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Abstract

Zero-shot learning has been well explored to precisely

identify new unobserved classes through a visual-semantic

function obtained from the existing objects. However, there

exist two challenging obstacles: one is that the human-

annotated semantics are insufficient to fully describe the vi-

sual samples; the other is the domain shift across existing

and new classes. In this paper, we attempt to exploit the

intrinsic relationship in the semantic manifold when given

semantics are not enough to describe the visual objects, and

enhance the generalization ability of the visual-semantic

function with marginalized strategy. Specifically, we design

a Marginalized Latent Semantic Encoder (MLSE), which

is learned on the augmented seen visual features and the

latent semantic representation. Meanwhile, latent seman-

tics are discovered under an adaptive graph reconstruction

scheme based on the provided semantics. Consequently, our

proposed algorithm could enrich visual characteristics from

seen classes, and well generalize to unobserved classes.

Experimental results on zero-shot benchmarks demonstrate

that the proposed model delivers superior performance over

the state-of-the-art zero-shot learning approaches.

1. Introduction

Visual data analytic has achieved tremendous improve-

ments recently, as the rapid explosion of data scales and

continuously-improved learning models. Traditional visual

recognition systems almost pursue the supervised strategies,

that require a great number of well-annotated instances to

seek a high-performance model. Unfortunately, it is expen-

sive and even prohibitive to collect enough training samples

for an effective model, especially when these samples need

fine-grained annotations. Hence, it is appealing and essen-

tial to build such recognition systems that can identify novel

categories in the test stage with limited or even no instances

accessible in the training process.

Zero-shot learning (ZSL) has been surging recently,

which catches great attention for its promising performance

Figure 1. Illustration of our marginalized latent semantic encoder,

in which a semantic encoder is built to bridge visual features in

marginalized corruption E(X̃) and the latent semantics Z with

WE(X̃) ≈ Z. Furthermore, latent semantics are learned over

the given semantics A through an adaptive graph (Z ≈ AS).

in generalizing knowledge from observed objects to un-

seen objects [22, 8, 33, 11, 6, 17, 14, 31, 3, 26, 7, 28].

In fact, ZSL is motivated by the human cognitive learning

mechanism in identifying unknown classes. ZSL attempts

to discover the intrinsic visual-semantic mapping from ob-

served objects and generalizes it for unobserved categories.

One of the most frequently-adopted approaches is to embed

visual features and their corresponding semantics of seen

classes into the same common space to couple the semantic

gap across two, which expects that the unseen classes with

their semantics and visual samples are also embedded in the

same space. Most existing ZSL models focus on seeking

the visual-semantic function only relying on the provided

visual data and its semantics [4, 22, 12, 13]. The visual-

semantic function could simply be a linear mapping [23],

or dual linear mappings [4], or even complex non-linear

functions, including dictionary learning [8], auto-encoder

[12, 17, 3, 34], and generative models [38, 31, 9, 7], where

generative models are usually promising to augment the

space of seen classes and more likely to cover that of un-

seen classes in the training stage.

Although the existing ZSL methods achieve some

promising results in generalizing the seen knowledge to un-

6191



seen ones [12, 17, 3, 34], there still remains two degenerat-

ing points. First of all, it presents a general challenge from

no training data for the unseen classes, which leads to the

difficulties for model selection. The domain shift across

seen and unseen classes would prevent the generalization

ability of the learned visual-semantic function. Thus, how

to learn an effective and compatible visual-semantic map-

ping on the observed objects is the key problem in ZSL

problem. Secondly, the information based on observed sam-

ples is not always sufficient to learn the visual-semantic

mapping. On one hand, the semantic attributes are sub-

jective to be annotated and not enough to span the visual

feature space; on the other hand, the visual-semantic map-

ping is learned only on the seen categories, where the dif-

ferent visual distribution on seen and unseen categories ob-

stacles the effective generalization in the test stage. To this

end, tremendous efforts have been taken to handle the above

challenges[38, 31, 9, 7]; however, most of them ignore the

huge potential in the latent semantic representation for a

more generic visual-semantic mapping learning.

In this paper, we develop a novel Marginalized Latent

Semantic Encoder (MLSE) to deal with the previously-

mentioned two zero-shot obstacles (Figure 1). Our main

assumption is that the latent semantic representation could

better describe the visual samples compared with human-

annotated ones, and generic semantic encoder is able to

better capture the unseen knowledge by augmenting visual

space of the seen classes through marginalized denoising

strategy. Moreover, we exploit a sparse residual constraint

to purse a meaningful semantic embedding space and guide

the latent semantic representation learning. To sum up, we

highlight our contributions as:

• First of all, we derive a generic encoder to adapt

the intrinsic knowledge and shared features from the

observed classes under a marginalized augmentation.

Therefore, a generic semantic encoder could cover

more knowledge for the unseen categories, and thus

generalize well in the test stage.

• Second, we automatically learn new latent semantics

to seek more efficient prototypes from known classes

through an adaptive graph reconstruction strategy over

given semantics. Hence, our model is able to learn

more effective information with the given human-

annotated semantics.

• Finally, we further adopt a sparse reguralizer to con-

strain the adaptive graph learning with preserving the

original intrinsic information and removing the out-

liers and noising factors. Therefore, our model is able

to effectively learn the latent semantics.

2. Related Work

Zero-shot learning (ZSL) targets at learning models of

visual concepts with no evaluation data of the concepts. As

visual knowledge from such unknown evaluation classes is

inaccessible in the training process, ZSL needs external se-

mantics to compensate for the unknown visual information.

So far, attribute-based descriptions are widely used to define

the shared characteristics across various categories [20, 21],

which is an intermediate domain to link the visual features

with their semantics.

Early ZSL explores the attributes within a two-stage ap-

proach to predict the label of a given image from the unseen

classes. Generally speaking, the attributes of any given im-

age are assigned in the first stage, then its class label is in-

ferred by searching the class-attribute table using the near-

est neighbor classifier. Direct Attribute Prediction (DAP)

and Indirect attribute prediction (IAP) are two pioneering

studies, which adopt the hidden layer of attributes as vari-

ables decoupling the images from the layer of labels [15].

However, such two-stage approaches suffer from distribu-

tion difference between the intermediate and target task,

since target task is to assign the class label while intermedi-

ate task would consider to obtain attribute classifiers.

Recent advances of ZSL seek a direct mapping from a

visual feature space to a semantic space. Along this line,

Akata et al. optimized the structural SVM loss to achieve

the bilinear compatibility [2]. Furthermore, they proposed

to build a bilinear compatibility function across the visual

and the semantics via a ranking loss [1]. On the other hand,

Romera-Paredes et al. exploited the square loss to obtain the

bilinear compatibility and explicitly regularizes the objec-

tive [23]. Recently, Jiang et al. also employed a dictionary

learning framework to seek the latent attributes, which was

not only discriminative but also semantic-preserving [11].

Liu et al. explored a semantic auto-encoder with rank con-

straint on the projection matrix to preserve more intrinsic

structure [17]. Some generative models are proposed by

seeking a generator as the visual-semantic mapping func-

tion [38, 31, 9]. They mainly explore the conditioned gen-

erator on semantics to synthesize more visual features for

seen classes, and thus they have a better chance to mitigate

the domain shift in visual space between seen and unseen

classes. However, generative models are usually hard to

train due to its min-max optimization.

Moreover, another ZSL direction is to embed both the vi-

sual and semantic features into a shared intermediate space.

Following this, Zhang et al. mapped visual features and

semantic features into two different latent spaces, and mea-

sured their similarity through seeking one bilinear compati-

bility function [36]. Besides, Changpinyo et al. explored

a hybrid model and constructed the classifiers of unseen

classes by taking the linear combinations of base classifiers,

which are trained in a discriminative learning framework

from seen classes[5].

Unfortunately, most existing ZSL approaches pay less

attention to discriminative information for the unknown cat-
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egories considering the high within-class variability, and

therefore, they would fail to uncover the common semantics

cross seen and unseen classes. Differently, we assume the

provided semantics are not enough to describe the visual ob-

jects and thus aim to seek a better latent semantic represen-

tation. Simultaneously, we learn a generic semantic encoder

with marginalized augmentation strategy to effectively han-

dle the domain shift and discover the shared discriminative

features across the seen and unseen categories.

3. The Proposed Algorithm

In this part, we discuss our novel marginalized seman-

tic encoder with latent semantic representation for effective

zero-shot learning.

3.1. Preliminaries & Motivation

Considering there are C seen categories with n labeled

instances D = {X,A, y} and Cu unseen categories with

nu unlabeled instances Du = {Xu, Au, yu}. Each instance

is represented with a d-dimensional visual feature vector.

y ∈ R
n and yu ∈ R

nu denote class labels for the seen and

unseen categories, respectively. More specifically, the seen

and unseen categories are non-overlapped in term of cate-

gory information, that is, y ∩ yu = ∅. Thus, semantic repre-

sentations make up for this challenge, where A ∈ R
m×n

and Au ∈ R
m×nu are the m-dimensional semantics for

seen and unseen categories, respectively. For the seen cate-

gories, A is given for visual feature X , which is labeled by

either binary or continuous attributes representing its cor-

responding class label y. By comparison, Au has to be

predicted as the unseen categories are not annotated. The

intuition of ZSL is to learn a visual-semantic function to

discover the relationship across the visual features and the

individual dimensions of the semantic features. Due to the

distribution divergence across seen and unseen categories,

it is essential to mitigate this challenge during the visual-

semantic function learning.

Since seen categories X and unseen categories Xu are

sampled from various visual feature spaces; fortunately,

A and Au compensate by sharing some common seman-

tics with each other. Take attribute-based semantics as

an example, both seen and unseen categories can be de-

scribed with human-annotated attributes in various values

either binary or continuous. Besides, we notice the human-

provided semantics are not sufficient to comprehensively

describe the visual samples. To this end, we propose our

marginalized latent semantic encoder to handle these two

challenges. First, we explore to diversify the feature space

of seen classes during model training by using the marginal-

ized desnoising strategy. Second, latent semantic represen-

tation is sought to better describe the visual samples jointly

with an adaptive graph learning.

3.2. Generic Semantic Encoder Learning

A natural way to enhance the generalization of a visual-

semantic function using a corrupting distribution is to ex-

plore the spirit of [18] by selecting each element of the

training samples and corrupting it k times. For seen visual

features X , this results in corresponding corrupted observa-

tions X̃l (with l = 1, · · · , k). Thus, we propose a semantic

encoder to encode each corrupted X̃l with semantic repre-

sentation A as follows:

min
W

1

k

k
∑

l=1

‖WX̃l −A‖2F, s.t. W⊤W = Im, (1)

where ‖ · ‖F is the Frobenius norm and X̃i is the l-th cor-

rupted version of X . Note that the orthogonal constraint

W⊤W = Im (Im ∈ R
m×m) is imposed to avoid trivial

solutions.

Although attribute semantics are widely-used in the clas-

sification problem, two issues need to be taken into account.

First of all, the human-annotated attributes do not always

achieve the similar importance for discrimination, hence, it

would be not desirable to seek more enriched semantics.

Secondly, there are correlations among different attributes;

hence, it is improper to learn every attribute individually.

In other words, it is too strong to enforce A to be semantics

output. Thus, we explore to learn new latent semantics to re-

lax the constraint. Furthermore, we introduce the marginal-

ized denoising strategy to consider the limiting case when

k tends to be ∞. To this end, we explore the weak law of

large numbers and reformulate 1

k

∑k

l=1
‖WX̃l −A‖2F to its

expectation formula:

min
W,Z

E

(

‖WX̃ − Z‖2F
)

+ α‖Z −A‖2F,
s.t. W⊤W = Im,

(2)

where E(·) is the expectation operator and α is the trade-off

parameter. The second constraint enforces Z to be similar

to the given semantics A, which could help ensure that the

learned semantic encoder depicts visual-semantic relation.

The exception loss minimization results in data augmenta-

tion in learning the semantic encoder, which would improve

the generalization ability of the proposed model, especially

when dealing with zero-shot learning problem.

3.3. Adaptive Graph Guided Latent Semantics

Considering the phenomenon that samples from one cat-

egory are lying over a complicated manifold, e.g., crescent

manifold, it is clearly not a proper way to directly use its

center as its prototype or exemplar to that class. More-

over, human-annotated semantics are usually not enough to

comprehensively describe the visual samples. However, se-

mantics across different categories should be shared. So,

we adopt the manifold learning idea to uncover the latent
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semantic representation based on a new reconstruction of

provided semantics constrained a graph manifold. Thus,

semantics of some instances lying in the same local man-

ifold could compensate with each other in latent semantics

learning.

To uncover more semantic knowledge, we propose an

adaptive graph reconstruction term to align the latent se-

mantics Z and the given semantics A as follows:

min
W,Z,S

E

(

‖WX̃ − Z‖2F
)

+ α‖Z −AS‖2F
s.t. W⊤W = Im, 1

⊤
nS = 1

⊤
n , S ≥ 0,

(3)

where two constraints, i.e., 1⊤
nS = 1

⊤
n (1n is an all-one n-

dim vector) and S ≥ 0, are used to guarantee the validity of

the obtained graph coefficients.

To explore more intrinsic structure on S, we consider a

residual minimization with pre-defined graph weight ma-

trix H , which is calculated from a spectral dual-graph. To

be specific, we explore the data structures from both visual

features X and its corresponding semantics S. We build

two k-nn graphs Gx and Ga based on visual and seman-

tic features, respectively. We first use cosine similarity to

calculate the weights of two graphs, i.e., Hx and Ha, then

exploit a simple fusion strategy to achieve weight matrix H

as H = Hx+Ha

2
. However, the learned graphs Gx and Ga

may suffer from arbitrary noise from the data. In the worst

case, it would significantly affect the learning of latent se-

mantic representation and further the semantic encoder. To

this end, to promote structure information and suppress ef-

fects of noise data points, we first explore l1-norm to con-

strain the residual between H and S in order to figure out

the small number of abnormal weights caused by outliers or

noisy samples. We expect most elements of S to be similar

to H to preserve the original intrinsic structure while some

to be different for outliers. Thus, we achieve a robust graph

guided semantic encoder as follows:

min
W,Z,S

E

(

‖WX̃ − Z‖2F
)

+ α‖Z −AS‖2F + β‖S −H‖1
s.t. W⊤W = Im, 1

⊤
nS = 1

⊤
n , S ≥ 0,

(4)

where β is the trade-off among three components. ‖ · ‖1 is

the l1 operator of matrix to detect the outliers in the original

dual graph by learning a more effective adaptive graph.

Remark: The objective function in Eq. (4) simultane-

ously seeks a semantic encoder through marginalized de-

noising strategy and latent semantic representation guided

with adaptive graph reconstruction. In this way, our se-

mantic encoder can benefit the artificial data augmentation

to span the visual feature space of seen classes. Also, the

adaptive graph reconstruction scheme could assist learning

more effective latent semantic representation assuming the

give semantics are not enough to describe the visual fea-

tures. Two strategies tend to trigger each other to learn the

semantic encoder with better generalization ability to un-

seen classes.

3.4. Optimization

It is straightforward to observe that three variables W,S

and Z in Eq. (4) are not able to be jointly optimized. To

deal with the issue, we first convert it into the augmented

Lagrangian function via involving an extra variable E de-

fined as E = S −H (S ≥ 0):

J = E

(

‖WX̃ − Z‖2F
)

+ α‖Z −AS‖2F + β‖E‖1
+ µ

(

‖1⊤
nS − 1

⊤
n ‖22 + ‖S −H − E‖2F

)

,
(5)

To fight of the constraint 1
⊤
nS = 1

⊤
n efficiently, we

relax the constraint through incorporating a penalty term

µ‖1⊤
nS − 1

⊤
n ‖22 into Eq. (5) and µ is a positive parame-

ter. Since the optimization of Eq. (5) is non-smooth and

non-convex, and thus, we design an efficient solver to Eq.

(5) with respect to W,S,Z and E, respectively.

Learning Semantic Encoder W : Given Z, the objective

function w.r.t. W reduces to:

W = argmin
W⊤W=Im

E

(

‖WX̃ − Z‖2F
)

, (6)

where E(X̃) can be calculated by following [18]. To fight

off the non-convex problem in Eq. (6) due to the orthogo-

nal constraint W⊤W = Im, we explore a gradient descent

optimization [29]. In general, we first calculate the gradient

of J w.r.t W as

∂J
∂W

= 2WE
(

X̃X̃⊤
)

− 2ZE(X̃⊤),

where E
(

X̃X̃⊤
)

and E(X̃⊤) can be calculated by follow-

ing [18]. After that, we calculate the skew-symmetric ma-

trix and update W until we reach the Armijo-Wolfe condi-

tions [27].

Learning Adaptive Graph S: Given Z,E, we relax the

non-negative constraint and rewrite the objective function

w.r.t. S as:

J = ‖Z̄ − ĀS‖2F + tr(ΓS⊤), (7)

where Z̄ = [
√
αZ,

√
µ1n,

√
µ(H + E)] and Ā =

[
√
αA,

√
µ1n,

√
µIn]. For constraint S ≥ 0, we introduce

the Lagrange multiplier Γ, which is an extra variable. For-

tunately, we can mitigate the optimization of Γ through the

following deduction. To be specific, we obtain the partial

derivative of J over S and set it to zero as:

∂J
∂S

= 2Ā⊤(ĀS − Z̄) + Γ = 0.
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Algorithm 1 Solving the problem in Eq. (5)

Input: X,A,H, α, β

Initialization: µm = 106, µ0 = 10−1, ρ = 1.3, τ = 0.

while not converged do

1. Update Z via Eq. (10) with others fixed.

2. Update S,E via Eqs. (8) and (9) with others fixed.

3. Update W via Eq. (6) with others fixed.

4. Update penalty µτ+1 = min(ρµτ , µm).

5. Check the convergence condition |Jτ+1 − Jτ | < 10−3.

6. τ = τ + 1.

end while

output: W,S,E, Z.

Through the KKT condition Γ ⊙ S = 0 (⊙ means the

Hadamard product), we can obtain the following formula-

tion:
[

2Ā⊤(ĀS − Z̄) + Γ
]

⊙ S = 0.

Following [37], we obtain the updating rule for S:

S = S ⊙
√

Ā⊤ĀS

Ā⊤Z̄
, (8)

where we mitigate the optimization of Γ.

After we optimize S, E could be further updated with

the following l1-optimization problem:

E = argmin
E

β‖E‖1 + µ‖S −H − E‖2F

= sign
(

S −H
)

max
(

|S −H| − β

2µ
, 0
)

.
(9)

Learning Latent Semantics Z: Given W,S, we can update

Z by minimizing Eq. (10) w.r.t Z:

Z = argmin
Z

E

(

‖WX̃ − Z‖2F
)

+ α‖Z −AS‖2F

=
1

α+ 1

(

WE(X̃) + αAS
)

.

(10)

For better clarity, we present the optimization details in

Algorithm 1, where we list the initialization of some vari-

ables. To ensure a good convergence, we initialize W with

the mapping between X and A. Other variables are initial-

ized with random matrices for simplicity. α and β are two

hyper parameters, which would be selected based on the

validation set.

In ZSL tasks, there are different cases to do evaluation.

For zero-shot recognition, we are to predict their class la-

bel given any reference visual data. Considering a test data

xit, we could first calculate its predicted semantic embed-

ding with W xit using semantic encoder, then compare with

the ground-truth semantic representation At with Ct classes

(Ct would cover both seen classes C and unseen classes

Cu). For zero-shot annotation, we just exploit the predicted

the semantics to search its attributes through several largest

Table 1. Statistics of four ZSL benchmarks.

Dataset aP&aY AwA2 CUB SUN

#Training Categories 20 40 150 645

#Test Categories 12 10 50 72

#Samples 15,339 37,322 11,788 14,340

#Semantics 64 85 312 102

#Training Samples 5,932 23,527 7,057 10,320

#Test Seen Samples 1,483 5,882 1,764 2,580

#Test Unseen Samples 7,924 7,913 2,967 1,440

values. For zero-shot retrieval, we would adopt the given

semantics at to search the most similar visual samples over

predicted semantics WXt.

4. Experiment

In this part, we conduct experiments on four ZSL bench-

marks, by comparing our proposed approach with state-of-

the-art ZSL from conventional and generalized ZSL tasks.

4.1. Dataset & Experimental Setting

Four zero-shot learning benchmarks are evaluated in our

experiments including SUN attribute dataset1, Animals with

Attributes 2 (AwA2)2, Caltech-UCSD Birds 2011 (CUB)3

and aPascal-aYahoo (aP&aY)4. Their statistics are provided

in Table 1. All these benchmarks are served with annotated

attributes.

Due to some unseen test categories in the original splits

for those four benchmarks belong to part of ImageNet [24],

Xian et al. recently proposed a new split protocol [32], tar-

geting at a true zero-shot evaluation. In our experiments,

we strictly follow the split protocol and adopt the 2048-D

ResNet-101 features for all four benchmarks [32]. More-

over, we utilize the continuous attributes for better ZSL per-

formance.

For our model with the k-nn graph, we adopt k = 10 as

default across various ZSL tasks simply. The trade-off pa-

rameters are chosen from the range [10−2, 102] according

to the evaluation performance on the labeled samples from

the seen categories in the validation set. Later on, we di-

rectly utilize the selected parameters to conduct evaluation

on the original seen and unseen classes. Because different

initializations would result in different optimal solutions for

our proposed model, and we run five times of our model and

report the average results per task.

Baselines: The comparisons with the state-of-the-art in-

clude DAP/IAP [16], CONSE [19], CMT [25], SSE [35],

1http://cs.brown.edu/˜gmpatter/sunattributes.

html
2https://cvml.ist.ac.at/AwA2/
3http://www.vision.caltech.edu/visipedia/

CUB-200-2011.html
4http://vision.cs.uiuc.edu/attributes/
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Table 2. Conventional zero-shot recognition in terms of top-1 ac-

curacy (%) on SUN, CUB, AWA2 and aP&aY benchmarks with

ResNet visual features.

Method SUN CUB AwA2 aP&aY

DAP [16] 39.9 40.0 46.1 33.8

IAP [16] 19.4 24.0 35.9 36.6

CONSE [19] 38.8 34.3 44.5 26.9

CMT [25] 39.9 34.6 37.9 28.0

SSE [35] 51.5 43.9 61.0 34.0

LATEM [30] 55.3 49.3 55.8 35.2

ALE [1] 58.1 54.9 62.5 39.7

DEVISE [10] 56.5 52.0 59.7 39.8

SJE [2] 53.7 53.9 61.9 32.9

ESZSL [23] 54.5 53.9 58.6 38.3

SYNC [5] 56.3 55.6 46.6 23.9

SAE [12] 40.3 33.3 54.1 8.3

PSR [3] 61.4 63.8 56.0 38.4

ZSKL [34] 61.7 51.7 70.5 45.3

Ours 62.8 64.2 67.8 46.2

LATEM [30], ALE [1], DEVISE [10], SJE [2], ESZSL [23],

SYNC [5], SAE [12], PSR [3], and ZSKL [34]. The last

two are the most recently proposed ZSL algorithms. PSR

also aims to explore the relation structure by mining the

most similar and dissimilar pairs, thus could learn a more

discriminative metric. ZSKL attempts to learn a non-linear

mapping across the visual feature and attribute spaces by

exploring kernel functions. Note that results are directly

copied from other published papers, i.e., [32, 3, 14], since

we explore the exactly same protocol and the same set of

data. Moreover, the approaches encompass a wide range in

zero-shot learning area.

Evaluation Metric: Top-1 accuracy is widely-used to mea-

sure single-label classification accuracy. That is the pre-

diction is correct for the assignment class label equals to

the ground-truth one. In zero-shot learning, top-1 accu-

racy per-class is more valued, since high performance is en-

couraged in both densely and sparsely populated categories.

Hence, we average the accurate predictions independently

for each category before dividing their cumulative sum, w.r.t

the number of categories [32].

For generalized zero-shot learning (GZSL) scenario, the

search space during the evaluation stage is not only re-

stricted to the unseen classes (U), but also consists of the

seen classes (S). Thus, the harmonic mean5 is more popular

to measure the GZSL performance by calculating the aver-

age per-class top-1 accuracy on training and test categories

[32]. This strategy is able to flag up those ZSL models over-

fitting to either seen or unseen classes.

5https://en.wikipedia.org/wiki/Harmonic_mean

4.2. Conventional Zero­shot Recognition

This section reports the comparison results (Table 2) on

conventional zero-shot recognition in terms of top-1 accu-

racy. From Table 2, we witness that our proposed algorithm

is able to obtain better performance by comparing with oth-

ers. This verifies that our approach learns a more effec-

tive visual-semantic relation from seen data for unseen data

analysis. The obtained improvements are very consistent

according to the complexity of visual images of each bench-

mark, which e can observe from the well-known compli-

cated CUB dataset. On other hand, our model still performs

very well on SUN benchmark, which contains more classes

and relatively fewer training instances per class. For AwA2,

only class-wise attributes are provided, thus it is challenging

for our model to recover the missing attributes by exploring

the relation across different instances and categories.

Compared with PSR and ZSKL, which explore non-

linear neural networks or kernel functions to link visual and

semantics, our model also preserves such non-linear prop-

erty. Since we attempt to learn a latent semantic represen-

tation, it builds a bridge to link the visual features and pro-

vided semantics. Especially, we utilize an adaptive graph

to reconstruct the latent semantics. All these provide more

flexibility to the learned generic encoder and thus is able to

improve the generalizability on unseen classes.

Furthermore, qualitative results are reported for our de-

signed model. We aim to list what kinds of visual infor-

mation our algorithm is able to capture only given the se-

mantic representation for the unseen categories. Figure 2

reports 10 out of 50 unseen categories in CUB dataset, in

which we show top-3 accurately-retrieved samples (middle

row in red) while the top-3 misclassified samples (last row

in blue) into each unseen class. Observing from the top im-

ages, the proposed model reasonably discovers discrimina-

tive visual information for each unseen category only using

its semantic representation. We further notice that the mis-

classified visual images have much different visual appear-

ances to that of assigned class. Hence, it is hard to recognize

them, even for humans.

4.3. Generalized Zero­shot Recognition

In a more general application, we are not sure if the test

image belongs to the seen categories or totally unseen cat-

egories, which is more interesting from a practical point of

view. In this sense, a lot of research efforts focus on the gen-

eralized zero-shot challenge, in which the test set are built

on both seen and unseen category data.

Table 3 reports the generalized ZSL performance of all

comparisons, where U → U + S and S → U + S repre-

sent two types of GZSL that evaluate if learned unseen/seen

models are confused to each other. H denotes the harmonic

mean. From Table 3, we can easily notice that generalized

ZSL results are significantly lower than conventional ZSL
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Figure 2. Qualitative evaluation of our proposed model on CUB benchmark, in which 10 unseen category labels are listed on the top. Then,

we report the top-3 samples assigned to each category in the middle. Finally, the last row shows the top-3 misclassified instances.

Table 3. Generalized ZSL recognition performance (%) across four benchmarks.

Method
SUN CUB AwA2 aP&aY

U→S+U S→S+U H U→S+U S→S+U H U→S+U S→S+U H U→S+U S→S+U H

DAP [16] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 84.7 0.0 4.8 78.3 9.0

IAP [16] 1.0 37.8 1.8 0.2 72.8 0.4 0.9 87.6 1.8 5.7 65.6 10.4

CONSE [19] 6.8 39.9 11.6 1.6 72.2 3.1 0.5 90.6 1.0 0.0 91.2 0.0

CMT [25] 8.1 21.8 11.8 7.2 49.8 12.6 0.5 90.0 1.0 1.4 85.2 2.8

SSE [35] 2.1 36.4 4.0 8.5 46.9 14.4 8.1 82.5 14.8 0.2 78.9 0.4

LATEM [30] 14.7 28.8 19.5 15.2 57.3 24.0 11.5 77.3 20.0 0.1 73.0 0.2

ALE [1] 21.8 33.1 26.3 23.7 62.8 34.4 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE [10] 16.9 27.4 20.9 23.8 53.0 32.8 17.1 74.7 27.8 4.9 76.9 9.2

SJE [2] 14.7 30.5 19.8 23.5 59.2 33.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [23] 11.0 27.9 15.8 12.6 63.8 21.0 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [5] 7.9 43.3 13.4 11.5 70.9 19.8 10.0 90.5 18.0 7.4 66.3 13.3

SAE[12] 8.8 18.0 11.8 7.8 54.0 13.6 1.1 82.2 2.2 0.4 80.9 0.9

PSR[3] 20.8 37.2 26.7 20.7 73.8 32.3 24.6 54.3 33.9 13.5 51.4 21.4

ZSKL [34] 20.1 31.4 24.5 21.6 52.8 30.6 18.9 82.7 30.8 10.5 76.2 18.5

Ours 20.7 36.4 26.4 22.3 71.6 34.0 23.8 83.2 37.0 12.7 74.3 21.7

ones. This results from the fact that seen categories are in-

cluded in the search space, that play as distractors for the

unseen samples.

An interesting phenomenon is that compatibility learn-

ing algorithms, e.g., DEVISE, ALE and SJE, are able to

obtain good performance on unseen classes. However,

these approaches perform well on seen classes, since they

seek independent attribute or object classifiers, e.g., DAP

and CONSE. Compared with these methods, our proposed

model also achieves very competitive results in each metric,

especially in harmonic mean measurement. In terms of the

harmonic mean measurement, our proposed approach per-

forms the best on SUN, AwA2, and aP&aY datasets while

the second best on CUB dataset, where ALE outperforms

others). This also verifies the effectiveness of our proposed

approach in generalized ZSL tasks.
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Figure 3. (a) evaluation on different variants; (b) convergence curves of our proposed algorithm for four ZSL tasks; (c) parameter influence

of α and β using CUB ZSL task.

4.4. Empirical Analysis

First of all, we evaluate on several variants of our pro-

posed MLSE to dive deeper to the efficacy of each compo-

nent. 1). MLSE-L denotes we use F-norm to replace the

l1-norm in Eq. (4); 2). MLSE-G means Eq. (3); 3). MLSE-

A represents we use a pre-defined graph G instead in Eq.

(3) (i.e., β = 0); 4). MLSE-I is the version that we set S as

the identity matrix. Then, we conduct experiments on four

benchmarks and report the comparison results in Figure

3(a), where we notice that the performance drops significant

when we directly enforce latent semantics Z to be close to

the given A. The performance increases a lot with a graph

reconstruction format, which denotes the graph reconstruc-

tion is capable of compensating the attributes across various

samples and categories. Moreover, the adaptive graph could

contribute to enhancing the performance over different ZSL

tasks, which means the adaptive graph is able to automati-

cally capture the relationship across the latent semantics and

the given semantics. Finally, we also witness the improve-

ments with a sparse l1-sparse regularizer.

Secondly, we show our model’s convergence from ex-

perimental side empirically. The convergence curves of

four benchmarks on our proposed algorithm are presented

in Figure 3 (b), where we observe that our model has a good

convergence after several iterations, especially after 40 iter-

ations. The experimental results show our model can con-

verge well.

Thirdly, we testify the parameter influence in terms of

recognition performance to evaluate the two novel regu-

larizers. We jointly evaluate α and β on CUB tasks with

ResNet features. From Figure 3 (c), we notice that the

recognition performance would increase with the values of

α and β becoming larger, which indicate both parameters

play an important role in our semantic encoder.

Finally, we visualize 10 unseen AwA2 categories with

their learned latent semantics Z using ResNet features as

the input. To be specific, we explore t-SNE6 to embed the

learned latent semantics of the unseen data points to a 2-D

6https://lvdmaaten.github.io/tsne/
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Figure 4. Visualization of 10 unseen class data points from AwA2

with the learned semantics Z. The same color denotes the same

category data points.

plane in Figure 4. From the results, we notice there are most

classes are well separate, while some samples from unseen

classes are overlapped. This indicates our model is valid in

generalizing to unseen classes.

5. Conclusion

In this paper, we developed a novel zero-shot learning

algorithm through learning adaptive latent semantic repre-

sentation. To be specific, we presented an effective knowl-

edge transfer model by jointly seeking a generic semantic

encoder and learning latent semantic representation. To

augment the visual space of seen classes, we exploited a

marginalized denoising strategy to cover the unseen classes.

Furthermore, we sought an adaptive reconstruction coef-

ficient to learn the latent semantic representation by cap-

turing more intrinsic information from the given semantics.

Conventional and generalized ZSL evaluations on four ZSL

benchmarks were testified to demonstrate the effectiveness

of our proposed marginalzied semantic encoder.
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