
Semantic Correlation Promoted Shape-Variant Context for Segmentation

Henghui Ding1 Xudong Jiang1 Bing Shuai2 Ai Qun Liu1 Gang Wang3

1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
2Amazon, Seattle, United States 3Alibaba Group, Hangzhou, China

Abstract

Context is essential for semantic segmentation. Due

to the diverse shapes of objects and their complex layout

in various scene images, the spatial scales and shapes of

contexts for different objects have very large variation. It

is thus ineffective or inefficient to aggregate various context

information from a predefined fixed region. In this work, we

propose to generate a scale- and shape-variant semantic

mask for each pixel to confine its contextual region. To

this end, we first propose a novel paired convolution to

infer the semantic correlation of the pair and based on

that to generate a shape mask. Using the inferred spatial

scope of the contextual region, we propose a shape-variant

convolution, of which the receptive field is controlled by

the shape mask that varies with the appearance of input.

In this way, the proposed network aggregates the context

information of a pixel from its semantic-correlated region

instead of a predefined fixed region. Furthermore, this work

also proposes a labeling denoising model to reduce wrong

predictions caused by the noisy low-level features. Without

bells and whistles, the proposed segmentation network

achieves new state-of-the-arts consistently on the six public

segmentation datasets.

1. Introduction

Semantic segmentation or scene parsing is aimed at

classifying every pixel in scene images to one of the

predefined categories (e.g., person, car, etc.). It has been a

critical element in artificial intelligence and can be applied

in many practice applications, such as automatic parking

system. The recent success of Deep Neural Networks has

greatly improved the performance of semantic segmenta-

tion [9, 43, 75, 11]. Most of state-of-the-arts segmentation

networks are based on Convolutional Neural Networks

(CNNs) [37, 63, 64, 26, 28] pre-trained on ImageNet [58],

in which CNNs are employed as the local feature extractor.

To achieve robust semantic segmentation, informative high-

level context is necessary. Context provides surrounding in-
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Figure 1. Most existing methods model spatial-dependent context

with predefined window (e.g., the red rectangle region for pixel A

in the second image), which may not provide the specific context

information and thus weaken the semantic shape layout. In this

work, we propose to aggregate the context information from the

semantic-dependent region instead of the spatial-dependent one.

formation of the object, which helps a better discrimination

of the object.

However, due to the diverse shapes (including contours,

scales, etc) and the complex layout of objects in scene

images, the common context aggregated within a predefined

fixed region weakens the semantic shape layout and might

bring unnecessary irrelevant information. For example in

Figure 1, contexts of pixel A (lake) and pixel B (train)

should be different but the predefined receptive fields to

collect their contexts largely overlap, which decrease their

discriminative power. Meanwhile, not all information

in a predefined surrounding region (rectangle region in

the second image) is beneficial for their final parsing.

Information collected in the semantic correlated region

is more helpful to identify the object while that in an

irrelevant region, though spatially close, may result in

parsing error and hence should be suppressed or even

disregarded. For pixel A in Figure 1, information of pixels

belonging to the lake and its shore, which are semantic

8885



correlated, might be more beneficial than information of

other pixels in the predefined fixed window. And for pixel

B, the desirable shape of context would align with the train

and railroad track. Besides, uniformly integrating smooth

global information would degrade the location identity and

the local discriminative features [69]. Therefore, for better

scene parsing, diverse shapes of semantic consistent context

should be customized. Most existing methods tend to model

statistical average representation among a fixed rectangle

region [9, 18, 73, 71] or the global region [72, 74, 30]. In

this work, by taking into account the semantic correlation

and the shape layout of objects, we propose a shape-variant

context model to aggregate the surrounding information of

each pixel from their semantic-correlated region inferred

according to the appearance of input image.

To this end, we propose first to learn the relation between

a target pixel and others by a novel paired convolution

followed by a Gaussian mapping function. The learnt

network produces higher value for two pixels with stronger

semantic correlation and lower value for weaker correlation.

Thus, the proposed network will generate a shape mask

indicating a semantic correlated region for each pixel.

With the shape mask specifying the size and shape of

desirable receptive field, we further propose a shape-variant

convolution to aggregate context from semantic-dependent

region. The shape-variant convolution is specified by a set

of learnable location-invariant convolution parameters and

the location-variant shape masks. Thus, the parameters are

dependent variables of the semantic correlated region of

input image, which change with varying shapes and scales

of objects. Furthermore, since the shape-variant context is

implicitly scale-variant, we can model not only multi-shape

but also multi-scale information in a single layer instead of

paralleled [9, 75, 71] or stacked [73, 18] multi-layers. From

a macro perspective, the proposed approach helps control

the information flow within network through learning the

semantic and spatial relationship of features and determine

the information passing or suppression.

The proposed scale- and shape-variant context model en-

hances the discriminative power of the high level features.

Higher level features are more robust to noise than lower

level features at a price of lower spatial position sensitivity.

Thus, many segmentation networks also aggregate low-

level features to improve the position accuracy of the

segmentation [51, 11, 18, 25]. However, aggregating low-

level features, though helps to recover spatial information,

may bring some debatable noise sensitive information that

leads to a wrong classification of some pixels. Thus, we

propose a model that utilizes the higher level features to

attenuate the noisy information of the low-level features

before aggregating them, i.e. signals denoising. In such

a way, the network could better exploit the advantages of

low-level features by alleviating their problems.

In summary, this paper makes the following contri-

butions: 1) we propose a novel paired convolution to

infer the semantic correlation of two pixels and based

on that to generate a semantic-correlated region for each

pixel; 2) we propose a shape-variant context aggregated

within the semantic-correlated region to model the diverse

shapes and scales of contexts, which greatly enhances the

modeling ability of network; 3) we propose a labeling

denoising model to reduce the labeling errors caused by

the noisy low-level features; 4) we achieve new state-of-

the-art performance consistently on six public semantic

segmentation datasets.

2. Related work

Recently, Deep Neural Networks has achieved great

success on computer vision [26, 23, 22, 47, 49, 24, 50, 65].

Based on the Fully Convolutional Network (FCN) [51],

in which the fully connected layers in original CNNs are

converted to convolutional layers, a lot of approaches,

e.g., [9, 21, 55, 32, 48, 76, 5, 61], are proposed to improve

the performance of semantic segmentation.

Contextual features modeling plays an important role

in scene parsing. [52] shows that global spatial information

helps enforce the features consistency. DeepLab [9] pro-

poses atrous spatial pyramid pooling (ASPP) to aggregate

multi-scale image representations from parallel branches

with different dilated rate. DilatedNet [73] appends several

dilated convolution layers after the score maps to perfor-

m multi-scale context aggregation. DAG-RNN [62] and

Byeon [6] propose to model long-range context through

recurrent neural networks. Zoom-out [53] proposes a

feed-forward architecture to extract hierarchical zoom-out

features. CRF-RNN [77] uses recurrent layers for jointly

end-to-end training the dense CRFs [36] with their seg-

mentation networks. Piecewise [44] formulates CNN-based

pairwise potential functions to capture patch-patch context

and designs image pyramid input for patch-background

context. PSPNet [75] introduces pyramid spatial pooling

(PSP) to perform different-region-based global informa-

tion aggregation. Recently, CCL [18] proposes a context

contrasted local model to parallelly collect local and its

surrounding information. EncNet [74] encodes semantic

context to network and stress class-dependent feature maps.

Different from previous methods, in this work, we try to

aggregate context information from semantic-closer region

but suppress irrelevant information even in the spatial-

closer region. We propose a shape-adaptive convolutional

layer to learn diverse shaped contexts whose shapes are

determined by the object shape, scale and its surrounding

support of the input image. The proposed approach is aimed

at not only retaining the location identity and layout infor-

mation but also building the effective semantic correlation

shown in the training images.
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Figure 2. (Best viewed in color) We propose a novel semantic

correlation dependent shape-variant context, which boosts the

semantic-correlated features (magenta color) while suppresses the

others (white color).

Label variety is another challenging problem in se-

mantic segmentation. PSPNet [75] observes the confusion

categories and demonstrates that the PSPNet can better

address the confusion labels than FCN[51]. Geng et al. [20]

propose to infer the discriminative confusing groups from a

prior confusion matrix. DFN [72] introduces a smooth and

border network to tackle confusing classes. Davis et al. [17]

propose to refine the parsing results using Bayesian strategy

with confusion probabilities and label priors. Huang et

al. [29] propose a LabelReplacement network to correct the

error predictions. Different from these methods, we propose

a learnable Labeling Denoising (LD) model to solve the

problems of confusion labels by utilizing the robust higher

level features to attenuate the noise in lower level features.

3. The Proposed Approach

3.1. Semantic Correlation Dependent Context

Semantic Segmentation needs to simultaneously deal

with object recognition and localization, and hence should

build the dense feature connections among large region as

well as retain the location identity. Meanwhile, due to

the diverse shapes and complicated layout of objects in

scene images, the scales and shapes of contexts for different

objects are supposed to have very large variation.

Many existing context modeling methods tend to aggre-

gate surrounding information with a fixed size of rectangle

window across all locations, which weaken the location

identity and might not be able to effectively represent the

diverse shapes and scales of objects in scene images. Dif-

ferent from previous works, we put forward that the more

desirable context region should be shape-variant according

to the shape of the object and its background that support

the object. For example, for pixels belong to the train

in Figure 2, the more beneficial context should be the

surrounding information along the railroad track (magenta

color), which are closer in semantics than in space. In a

word, for different pixel positions, surrounding information

should be collected from semantic correlated region that

supports the existence of the correct class of this pixel.

Therefore, in this work, we propose a semantic correlation

dependent shape-variant context (SVC) to model diverse

Shape Mask

... ...

Paired Convolution

...

Figure 3. (Best viewed in color) A shape mask is inferred by the

Paired Convolution and Gaussian mapping function ϕ, which are

designed to learn the semantic correlation between the target pixel

and other pixels within the shape mask. Here we show an example

of 4 values in a 11×11 mask of the target pixel (dark), in which 4

mask values are generated by the 4 filters of the same color.

shape/scale contexts with location identity. In the SVC,

context aggregation is controlled by a semantic correlation

mask, specifying where the information should be collected

with what extent. With the semantic mask, features in

semantic correlated regions are boosted and other irrelevant

ones are suppressed. Thus, better context information for

parsing of each pixel is aggregated within the specific shape

region that supports the existence of the correct class of the

object.

Learn the Semantic Correlation

The shape masks that represent semantic correlation trim

the context shapes and decide where the information should

be collected with what extent. Next we discuss how to learn

the semantic correlation, i.e. how to generate the semantic

shape masks. Each value in a shape mask represents the

correlation of the corresponding pixel to the target pixel (the

center pixel of the mask). Thus, the semantic relationship

of each pixel with the target pixel need be learned and

injected to the corresponding position in the shape mask.

To this end, we introduce a paired convolution, as shown

in Figure 3, in which a pair of 3×3 local convolution

with specific relative position are employed to learn the

semantic and spatial correlation of the corresponding pixel

with the target pixel (the central dark pixel in Figure 3).

In each filter of the paired convolution, there are a central

convolution for the target pixel and another convolution

whose position corresponds to the position in shape mask

for the corresponding pixel. We have observed and hence

assumed that the feature appearances of pixels belonging to

the same object and its context will show strong correlation

because they frequently coexist in the training images.

Therefore, the difference of the two convolution outputs

Di,j
m,n can be minimized for two pixels belonging to the

same object and its context by learning the convolution

parameters from the training images.

D
i,j
m,n = F

i,j
∗Θm,n

0,0 −F
i−m,j−n

∗Θm,n
m,n (1)

where ∗ donates the local convolution operator, Di,j
m,n

represents the convolution output discrepancy of (i−m, j−
n) to target position (i, j), F i,j and F i−m,j−n are local
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Figure 4. Semantic correlation-dependent shape-variant context

aggregates surrounding information according to the semantic

correlation and hence customizes an effective contextual region.

It helps control the information flow within network via deciding

what information to be passed or suppressed.

features at position (i, j) and (i − m, j − m), Θm,n
0,0 and

Θm,n
m,n are corresponding parameters of two local kernels

in the paired convolution. As there might be negative or

positive difference, we map it to the value of our context

shape mask by a Gaussian function:

M
i,j
m,n = ϕ(Di,j

m,n) (2)

where ϕ(a)=exp(− a2

σ2 ), which maps the convolution out-

put discrepancy to a semantic correlation value. A smaller

discrepancy generates a higher semantic correlation value.

Mi,j
m,n is the mask value at position (m, n) in the semantic

shape mask of pixel (i, j). Note that the result is not

sensitive to σ as the parameters of the two convolutions are

learnt. We use σ = 3 in our experiments.

Shape-Variant Context

The goal of shape-variant context is to customize a

desirable shape/scale of context for each pixel instead of

a simple smooth context information. To achieve this, we

further propose a shape-variant convolution (SV Conv) to

adaptively collect the surrounding information. The pa-

rameters of shape-variant convolution consists of location-

invariant learnable convolution parameters and semantic

shape mask inferred by the proposed paired convolution.

The shape mask is used to control the receptive field

of the convolution process for each position according

to the semantic correlation. Such shape mask crops the

convolution kernels into different shapes/scales and leads

to a shape-variant convolution operation. In such a way, the

proposed method greatly enhances the network modeling

ability of diverse shape context.

The proposed shape-variant context is shown in Figure

4. There are two branches, the bypass is designed to learn

the semantic correlation, whose outputs are then input to

the shape-variant convolution (SV Conv) to provide the

semantic shape mask. In detail, the side branch employs

paired convolution to learn from the local feature F from

a pre-trained CNN the correlations of each pixel with each

of all other pixels within the kernel of size K×K centered

at this pixel, as described in Eq. (1) and Eq. (2). The

number of the output channels is S=K×K where K×K is

the kernel size of the proposed shape-variant convolution.

The semantic shape masks inferred form input features are

employed to weight the normal learnable convolutions (F
filters) parameterized by θd,fm,n of the main branch by:

θ̂i,j,d,fm,n = M
i,j
m,nθ

d,f
m,n (3)

where θd,fm,n∈Θ is the convolution parameter for dth input

channel at position (m,n) of the f th normal location-

invariant learnable filter, d∈(1, 2..., D) and f∈(1, 2..., F ).
The filter kernel size is K×K and (i, j) is the index

of feature map position across all the H×W positions.

By Eq. (3), the receptive field of the F normal learnable

convolutions parameterized by θd,fm,n is transformed from

a fixed size of K×K to effectively different sizes and

shapes for different pixels (i, j) determined by the proposed

semantic shape masks Mi,j
m,n. The resulting F shape-

variant filters are employed to generate variegated shape

context for each spatial position (i, j):

F̂
i,j,f =

D∑

d=1

K1∑

m=−K1

K1∑

n=−K1

θ̂i,j,d,fm,n F
i−m,j−n,d (4)

where K1=(K − 1)/2 and F i−m,j−n,d ∈ F. F̂ i,j,f ∈

F̂ is one target contextual feature map. In such a way,

Mi,j
m,n instructs how to collect F i−m,j−n for F̂ i,j during

convolution. All of these functions are differentiable and its

back-propagation is easy to derive.

The standard convolutional operation is location invari-

ant and do not vary with testing images after training. Thus,

it could not customize different shapes/scales of context

information for different objects of input images. The

proposed SV Conv consists of a learnable location-invariant

convolution and a location-variant semantic shape mask

inferred from the input image. The former is to model the

statistical average of the spatial-channel distribution and the

latter is to determine the size and shape of the convolution

receptive field. They together function as a shape-variant

operator to better model the shaped context.

Modeling Diverse Shapes in a Single Layer

Due to the diverse shapes/scales of contextual regions

and the shape constraint of convolutional kernels, it is

difficult to use a single normal convolutional layer to

effectively model shape-variant context because the scope

of the context, including its scale and contour, dramati-

cally changes for different objects of input images. With

the proposed shape-variant semantic correlation masks,
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convolution regions with diverse shapes and scales are

specified and thus we could model multi-shape and multi-

scale information in a single layer.

Comparison with State-of-the-art Context Models

Different from the previous context methods that tend to

model statistical average representation within a predefined

rectangle region, e.g., [9, 73, 75, 18, 71, 56], the proposed

approach utilizes the semantic correlation and intentionally

picks up the relevant information according to the semantic

shape mask inferred by the feature appearance of testing

image. Thus, it could not only retain the shape and location

identity but also effectively build the beneficial connection

among correlated features for classification. Comparing

with the deformable convolution [16], the objective of the

proposed approach is similar to it in terms of collecting

the relevant information in the convolution. However,

different from [16] that tries to achieve this via deforming

the sampling locations, the proposed SVC finds out the

semantic correlation to enhance or attenuate the corre-

sponding information, explicitly leading to the shape- and

scale-variant modeling. The criteria or the methods to

find the relevant information in the two approaches are

also different. Furthermore, our method models diverse

shapes of semantic-dependent context in a single layer

without stacking layers in [16], and avoids the “atrous”

in deformable convolution that may lose some detailed

information.

3.2. Labeling Denoising

Due to the label variety and the complicated correlation

among labels in segmentation datasets, regular errors can be

found in the results of most state-of-the-arts segmentation

networks [9, 75, 17, 11, 43]. These regular errors could be

categorized into “in-context” error and “out-context” error,

as show in Figure 5. The “in-context” error is mainly

caused by inaccurate positioning and inter-context influence

while the “out-context” error is mainly caused by inac-

curate classification. The proposed shape-variant context

aggregates information from specific semantic correlated

region, which helps mitigate the in-context and out-context

labeling errors. To get elaborate spatial information, lower-

level features from middle layers of CNNs are important

in the encoder-decoder architecture [51, 11, 18, 25] as they

contain more information about where these objects are [21,

51]. But these low-level features also bring debatable noisy

information that results in out-context errors. In contrast,

the high-level features, e.g., the shape-variant context in this

work, though less sensitive to the spatial location, are more

robust to noise and more aware of what categories existing

in a scene image. To better combine “what” and “where”,

we propose a labeling denoising (LD) model in this work

that attenuates the noise information when extracting low-

Image Labeling Errors Ground Truth

Figure 5. In-context error, e.g., the first row, refers to incorrect

labeling within the label set of the image. Out-context error, e.g.,

the second row, refers to incorrect labeling outside the label set of

the image.

level spatial information from middle layers.

The labeling denoising model first infers the existence

potential of each category from a higher-level block and

learns penalty scores from the existence potentials. Then,

the score maps generated from a lower-level block are

charged by the penalty scores. Using the penalty scores

learnt from the higher-level block, the scores of nonexistent

categories of an input image generated by the lower-level

block are greatly suppressed. First, the existence potential

is inferred by the score maps from a higher-level block by:

Ek = Fg(Fsf (Sk)) (5)

where Sk is the score maps from a higher-level (level k)

block, Fsf is softmax and Fg is global max pooling. Ek =
(e1k, ..., e

c
k, ..., e

C
k ) and eck is the existent potential for class

c inferred by level k. Then, the penalty Pc is learnt by:

P
c
k = ReLU(T − eck)∆

c
k (6)

where T is a penalty threshold and ∆c
k is a learnable

penalty parameter. The penalty threshold and function

ReLU are used to keep the score distribution of existent

classes unchanged. The penalty Pc
k is used to modify the

score map of its next lower-level block before aggregating it

into the upsampled score map of its next higher-level block

as:

S
c
k−1

= ReLU(Ŝc
k−1

− P
c
k) + S

c
k (7)

where Ŝc
k−1

is the score map of class c directly from the

lower-level block. Sc
k−1

is the denoised and aggregated

score map from the highest level to the level k − 1, which

is further used to modify and be aggregated to the score

maps of the lower-level blocks as Eqs (5), (6), and (7).

The proposed labeling denoising (LD) model is shown in

Figure 6. In such a way the network could take advantage

of both high-level features and low-level features, i.e. better

combine “what” and “where”. For the skip layers from

low-level features, the scores of nonexistent categories in
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Figure 6. Network Architecture. We use ResNet-101 as our base

model for fine-tuning and FCN-4s as the backbone segmentation

framework. LD is used in decode process for denoising.

an input image are attenuated and those of the existent

categories are retained and supplemented to score maps for

positioning enhancement. As this mechanism is included

in the end-to-end training process, less noisy scores are

taken into account during training, and gradients for training

such noisy information could be saved for other things

such as positioning. The proposed approach could also be

viewed as some kind of dropout, which applies dropout to

connections that reach some conditions.

4. Experiments

We evaluate the proposed approach on six public bench-

mark, COCO-Stuff, SIFT-Flow, CamVid, PASCAL-Person-

Part, PASCAL-Context, and Cityscapes. We use ResNet-

101[26] pre-trained on ImageNet [58] as our base model

for fine-tuning and FCN-4s as the backbone framework.

During training, the proposed Network is trained end-to-

end using standard SGD with batch size 8, fixed momentum

0.9 and weight decay 0.0005. Data augmentations like

random flipping, random resize between 0.8 and 1.2 and

mean subtraction are used in training. Inspired by [9], we

use the ”poly” learning rate and set the initial learning rate

to 5 × 10−3 for newly initialized parameters and 10−4 for

parameters of pretrained layers, the power is set to 0.9.

Batch Normalization [31] is used in new added layers to

accelerate training process. The performance is evaluated

by standard pixel accuracy (pixel acc.), mean class accuracy

(mean acc.) and mean Intersection-over-Union (mean IoU).

Please refer to [51] for mathematical definitions.

To model diverse semantic shapes in a single layer, larger

kernel is required due to the dramatic changed shapes/scales

of objects. But very large kernel is resource-intensive and

difficult to converge. To address this issue, we modify Eq.

(4) of the proposed SVC similar to the depthwise separable

convolution [13]. The simplified computation of Eq. (4)

allows us using large kernel size to model the diverse shapes

in spatial space followed by a pointwise convolution to learn

the cross-channel correlation. And in labeling denoising

model, we use ascending penalty thresholds T = t, 2t, 4t,
from the highest to the lowest blocks, where t = 1

C
and C

is the number of classes.

Methods PASCAL-Context COCO-Stuff

Baseline 42.7 31.5

Baseline+SVC 52.4 38.5

Baseline+SVC+LD 53.2 39.6

Table 1. Ablation study of the proposed approach in terms of IoU.

Kernel Size SFC SVC

0× 0 42.7 42.7

7× 7 45.6 48.5

11× 11 46.6 49.4

15× 15 47.1 51.2

19× 19 47.0 52.1

23× 23 46.7 52.4

27× 27 46.5 52.3

Table 2. Ablation study of the proposed shape-variant context

(SVC) approach by comparing it with the shape-fixed context

(SFC) on different kernel size. It also shows that the performance

gain is not simply brought by the increased number of parameters.

4.1. Ablation Study

In this section we do ablation studies of the proposed

shape-variant context (SVC) and labeling denoising (LD).

As shown in Table 1, comparing the performance gain

brought by the proposed LD on PASCAL-Conext (59 class-

es) and COCO-Stuff (171 classes), we can conclude that

the LD could mitigate noisy prediction and it works better

on datasets with more semantic categories. This is not a

surprise because more categories cause heavier prediction

noise and hence the LD works more effectively. Table

1 shows the significant performance gain (7 percent on

COCO-Stuff and almost 10 percent on PASCAL-Context)

from the baseline by applying the proposed SVC.

To further study where the performance gain of the pro-

posed SVC comes from, we compare it with the shape-fixed

context (SFC) that is implemented by setting a constant

shape mask, i.e., Mi,j
m,n=1 in Eq. (3). We compare them

on PASCAL-Context with different kernel sizes shown in

Table 2, where the 0×0 means the baseline without the

context layer. As we employ just a single layer to capture

the context information, all kernels used in Table 2 are

larger than convolutional kernels of most other work so

that diverse shapes and scales of contextual information

could be modelled in a single layer. Table 2 shows

that with the increase of kernel size, the segmentation

performance improves up to a certain level then slightly

drops with further increase of the kernel size. This is

because the network lose too much locality information

in overlarge kernel situation. It also shows that a simple

increase of the network parameters may not always improve

the performance. Table 2 shows that the proposed SVC

significantly outperforms the SFC at all different kernel

sizes. It is also not a surprise that the best performance of

the SVC is achieved at the kernel size (23×23), much larger
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Figure 7. Four visual examples of the shape-variant masks Mi,j
m,n

generated at four different locations of two testing images by the

learned network. The mask center (i, j) is indicated by the small

square and its value at (m,n) within the image is shown by the

gray level.

than that of the SFC (15×15) because the proposed SVC

provides diverse shape context, which is implicitly multi-

scale with better location identity.

4.2. Visualization of the semantic shape mask

As Table 1 and Table 2 show the significant performance

gains brought by the proposed shape-variant context (SVC)

that is determined by the proposed shape mask Mi,j
m,n, it

is worthwhile to further study how the mask captures the

shape of the context by visualizing it. Four examples of

the shape mask Mi,j
m,n generated at four different locations

of two testing images by the learned network are shown in

Figure 7. The first is the mask of the center of a car. It has

higher values at pixels of cars and road as they contains the

context information of the center of the car. The second is

the mask of some pixel of the cow in the middle of a road.

It has higher values at pixels of cows and grass, though

they are far away from the target cow and separated by

the road. Values of the second mask are low in the area

of road as it does not show correlation with the cow in the

training database. Consistently, the semantic correlation of

the context is also shown by the third and fourth masks

respectively for a train and a railway in the second testing

image.

4.3. Comparison with the State­of­the­Arts

The proposed semantic segmentation network is named

as SVCNet and we compare it with the state-of-the-arts on

six public benchmark, COCO-Stuff, SIFT-Flow, CamVid,

PASCAL-Person-Part, PASCAL-Context, and Cityscapes.

Before the quantitative comparison, some qualitative results

of the proposed SVCNet are shown in Figure 8.

COCO-Stuff [7] provides dense pixel-wise annotations for

171 semantic categories. There are 9000 images used for

training and 1000 images used for testing. Quantitative

results of COCO-Stuff are shown in Table 3. The proposed

SVCNet outperforms the previous state-of-the-arts across

Methods pixel acc. mean acc. mean IoU

FCN [7] 52.0 34.0 22.7

DeepLab [8] 57.8 38.1 26.9

FCN-8s [51] 60.4 38.5 27.2

DAG-RNN+CRF [62] 63.0 42.8 31.2

DC+FCN+ [27] 65.5 44.6 33.6

Deeplab-V2 [9] 65.1 45.5 34.4

CCL-ResNet101 [18] 66.3 48.8 35.7

DSSPN [41] 68.5 48.1 36.2

SVCNet (ours) 69.2 51.5 39.6

Table 3. COCO-Stuff testing accuracies.

Methods pixel acc. mean acc. mean IoU

Liu et al. [46] 76.7 - -

Tighe et al. [66] 75.6 41.1 -

Farabet et al. [19] 78.5 29.6 -

Pinheiro et al. [57] 77.7 29.8 -

Sharma et al. [59] 79.6 33.6 -

Yang et al. [70] 79.8 48.7 -

FCN-8s [60] 85.9 53.9 41.2

DAG-RNN+CRF [62] 87.8 57.8 44.8

Piecewise [44] 88.1 53.4 44.9

SVCNet (ours) 89.1 58.2 46.3

Table 4. SIFT-Flow testing accuracies.

Methods mean IoU

DeconvNet [55] 48.9

SegNet [2] 50.2

DeepLab [8] 54.7

DilatedNet [73] 65.3

Dilation+FSO [38] 66.1

FC-DenseNet [33] 66.9

G-FRNet [32] 68.0

DenseDecoder [3] 70.9

SVCNet (ours) 75.4

Table 5. CamVid.

Methods mean IoU

Attention [10] 56.4

HAZN [68] 57.5

LG-LSTM [40] 58.0

Graph LSTM [39] 60.2

DeepLab [8] 62.8

DeepLab-V2 [9] 64.9

RefineNet [43] 68.6

DenseDecoder [3] 68.6

SVCNet (ours) 73.9

Table 6. PASCAL-Person-Part.

all evaluation metrics.

SIFT-Flow [45] contains 2688 images annotated with 33

semantic classes. There are 2488 training images and 200

testing images. Quantitative results are shown in Table 4.

The proposed SVCNet outperforms previous state-of-the-

arts across all evaluation metrics.

CamVid [4] is a road scene image segmentation dataset

which provides dense pixel-wise annotations for 11 seman-

tic categories. There are 367 training images, 101 validation

images and 233 testing images. The testing results are

shown in Table 5. It shows that the proposed SVCNet

outperforms previous state-of-the-arts by a large margin.

PASCAL-Person-Part [12] provides pixel-level labels for

six person parts. There are 1717 training/validation images

and 1818 testing images. Quantitative results of PASCAL-

Person-Part are reported in Table 6. It shows that the

proposed SVCNet outperforms the previous state-of-the-

arts by a large margin on this small dataset, which indicates
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Methods mean IoU

FCN-8s [60] 39.1

CRF-RNN [77] 39.3

BoxSup [15] 40.5

HO-CRF [1] 41.3

Piecewise [44] 43.3

FCRN [67] 44.5

EFCN [61] 45.0

DeepLab-V2[9] 45.7

Global-Context[30] 46.5

RefineNet-ResNet152 [43] 47.3

DenseDecoder [3] 47.8

MSCI [42] 50.3

CCL-ResNet101 [18] 51.6

EncNet [74] 51.7

SVCNet (ours) 53.2

Table 7. PASCAL-Context testing accuracies.

Methods mean IoU

Deeplab-v2 [9] 70.4

RefineNet-Res101 [43] 73.6

DSSPN-Universal [41] 76.6

GCN [56] 76.9

DepthSet [35] 78.2

PSPNet [75] 78.4

AAF [34] 79.1

DFN [72] 79.3

PSANet [76] 80.1

DenseASPP-DenseNet161 [71] 80.6

SVCNet (ours) 81.0

Table 8. Cityscapes testing accuracies.

that the the proposed approach could be trained very well

even on small dataset.

PASCAL-Context [54] provides pixel-wise segmentation

annotation for 59 classes. There are 4998 training images

and 5105 testing images. Quantitative results of Pascal

Context are shown in Table 7. It shows that the proposed

SVCNet outperforms the state-of-the-arts by a large margin.

Cityscapes [14] contains 5000 street scene images with

pixel-level fine annotations and 19 classes are considered

for evaluation. There are 2975 training images, 500 valida-

tion images and 1525 testing images. The test results are

shown in Table 8.

5. Conclusion

In this work, we propose to aggregate the context in-

formation based on the semantic correlation rather than

the predefined spatial-dependent window to collect more

effective and discriminative surrounding information for

semantic segmentation. The semantic-correlated informa-

tion even at a far away spatial location will be enhanced

and the semantic-uncorrelated information even at a close

spatial location will be suppressed in collecting the context

information. To this end, we first propose a novel paired

Images Baseline SVCNet (ours) Ground Truth

Figure 8. Qualitative segmentation examples on COCO-Stuff (1st-

4th rows) and PASCAL-Context (5th-7th rows).

convolution to learn the feature semantic-correlation from

the training images and to infer it of the query image.

This generates a semantic shape mask at each position

of the image. Based on it, we propose a shape-variant

convolution, in which the receptive field of the convolution

is specified by different semantic shape masks at different

positions of different query images. The semantic shape

masks form diverse scales and shapes of the convolution

receptive field to aggregate discriminative context informa-

tion effectively. Furthermore, to ease the labeling errors,

we propose a labeling denoising model, which utilizes

more robust higher-level features to attenuate the prediction

errors caused by noisier lower-level features. Without bells

and whistles, the proposed segmentation network achieves

new state-of-the-arts consistently on the six public semantic

segmentation datasets, COCO-Stuff, SIFT-Flow, CamVid,

PASCAL-Person-Part, PASCAL-Context, and Cityscapes.
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Jitendra Malik. Hypercolumns for object segmentation and

fine-grained localization. In CVPR, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[27] Hexiang Hu, Zhiwei Deng, Guang-Tong Zhou, Fei Sha, and

Greg Mori. Labelbank: Revisiting global perspectives for

semantic segmentation. arXiv:1703.09891, 2017.

[28] Gao Huang, Zhuang Liu, Laurens van der Maaten, and

Kilian Q. Weinberger. Densely connected convolutional

networks. In CVPR, 2017.

[29] Yu-Hui Huang, Xu Jia, Stamatios Georgoulis, Tinne

Tuytelaars, and Luc Van Gool. Error correction for dense

semantic image labeling. arXiv:1712.03812, 2017.

[30] Wei-Chih Hung, Yi-Hsuan Tsai, Xiaohui Shen, Zhe L Lin,

Kalyan Sunkavalli, Xin Lu, and Ming-Hsuan Yang. Scene

parsing with global context embedding. In ICCV, 2017.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. In ICML, 2015.

[32] Md Amirul Islam, Mrigank Rochan, Neil DB Bruce, and

Yang Wang. Gated feedback refinement network for dense

image labeling. In CVPR, 2017.

[33] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana

Romero, and Yoshua Bengio. The one hundred layers

tiramisu: Fully convolutional densenets for semantic

segmentation. In CVPRW, 2017.

[34] Tsung-Wei Ke, Jyh-Jing Hwang, Ziwei Liu, and Stella X Yu.

Adaptive affinity fields for semantic segmentation. In ECCV,

2018.

[35] Shu Kong and Charless C Fowlkes. Recurrent scene parsing

with perspective understanding in the loop. In CVPR, 2018.
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