx = 0, 1, ...n−1}×{j hr

k
+(sy+0.5) hr

k×n
; sy =

0, 1, ...n − 1}. And for each (x, y) ∈ bin(i, j), it is con-

verted to (x
′

, y
′

) by Tθ, where
(

x
′

y′

)

=

(

cosθ −sinθ
sinθ cosθ

)(

x− wr/2

y − hr/2

)

+

(

xr

yr

)

(4)

Typically, Eq. (3) is implemented by bilinear interpolation.

3.3. RoI Transformer for Oriented Object Detection

The combination of RRoI Learner, and RRoI Warping

forms a RoI Transformer (RT). It can be used to replace

the normal RoI warping operation. The pooled feature from

RT is rotation-invariant. Moreover, the RRoIs provide bet-

ter initialization for later regression because the matched

RRoI is closer to the RGT compared to the matched HRoI.

As mentioned before, a RRoI is a tuple with 5 elements

(xr, yr, wr, hr, θr). In order to eliminate ambiguity, we use

h to denote the short side and w the long side of a RRoI.

The orientation vertical to h and falls in [0, π] is chosen as

the final direction of a RRoI. After all these operations, the

ambiguity is avoided. Also, the operations are required to

reduce rotation variations.

IoU between Polygons When matching between RRoI

and RGT, we still use the IoU as the criteria. If a RRoI with

any RGT has an IoU over the threshold of 0.5, it is con-

sidered to be True Positive (TP). For the calculation of IoU

between RRoI and RGT, we use the Eq. (5) as shown below.

It has a similar form with the IoU calculation between hor-

izontal bounding boxes. The only difference is that the IoU

calculation for RRoIs is performed within polygons. The

Br means the bounding box of a RRoI. The Bgt represents

the bounding box of a ground truth. The area is a function

for calculating the area of an arbitrary polygon.

IoU =
area(Br ∩Bgt)

area(Br ∪Bgt)
(5)
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Targets Calculation After RRoI warping, the rotation-

invariant feature is obtained. Then we add a 2048 dimen-

sion fully connected layer (fc) followed by two sibling fcs

for final classification and regression (see in Fig. 2). The

classification targets are the same as previous works. How-

ever, the regression targets are different. To maintain con-

sistency, the offsets also need to be rotation-invariant. To

achieve this goal, we use the relative offsets as explained in

Fig. 3. The main idea is to use the coordinate system bind-

ing to the RRoI rather than the image for offsets calculation.

The Eq. (1) is the derived formulation for relative offsets.

4. Experiments and Analysis

4.1. Datasets

For experiments, we choose two datasets, known as

DOTA [37] and HRSC2016 [28], for oriented object detec-

tion in aerial images.

• DOTA [37]. It is the largest dataset for object detec-

tion in aerial images with oriented bounding box anno-

tations. It contains 2806 large size images. There 15

categories, including Baseball diamond (BD), Ground

track field (GTF), Small vehicle (SV), Large vehicle

(LV), Tennis court (TC), Basketball court (BC), Stor-

age tank (ST), Soccer-ball field (SBF), Roundabout

(RA), Swimming pool (SP), and Helicopter (HC). The

fully annotated DOTA images contain 188, 282 in-

stances. The instances in this data set vary greatly in

scale, orientation, and aspect ratio. As shown in [37],

the algorithms designed for regular horizontal object

detection get modest performance on it. Like PAS-

CAL VOC [7] and COCO [21], the DOTA provides

the evaluation server1.

We use both the training and validation sets for train-

ing, the testing set for testing. We do a limited data

augmentation. Specifically, we resize the image at

two scales(1.0 and 0.4) for training and (1.0 and 0.5)

testing. After image rescaling, we crop a series of

1024 × 1024 patches from the original images with a

stride of 824. For those categories with a small number

of samples, we do a rotation augmentation randomly

from 4 angles (0, 90, 180, 270) to simply avoid the

effect of an imbalance between different categories.

With all these processes, we obtain 37373 patches,

which are much less than that in the official baseline

implements (150, 342 patches) [37]). For testing ex-

periments, the 1024×1024 patches are also employed.

None of the other tricks is utilized except the stride for

image sampling is set to 512.

• HRSC2016 [28]. The HRSC2016 [28] is a challeng-

ing dataset for ship detection in aerial images. The

1http://captain.whu.edu.cn/DOTAweb/evaluation.

html

images are collected from Google Earth. It contains

1061 images and more than 20 categories of ships

in various appearances. The image size ranges from

300 × 300 to 1500 × 900. The training, validation

and test set include 436 images, 181 images, and 444

images, respectively. For data augmentation, we only

adopt the horizontal flipping. And the images are re-

sized to (512, 800), where 512 represents the length

of the short side and 800 the maximum length of an

image.

4.2. Implementation details

Baseline Framework. For the experiments, we build the

baseline network inspired from Light-Head R-CNN [17]

with backbone ResNet101 [11]. Our final detection per-

formance is based on the FPN [22] network, while it is not

employed in the ablation experiments for simplicity.

• Light-Head R-CNN OBB: We modified the regres-

sion of fully-connected layer on the second stage

to enable it to predict OBBs, similar to work in

DOTA [37]. The only difference is that we replace

((xi, yi), i = 1, 2, 3, 4) with (x, y, w, h, θ) for the rep-

resentation of an OBB. Since there is an additional

param θ, we do not double the regression loss as the

original Light-Head R-CNN [17] does. The hyperpa-

rameters of large separable convolutions we set is k =
15, Cmid = 256, Cout = 490. And the OHEM [35]

is not employed for sampling at the training phase. For

RPN, we used 15 anchors same as original Light-Head

R-CNN [17]. The batch size of RPN [32] is set to 512.

Finally, there are 6000 RoIs from RPN before Non-

maximum Suppression (NMS) and 800 RoIs after us-

ing NMS. Then 512 RoIs are sampled for the training

of R-CNN. The learning rate is set to 0.0005 for the

first 14 epochs and then divided by 10 for the last four

epochs. For testing, we adopt 6000 RoIs before NMS

and 1000 after NMS processing.

• Light-Head R-CNN OBB with FPN: The Light-

Head R-CNN OBB with FPN uses the FPN [22] as a

backbone network. Since no source code was publicly

available for Light-Head R-CNN based on FPN, our

implementation details could be different. We simply

added the large separable convolution on the feature

of every level P2, P3, P4, P5. The hyperparameters of

large separable convolution we set is k = 15, Cmid =
64, Cout = 490. The batch size of RPN is set to be

512. There are 6000 RoIs from RPN before NMS and

600 RoIs after NMS processing. Then 512 RoIs are

sampled for the training of R-CNN. The learning rate

is set to 0.005 for the first five epochs and divided by a

factor of 10 for the last two epochs.
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Figure 5. Visualization of detection on the scene where many densely packed instances exist. We select the predicted bounding boxes with

scores above 0.1, and a NMS with threshold 0.1 is applied for duplicate removal.

Table 1. Results of ablation studies. We used the Light-Head R-CNN OBB detector as our baseline. The leftmost column represents the

optional settings for the RoI Transformer. In the right four experiments, we explored the appropriate setting for RoI Transformer.

Baseline RoITransformer with different settings

Light RRoI Learner? X X X

Context region enlarge? X X

NMS on RRoIS? X X X

mAP 58.3 63.17 63.39 66.25 67.74

Table 2. Comparisons with the state-of-the-art methods on HRSC2016.

method CP [26] BL2 [26] RC1 [26] RC2 [26] R2PN [43] RRD [20] RoI Trans.

mAP 55.7 69.6 75.7 75.7 79.6 84.3 86.2

4.3. Comparison with Deformable PS RoI Pooling

In order to validate that the performance is not from ad-

ditional computation, we compared our method with de-

formable PS RoI pooling (DPSRP), since both of them are

a kind of improved RoI Warping operation to model the ge-

ometry variations. For experiments, we use the Light-Head

R-CNN OBB as our baseline. The deformable PS RoI pool-

ing and RoI Transformer are used to replace the PS RoI

Align in the Light-Head R-CNN respectively.

Complexity. Both RoI Transformer and deformable RoI

pooling have a light localisation network, which is a stan-

dard pooled feature followed by a fully connected layer.

In our RoI Transformer, only 5 parameters(tx, ty, tw, th, tθ)

are learned. The deformable PS RoI pooling learns offsets

for each bin, where the number of parameters is 7× 7× 2.

So our module is designed lighter than deformable PS RoI

pooling. As can be seen in Tab. 4, our RoI Transformer

model uses almost equal memory (273MB compared to

273.2MB) and runs faster at the inference phase (0.17s com-

pared to 0.206s per image). However, RoI Transformer runs

slower than deformable PS RoI pooling on training time

(0.475s compared to 0.445s) since there is an extra match-

ing process between the RRoIs and RGTs in training.

Detection Accuracy. The comparison results are shown

in Tab. 4. The deformable PS RoI pooling outperforms the

Light-Head R-CNN OBB Baseline by 5.6 points. While

there is only 1.4 points improvement for R-FCN [4] on Pas-

cal VOC [7] as pointed out in [5]. It shows that the ge-

ometry modeling is more important for object detection in

aerial images. However, the deformable PS RoI pooling

is much lower than our RoI Transformer by 3.85 points.

We argue that there are two reasons: 1) Our RoI Trans-

former can better model the geometry variations in aerial

images. 2) The regression targets of deformable PS RoI

pooling are still relative to the HRoI rather than using the

boundary of the offsets. Our regression targets are rela-

tive to the RRoI, which gives a better initialization for re-

gression. We visualize some detection results for detecting

densely packed instances in Fig. 5. The results show that

our proposed method can precisely locate the instances in

scenes with densely packed ones. While the Light-Head R-

CNN OBB baseline and the deformable RoI pooling show

worse performance on classification and localization of in-

stances. Specifically, the head of truck is misclassified to

be the small vehicle (the blue bounding box) as shown in

Fig. 5. However, our proposed RoI Transformer has the

least number of misclassified instances.

4.4. Ablation Studies

We conduct a serial of ablation experiments on DOTA

to find the appropriate settings of our proposed RoI Trans-

former. We use the Light-Head R-CNN OBB as our base-

line. Then gradually change the settings. When applying
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Table 3. Comparisons with state-of-the-art detectors on DOTA [37]. The short names for each category can be found in Section 4.1. The

dresnet101 in ICN [1] means deformable conv. resnet101. The FR-O indicates the Faster R-CNN OBB detector, which is the official

baseline provided by DOTA [37]. The RRPN indicates the Rotation Region Proposal Networks, which used a design of rotated anchor. The

R2CNN means Rotational Region CNN, which is a HRoI-based method without using the RRoI warping operation. The RDFPN means

the Rotation Dense Feature Pyramid Netowrks. It also used a design of Rotated anchors and used a variation of FPN. The work in Yang et

al. [42] is an extension of R-DFPN.

method backbone W/FPN test scales Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC mAP

FR-O [37] resnet101 1 79.42 77.13 17.7 64.05 35.3 38.02 37.16 89.41 69.64 59.28 50.3 52.91 47.89 47.4 46.3 54.13

RRPN [30] resnet101 1 80.94 65.75 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 61.01

R2CNN [15] resnet101 1 88.52 71.2 31.66 59.3 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 60.67

R-DFPN [41] resnet101 X 1 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.1 51.32 35.88 57.94

Yang et al. [42] resnet101 X 1 81.25 71.41 36.53 67.44 61.16 50.91 56.6 90.67 68.09 72.39 55.06 55.6 62.44 53.35 51.47 62.29

ICN [1] dresnet101 X 4 81.36 74.3 47.7 70.32 64.89 67.82 69.98 90.76 79.06 78.2 53.64 62.9 67.02 64.17 50.23 68.16

Baseline resnet101 2 81.06 76.81 27.22 69.75 38.99 39.07 38.3 89.97 75.53 65.74 63.48 59.37 48.11 56.86 44.46 58.31

DPSRP resnet101 2 81.18 77.42 35.48 70.41 56.74 50.42 53.56 89.97 79.68 76.48 61.99 59.94 53.34 64.04 47.76 63.89

RoITransformer resnet101 2 88.53 77.91 37.63 74.08 66.53 62.97 66.57 90.5 79.46 76.75 59.04 56.73 62.54 61.29 55.56 67.74

Baseline resnet101 X 2 88.02 76.99 36.7 72.54 70.15 61.79 75.77 90.14 73.81 85.04 56.57 62.63 53.3 59.54 41.91 66.95

RoITransformer resnet101 X 2 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

Figure 6. Visualization of results from RoI Transformer in DOTA.

Figure 7. Failure cases. (a) detects the long wake of a ship as a

harbor. (b) incorrectly detects harbors as planes.

the RoI Transformer with a simple setting, there is a 4.87

point improvement in mAP. We discuss the other settings in

the following.

Table 4. Comparison of our RoI Transformer with deformable PS

RoI pooling and Light-Head R-CNN OBB on accuracy, speed and

memory. All the speed are tested on images with size of 1024 ×
1024 on a single TITAN X (Pascal). The time of post-process

(i.e. NMS) was not included. The LR-O, DPSRP and RT denote

the Light-Head R-CNN OBB, deformable Position Sensitive RoI

pooling and RoI Transformer, respectively.

method mAP train speed test speed param

LR-O 58.3 0.403 s 0.141s 273MB

DPSRP 63.89 0.445s 0.206s 273.2MB

RT 67.74 0.475s 0.17s 273MB
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Figure 8. Comparison of three kinds of region for feature extrac-

tion. (a) The Horizontal Region. (b) The rectified Region after

RRoI Warping. (c) The rectified Region with appropriate context

after RRoI warping.

Light RRoI Learner. In order to guarantee the efficiency,

we directly apply a fully connected layer with an output di-

mension of 5 on the pooled features from the HRoI warp-

ing. As a comparison, we also tried more fully connected

layers for the RRoI learner, as shown at the first and second

columns in Tab. 1. We find there is little drop (0.22 point) on

mAP when we add one more fully connected layer with an

output dimension of 2048 for the RRoI learner. The reason

may be that the additional fully connected layer with higher

dimensionality requires a longer time for convergence.

Contextual RRoI. As pointed out in [13, 30], appropri-

ate enlargement of the RoI will promote the performance. A

horizontal RoI contains much background while a precise

RRoI hardly contains redundant background as explained

in the Fig. 8. Complete abandon of contextual information

will make it difficult to classify and locate the instance even

for the human. Therefore, it is necessary to enlarge the re-

gion of the feature with an appropriate degree. Here, we

enlarge the long side of RRoI by a factor of 1.2 and the

short side by 1.4. The enlargement of RRoI improves AP

by 2.86 points, as shown in Tab. 1

NMS on RRoIs. Since the obtained RoIs are rotated,

there is flexibility for us to decide whether to conduct an-

other NMS on the RRoIs transformed from the HRoIs. This

comparison is shown in the last two columns of Tab. 1. We

find there is 1.5 points improvement in mAP if we remove

the NMS. This is reasonable because there are more RoIs

without additional NMS, which could increase the recall.

4.5. Comparisons with the Stateoftheart

We compared the performance of our proposed RoI

Transformer with the state-of-the-art algorithms on two

datasets DOTA [37] and HRSC2016 [28]. The settings are

described in Sec. 4.2, and we just replace the Position Sen-

sitive RoI Align with our proposed RoI Transformer. Our

baseline and RoI Transformer results are obtained without

using ohem [35] at the training phase.

Results on DOTA. Note the RRPN [30] and R2CNN [15]

are originally used for text scene detection. The results are a

re-implemented version for DOTA by a third-party2. As can

be seen in Tab. 3, RoI Transformer without FPN achieved

the mAP of 67.74 for DOTA, it outperforms the previous the

2https://github.com/DetectionTeamUCAS/RRPN_

Faster-RCNN_Tensorflow

state-of-the-art without FPN (61.01) by 6.71 points. And

there is only 0.42 point lower than the previous state-of-

the-art with FPN (68.16). When we add RoI Transformer

on the stronger baseline of Light-Head OBB FPN, it still

has improvement by 2.6 points in mAP reaching the peak

at 69.56. This indicates that the proposed RoI Transformer

is valid for different backbones. Besides, there is a signifi-

cant improvement in densely packed small instances. (e.g.,

the small vehicles, large vehicles, and ships). For exam-

ple, the detection performance for the ship category gains

an improvement of 13.61 points compared to the previous

best result (69.98) achieved by ICN [1]. We give some qual-

itative results of RoI Transformer on DOTA in Fig. 6. The

failure cases are given in Fig. 7. From the failure cases, we

can see the model do not learn the context, which is what

we do not consider yet.

Results on HRSC2016. The HRSC2016 contains a lot

of thin and long ship instances with arbitrary orientation.

We use 4 scales {642, 1282, 2562, 5122} and 5 aspect

ratios {1/3, 1/2, 1, 2, 3}, yielding k = 20 anchors for RPN

initialization. This is because there is more aspect ratio

variations in HRSC, but relatively fewer scale changes. The

other settings are the same as those in 4.2. We conduct

the experiments without FPN which still achieves the best

performance on mAP. Specifically, based on our proposed

method, the mAP can reach 86.16, 1.86 higher than that of

RRD [20]. The RRD adopt SSD [25] as architecture for

oriented object detection. Note it utilizes multi-layers for

feature extraction and 13 different aspect ratios of default

boxes{1, 2, 3, 5, 7, 9, 15, 1/2, 1/3, 1/5, 1/7, 1/9, 1/15}.

While our proposed framework simply employs the final

output features with only five aspect ratios of boxes.

5. Conclusion

In this paper, we proposed a module called RoI Trans-

former to model the geometry transformation, which can

effectively avoid the problem of misalignment between re-

gion feature and objects. This design brings significant im-

provements for oriented object detection on the challenging

DOTA and HRSC with a negligible computation cost in-

crease. Furthermore, the comprehensive comparisons with

deformable RoI pooling verified that our model is more rea-

sonable when oriented bounding box annotations are avail-

able.
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