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Abstract

Multi-class segmentation has recently achieved signif-

icant performance in natural images and videos. This

achievement is due primarily to the public availability of

large multi-class datasets. However, there are certain do-

mains, such as biomedical images, where obtaining suffi-

cient multi-class annotations is a laborious and often im-

possible task and only single-class datasets are available.

While existing segmentation research in such domains use

private multi-class datasets or focus on single-class seg-

mentations, we propose a unified highly efficient frame-

work for robust simultaneous learning of multi-class seg-

mentations by combining single-class datasets and utilizing

a novel way of conditioning a convolutional network for the

purpose of segmentation. We demonstrate various ways of

incorporating the conditional information, perform an ex-

tensive evaluation, and show compelling multi-class seg-

mentation performance on biomedical images, which out-

performs current state-of-the-art solutions (up to 2.7 %).

Unlike current solutions, which are meticulously tailored

for particular single-class datasets, we utilize datasets from

a variety of sources. Furthermore, we show the applicabil-

ity of our method also to natural images and evaluate it on

the Cityscapes dataset. We further discuss other possible

applications of our proposed framework.

1. Introduction

Tremendous progress has been made in deep learning for

semantic segmentation, and one of the major factors of such

advances is the public availability of large-scale multi-class

datasets, such as ImageNet [7], COCO [24], PASCAL

VOC [12], and others. Such variety of available datasets

not only provides the means to train and evaluate differ-

ent segmentation models but also to exhibit diverse labels.

However, in contrast to natural images, there are certain do-

mains, where despite the critical importance of segmenta-

tion research, the generation of ground truth annotations

and labeling is extremely costly and remains a bottleneck

in advancing research.

Biomedical images is one such domain where the ac-

curate segmentation of various structures is a fundamen-

tal problem, especially in clinical research. In traditional

clinical practice, segmentation is often omitted during the

diagnostic process. However, manual analysis of biomed-

ical images, including measurements, is subject to large

variability, as it depends on different factors, including the

structure of interest, image quality, and the clinician’s expe-

rience. Moreover, segmentation is an essential component

in various medical systems that support computer-aided di-

agnosis (CAD) [9, 14] and surgery and treatment planning.

Furthermore, early cancer detection and staging often de-

pend on the results of segmentation.

Remarkable progress has been made in the segmentation

of radiological images, such as magnetic resonance imag-

ing (MRI) and computed tomography (CT) 3D scans. Radi-

ological images exhibit various objects, such as abdominal

organs (Fig. 1a), within a single image. However, creat-

ing expert annotations for such images is a time consum-

ing and intensive task, and thus multi-class datasets are dif-

ficult to generate. A limited number of segmentation al-

gorithms have been proposed and evaluated on multi-class

datasets. These include private or public datasets, such as

VISCERAL [20], which has been unavailable due to a lack

of funding. Apart from often being private, these multi-

class datasets are frequently limited in size (less than 30

volumes) and come from a single institution, where they

were generated using the same imaging protocols and imag-

ing devices, leading to the developed segmentation algo-

rithms being sensitive to such imaging parameters. On the

other hand, generation of single-class datasets requires less

time and effort, and they are often publicly available as part

of challenges, such as, Sliver07 [15] (Fig. 1b) and NIH

Pancreas [16] (Fig. 1c). Additionally, these single-class

datasets come from different institutions and exhibit vari-

ability in factors, such as the presence of malignancy, imag-

ing protocols, and reconstruction algorithms.

However, while single-class datasets often contain the

same objects within a single image, the ground truth anno-

tations are provided for only a particular class of objects

in the form of binary masks, and the sets of images from
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Figure 1: Single-class datasets can be found in various domains, including biomedical images, such as CT scans. While

various organs can be seen on a single CT scan (a), the manual generation of the outlines of each organ is an intensive, as

often only clinicians can analyze such images, and a time-consuming task, which leads to the lack of comprehensive multi-

class datasets. Several single-class datasets have been provided as parts of challenges: (b) a dataset of liver segmentations

(Sliver07) [15], (c) a dataset of pancreas segmentations (NIH Pancreas) [16]; while some remain private due to the ethical

or legal aspects: (d) a dataset of liver and spleen segmentations. While being the same in nature, the sets of images in these

datasets do not overlap, which complicates their simultaneous use for training.

different datasets do not overlap. Thus, it is obstructive

to simply combine the datasets to train a single model for

multi-class segmentation. Classically, single-class datasets

have been used to develop highly tailored solutions for the

segmentation of particular classes. In this paper, we intro-

duce a novel and efficient way of training and conditioning

a single convolutional network (convnet) for the purpose

of multi-class segmentation using non-overlapping single-

class datasets for training. Our approach allows the model

to share implicitly all of its parameters by all target classes

being modeled. This drives the model to effectively learn

the spatial connections between objects of different classes

and improve its generalization ability.

To the best of our knowledge, our work is the first to

describe the use of conditioning a convnet for the pur-

pose of segmentation and to demonstrate the possibility of

producing multi-class segmentations using a single model

trained on non-overlapping single-class datasets. The con-

tributions of our work are: (1) the first application, to the

best of our knowledge, of conditioning a convnet for se-

mantic segmentation; (2) the presented conditioning frame-

work enables an efficient multi-class segmentation with a

single model trained on single-class datasets, drastically re-

ducing the training complexity and the total number of pa-

rameters, in comparison to separate class-specific models;

(3) improved state-of-the-art results (up to 2.7%) on pub-

licly available datasets for the segmentation of liver, spleen,

and pancreas with significantly reduced computational cost.

Moreover, we demonstrate the applicability of our proposed

method to natural images and evaluate it on the Cityscapes

dataset [5]. Additionally, we discuss the possible extensions

and applications of the proposed approach.

2. Related work

The difficulty of collecting large-scale, carefully anno-

tated datasets for semantic segmentation is well acknowl-

edged [37, 39, 46]. A family of approaches has been pro-

posed for learning to perform segmentation using weakly

labeled data. Weak annotations, in the form of image labels

[22], points and scribbles [1, 18], bounding boxes [6], and

their combinations [30, 41] have been explored for learning

image segmentation models. While these works in weakly-

supervised segmentation are similar in spirit, they are prin-

cipally different in comparison to our work. They still as-

sume the availability of annotations of every object from a

collection of pre-defined target classes if one is present in an

image. With regard to CT images, each slice would require

a set of annotations for every target organ present on a slice,

be it seeds, bounding boxes or labels. However, single-class

datasets do not come with such annotations, and provide de-

tails for only one particular class.

Segmentation of anatomical structures, especially ab-

dominal organs, is considered a difficult problem, as they

demonstrate a high variability in size, position, and shape

(Fig. 1). Various convnet-based segmentation methods have

been proposed for abdominal organ segmentation. The ma-

jority of these methods that utilize single-class datasets are

specialized on the segmentation of a particular organ, such

as liver [10, 25] or pancreas [13, 34]. Moreover, these

works often describe sophisticated and intricate multi-stage

approaches [45]. Some more generally applicable convnet-

based methods have been proposed and tested on multi-

ple organs [11]. These methods describe models for the

segmentation of individual organs, and the separate seg-

mentations are fused together to produce the final outlines.

However, while showing state-of-the-art performance, these

models must be trained and applied separately for the seg-

mentation of each organ, which manifests inefficient us-

age of computational resources and additional training time.

Moreover, such separately trained models do not embed

the spatial correlations among abdominal organs and thus

are likely to be overfitted for each particular single-class
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dataset. Additionally, these models often also require pre-

and post-processing steps, which complicate and particular-

ize the models even more.

Several studies have been proposed for the simultane-

ous multi-class, or multi-organ, segmentation of anatomical

structures in medical images. The majority of these utilize

probabilistic atlases [4, 29, 40] and statistical shape models

[28]. These methods require all volumetric images in the

training dataset to be registered. This pre-processing step

is computationally expensive and often imperfect due to the

considerable variations in size, shape, and location of ab-

dominal organs between patients. Recently, a few convnet-

based solutions [35] were proposed for simultaneous multi-

organ segmentation. However, all such methods were devel-

oped and evaluated on publicly unavailable multi-class seg-

mentation datasets. Moreover, the used multi-class datasets

were acquired by a single institution and exhibit the same

image quality and lack chronic abnormalities. In contrast,

we leverage diverse single-class datasets and describe a

novel way of conditioning a convnet to develop a multi-

class segmentation model of high generalization ability.

Conditioning has been widely used in image synthesis.

A family of works [23, 38, 42, 43] on generating images

conditioned on certain attributes, such as category or la-

bels, have shown successful and compelling results. Ma et

al. [26] proposed a framework for person image synthesis

based in arbitrary poses. Zhu et al. [49] modeled a distribu-

tion of potential results of the image-to-image translation.

Reed et al. [32] demonstrated the synthesis of images given

the desired content and its location within the image. How-

ever, the area of conditional convnets for semantic segmen-

tation has been left untapped, and no application has been

explored. In this paper, we describe a method of condition-

ing a convnet for the purpose of segmentation, evaluate the

method on the segmentation of abdominal organs and urban

scenes, and discuss a set of other possible applications.

3. Method

As opposed to generating separate models for each ob-

ject in single-class datasets, we describe a framework that

can simultaneously learn multi-class knowledge given a

set of single-class datasets. Consider a set of single-

class datasets {D1, ...,DK}, where each dataset Dk =
{(Xk;Y k,cm)}, k 2 {1, ...,K} contains a set of input im-

ages Xk = {xk
i } and a set of corresponding binary seg-

mentation masks Y k,cm = {yk,cmi } of object cm 2 C,m =
1, ...,M . Additionally, input images Xk in each dataset

Dk exhibit objects of all classes cm 2 C. Moreover, we

also assume that datasets Dk do not have the same pairs

of {(Xk;Y k,cm)}, such as Di \ Dj = ;, 8i, j, and each

dataset might have different number of classes. These as-

sumptions greatly relax the initial conditions and attempt to

make the description of the problem more general and chal-

lenging. The goal is to predict a set of segmentation masks

{ŷcm}, 8cm 2 C, given an unseen input image x̂.

3.1. Base model

The base component of the proposed framework is a

3D fully-convolutional U-net-like architecture, such as an

encoder-decoder with skip connections (Fig. 2a). Addition-

ally, we adopt 3D densely connected convolutional blocks

[17, 19], which effectively utilize the volumetric informa-

tion available in the CT scans. More formally, the model

includes densely-connected units of a composite function

Fl(·), and the output xl of the lth layer is defined as

xl = Fl([x0,x1, ...,xl�1]), (1)

where [...] is a concatenation operation of the feature maps

from previous layers. In our experiments, Fl(·) is defined

as a leaky rectified linear unit (LReLU [27]) with α = 0.3,

followed by a 3 ⇥ 3 ⇥ 3 convolution. The encoder part of

the model includes a convolutional layer, followed by six

densely connected convolutional blocks, sequentially con-

nected via 2 ⇥ 2 ⇥ 2 maxpooling layers. The number of

feature channels in each dense block is proportional to its

depth. The decoder part of the model utilizes transposed

convolutions with strides as upsampling layers and is topo-

logically symmetric to the encoder. The last convolutional

layer ends with a sigmoid function. See the supplementary

material for more details.

3.2. Conditioning

Unlike classic approaches of training separate models for

each class cm 2 C, our framework is able to infer the seg-

mentations and the relationships of multiple classes from

single-class datasets and to learn to generate segmentations

for all classes cm with a single model. To introduce such

ability to the model, we propose a novel way of condition-

ing the base convolutional model with a target class cm that

needs to be segmented. While certain ways of condition-

ing have been widely used in generative adversarial nets

(GANs) [8, 26, 32] for image synthesis, to the best of our

knowledge, there have been no attempts to condition a con-

vnet for segmentation.

One of our goals was to keep the base model fully-

convolutional, simple, and efficient in order to avoid ad-

ditional overhead that could negatively affect the perfor-

mance. To achieve this, we propose to incorporate the con-

ditional information as a part of the intermediate activation

signal after performing convolutional operations and before

applying nonlinearities. While some examples of condi-

tioned GANs [32] suggest to learn the conditional func-

tion, we propose a more computationally efficient approach

for the task of segmentation. Specifically, we propose to use

the following function:

ϕ(cm, Hj ,Wj , Dj) = O
Hj⇥Wj⇥Dj � hash(cm), (2)
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Figure 2: A schematic overview of the proposed framework for conditioning a convnet to perform multi-class segmentation

using only single-class datasets during training. (a) The base model uses images from the k single-class datasets and after

conditioning on class labels, produces the final segmentation masks. The conditioning can be done for either (b) encoder or

(c) decoder layers of the base model, or both.

where � is an element-wise multiplication, OHj⇥Wj⇥Dj

is a tensor of size Hj ⇥ Wj ⇥ Dj with all elements set to

1, and hash(·) is a hash function for a pre-defined lookup

table. That is, the function ϕ(cm, Hj ,Wj , Dj) creates a

tensor of size Hj⇥Wj⇥Dj with all values set to hash(cm).
Therefore, the proposed conditioning of the lth layer with

input xl of size Hl ⇥Wl ⇥Dl is defined as

xl = [xl�1,ϕ(cm, Hl,Wl, Dl)] (3)

where xl�1 is the output of the previous layer (Fig. 2b, 2c).

It is important to note that the proposed conditioning does

not depend on the possible attributes of the classes, such as

location, shape, etc. It is done to increase the generalization

ability of the proposed framework.

During training time, the network is trained on pairs

(xk
i ; y

k,cm
i ) that are randomly sampled from different

datasets Dk, while being conditioned on the correspond-

ing class cm of the binary ground truth segmentation mask

y
k,cm
i . During the inference time, the network is sequen-

tially conditioned on all cm 2 C to generate segmentations

masks {ŷcm} for all objects in the input image x̂. While

such an approach of using a pre-defined lookup table main-

tains the simplicity and austerity of the framework without

additional variables to be trained, it also has some practical

benefits. In particular, in the event of adding a new target

segmentation class cM+1, the framework will only require

a new entry to the lookup table and a simple fine-tuning,

unlike the more expensive re-training expected if we had

learned the conditional function.

However, a natural question arises: given a deep convnet

with L layers, where is the best place to perform the con-

ditioning? Conditioning of which layers is the most benefi-

cial? We hypothesize that given an encoder-decoder like ar-

chitecture, one should expect better performance when the

conditioning is done on the layers in the decoder, which

could use the provided conditional information and the low-

level information present in the encoder feature maps to

map them to higher levels within the network. Moreover,

we expect that the conditional information directly accessi-

ble to multiple layers will make the optimization easier. In

Section 4.1, we test our hypothesis and report the perfor-

mance for a variety of conditioning settings.

4. Experiments

In this section, we describe an extensive analysis of our

framework, experiment with different kinds of loss func-

tions and various ways of conditioning, and compare the re-

sults to the solutions, which were individually customized

for each single-class dataset or designed for multi-class

datasets. We show that our conditioned multi-class seg-

mentation framework outperforms current state-of-the-art

single-class segmentation approaches for biomedical im-

ages. Additionally, we demonstrate the applicability of the

proposed approach for the segmentation of urban scenes.

Datasets To evaluate the proposed framework and to

test our hypotheses, our work utilizes three datasets of ab-

dominal CT volumes. Particularly, we use 20 volumes of

the publicly available Sliver07 dataset [15] of liver seg-

mentations, 82 volumes of the publicly available NIH Pan-

creas dataset [16] of pancreas segmentations, and 74 vol-

umes from our additional dataset of liver and spleen seg-

mentations. Therefore, in our experiments, cm 2 C =
{liver, spleen, pancreas}. The segmentation masks in the

latter dataset have been binarized and stored as separate

single-class files. Examples of the CT images and the cor-

responding ground-truth segmentation masks are illustrated

in Fig. 1b, 1c, 1d and Fig. 6 (first column). Following a
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common strategy, each dataset was divided into training and

testing sets with ratio of 80/20. The size of the volumes in

each dataset was 512⇥512⇥Z0, where Z0 is the number of

axial slices. Each dataset was collected at different institu-

tions with different scanners and protocols and incorporates

volumes of various inter-slice spacings and, moreover, ex-

hibits various pathologies, such as hepatic tumors and cases

of splenomegaly. Such diversity in the datasets allows us to

test the proposed approach in a challenging setting.

The input images have been minimally preprocessed:

each dataset was sampled with an equal probability, and

subvolumes of size 256⇥256⇥32 have been extracted and

normalized to create input images. Additionally, all train-

ing examples have been augmented with small random ro-

tations, zooms, and shifts.

Training The proposed framework was trained on exam-

ples from all used single-class datasets. The framework was

optimized with the following objective:

L(Y , Ŷ ) = α1β1L1(Y
c1 , Ŷ c1)+...+αnβkLk(Y

cm , Ŷ cm),
(4)

where Li(Y
ci , Ŷ ci) is a loss function for a single-class

dataset Di, the hyperparameters αi specify the impact of

a particular class ci on the total loss, and βi = {0, 1} speci-

fies the presence of the binary mask for class ci in the batch.

Inference During the inference time, one can manually

specify the target segmentation class ci. However, to sim-

plify the use of the framework during the inference time, we

suggest to automate the process of specifying the target seg-

mentation class by iteratively going through all the entities

in the lookup table. Alternatively, specifically for segmen-

tation of abdominal organs, a set of presets can be defined,

such as liver and gallbladder, which are often analyzed to-

gether by clinicians.

Implementation The proposed framework was imple-

mented using Keras library with TensorFlow backend. We

trained our network from scratch using Adam optimizer

[21] with the initial learning rate or 0.00005, and β1 =
0.9,β2 = 0.999, with a batch size of 2 for 25K iterations.

4.1. Ablation experiments

The predicted segmentation masks are binarized by

thresholding them at 0.5. To measure the similarity between

binary segmentation masks Y and Ŷ , we use the common

Dice Similarity Coefficient (DSC) metric, which is defined

as DSC(Y, Ŷ ) = 2
P

Y�Ŷ
P

Y+
P

Ŷ
. We compare our results

against the current state-of-the-art segmentation methods,

which are proposed specifically for single-class segmenta-

tion and are tailored for a particular class. In particular,

we compare against the work by Zhou et al. [48], which

described a two-step coarse-to-fine convnet-based solution

for pancreas segmentation, and yielded 82.4% DSC on the

NIH Pancreas [16] dataset. We also compare against an-

other convnet-based segmentation work by Yang et al. [44],

which showed 95% DSC on a private datasets of 1000 CT

images of liver. Finally, we compare our results against

the two-stage coarse-to-fine multi-organ convnet-based so-

lution by Roth et al. [35], which was evaluated on a pri-

vate multi-class dataset and resulted in 95.4%, 92.8%, and

82.2% DSC for liver, spleen, and pancreas, respectively.

In all experiments described in this section we set αi = 1
and use the DSC-based loss function:

Li(Y
ci , Ŷ ci) = 1�

2
P

Y ci � Ŷ ci

P
Y ci +

P
Ŷ ci

. (5)

Additionally, we experimented with the binary cross-

entropy loss function, which showed significantly worse

performance.

We begin our experiments by analyzing the performance

of our base model trained separately for each class cm with-

out the use of conditioning. We refer to this experiment as

indivs and the learning curves for each model are illus-

trated in Fig. 3a. We observe that the models failed to get

close to the state-of-the-art performance during the first 25K

iterations.

Next, we test a naive approach of training a single model

on single-class datasets to produce reasonable multi-class

segmentation results by predicting a volume of the same di-

mensions but with three additional channels, each for each

class cm, such as liver, spleen, and pancreas. We refer to

this experiment as no cond and the learning curves are il-

lustrated in Fig. 3b. The results show that the training does

not converge, which was expected and can be explained

by the fact that the model struggles to infer multi-class

segmentations from the inconsistent binary masks in the

training examples. Additionally, this approach is memory-

bounded, especially for high-resolution images and vol-

umes, and only a small number of classes can be modeled

this way. The examples of the segmentations produced by

the no cond model can be found in the Appendix.

The next experiments describe the results of the condi-

tioned model. In the experiment cond-2nd, we test a sim-

ple way of conditioning a model by providing the condi-

tional information as the second channel of the input vol-

ume. Particularly, we predefine a lookup table of condition-

ing variables for each cm with random real values sampled

from [-1, 1]. Specifically, each training 3D subvolume has

been augmented in the second channel with a volume of the

same size with all elements set to hash(cm). The learning

curves illustrated in Fig. 3c show that the model was able

to utilize the provided conditional information and learn to

generate multi-class segmentations. However, similarly to

the experiment cond-enc (see Fig. 3d), where each dense

block in the encoder had direct access to the conditional

information, the model shows adequate performance but

struggles to outperform state-of-the-art approaches. How-
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Figure 3: Training curves of various conditioning models generated for each cm 2 C = liver, spleen, pancreas during the

first 25K iterations (x-axis). The dashed green line denotes training accuracy (DSC, %) (y-axis), the solid orange line denotes

testing accuracy, and the solid red line denotes the current state-of-the-art results.

ever, we notice significantly better generalization perfor-

mance in these models trained jointly on different datasets

while improving training and testing accuracies, compared

to indivs models trained separately on each dataset.

Finally, we experiment with conditioning the decoder

part of the base model. We refer to this experiment as

cond-dec. The learning curves illustrated in Fig. 3e val-

idate our hypothesis and show a superior segmentation per-

formance. The training in this experiment converges faster

than in the other experiments. In addition to outperform-

ing both meticulously tailored solutions for single-class seg-

mentation and multi-class segmentation solutions designed

on private datasets (see Table 1), our framework also shows

significant generalization ability. Examples of the segmen-

tation results for this experiment are illustrated in Fig. 6.

We observe that the model accurately delineates all the tar-

get objects even in a difficult case illustrated in Fig. 6 (last

row), where due to the imaging protocol all of the organs,

besides being congested together, also have similar intensi-

ties and their boundaries are hard to differentiate. The rea-

son for such accurate segmentations by this model can be

due to (1) a high degree of implicit parameter sharing be-

tween all classes being modeled, and (2) the ability of the

decoder path to capitalize on the available conditional in-

formation and gradually recover the spatial information and

sharp boundaries of the target classes.

We also performed additional experiments on condition-

ing the decoder and encoder at the same time and studied

the effects of conditioning only parts of the decoder at var-

ious depths. Such approaches yielded no benefits, and the

performance in these experiments was inferior compared to

when the conditional information was available directly to

each layer in the decoder.

Importance of spatial connections between classes To

test our hypothesis and to explore the importance of the

spatial correlation between classes on the model’s perfor-

mance, we evaluate our cond-decmodel on corrupted im-

ages. For CT images in particular, we compare the baseline

performance (Table 1) to the performance on images where

different classes were corrupted by randomly replacing 70%

of the corresponding voxels with intensity values common

for fatty tissue between organs. An example of a corrupted

image for spleen is illustrated in Fig. 4. Interestingly, the

separate corruption of classes spleen and pancreas had

practically no effect on the accuracy of the liver segmenta-

tion, which only degraded within the 2% range. However,

both the segmentations of spleen and pancreas were sig-

nificantly affected when other organs were corrupted, drop-

ping the performance on average by 15.3% compared to the

baseline. We believe this supports our hypothesis that the

model learns and utilizes the spatial correlations between

target classes during the inference, and the deprivation of

these correlations degrades the performance.

Applicability to natural images The described condi-

tioning technique was developed with the goal of being uni-

versally applicable rather than being limited to medical im-

ages. To demonstrate the applicability of our method to

other domains, we train a model for semantic segmenta-

tion of natural images. While datasets of natural images are

generally multi-class – i.e., multiple objects in an image are

annotated – we believe the validation of our framework on

natural images datasets is valuable. We evaluate our method

using the challenging urban scene understanding dataset

Cityscapes [5]. It contains 2,975 finely-annotated training,

500 validation, and 1,525 test images of 1024 ⇥ 2048 res-

olution with 19 semantic classes. Additionally, the dataset
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Figure 4: An example of a corrupted image, where 70% of

spleen voxels were replaced with intensity values common

for fatty tissue between organs.

Table 1: The comparison of segmentation accuracy (mean

DSC, %) for different models for the segmentation of liver,

spleen, and pancreas (higher is better).

Model Liver Spleen Pancreas

Yang et al. [44] 95.0 - -

Zhou et al. [48] - - 82.4

Roth et al. [35] 95.2 92.8 82.2

indivs 91.5 74.4 42.9

no cond 14.7 21.8 18.6

cond-2nd 89.7 71.7 44.4

cond-enc 88.1 76.9 57.3

cond-dec 95.8 93.7 85.1

comes with 20,000 coarsely-annotated training images, al-

though these were not used in this experiment. We selected

three essential classes: road, car, and person. To imitate

single-class datasets, each multi-class annotation image was

converted into a set of three binary masks. We use the same

base model described in Section 3.1, but with 2D convo-

lutions and max-pooling layers, and we condition only the

decoder part of the model. In addition, to test the sensitiv-

ity of the model to cm values, the lookup table was prede-

fined with values sampled from [-20, 20]. Each image was

resized to 512⇥ 1024, and the dataset was augmented with

random left and right flips and brightness perturbations. The

model was trained for 40K iterations using a mini-batch

of 4 and a DSC-based loss function (Equation 5). The re-

sults were evaluated in terms of class-wise intersection over

union (IoU) metric for test images upsampled to the orig-

inal resolution and are presented in Table 2. Examples of

the results are illustrated in Fig. 5. Our model achieves per-

formance close to the state-of-the-art solutions [2, 3, 47] on

some classes, without pre-training or post-processing steps,

and using only finely-annotated data. While updating the

state-of-the-art on this dataset was not our goal in this ex-

periment, given that it is a multi-class dataset, we believe

that pre-training the base model on datasets, such as Synthia

[33], and using additional annotated data, can improve the

Ground truthOriginal image Predictions

Figure 5: Examples of segmentation results for the

Cityscapes validation set.

Table 2: The comparison of segmentation accuracy (per

class IoU, %) on Cityscapes test set for different classes

(higher is better).

Model Road Car Person

Chen et al. [2] 98.7 96.5 88.2

Chen et al. [3] 98.6 96.3 87.6

Zhao et al. [47] 98.7 96.2 86.8

cond-dec 96.4 91.0 76.2

performance of our method on this dataset, as was shown in

other works [2, 3, 36, 47].

5. Discussion

In this paper, we described a framework for learning

multi-class segmentations from single-class datasets by a

novel way of conditioning a convnet for the purpose of

multi-class segmentation. We performed an extensive ex-

perimental evaluation of the various ways of conditioning

the model and found that providing each layer in the de-

coder a direct access to the conditional information yields

the most accurate segmentation results. The proposed

framework was evaluated on the task of segmentation of

medical images, where the problem of single-class datasets

naturally arises. While being significantly more computa-

tionally efficient, the method outperforms current state-of-

the-art solutions, which were specifically tailored for each

single-class dataset. Additionally, we demonstrated the ap-

plicability of our method to the semantic segmentation of

natural images using the Cityscapes dataset.

While our work has been validated using radiological CT

scans and natural images of urban scenes, our idea can be

easily expanded to other applications in various domains.

In particular, one can imagine how our framework can be

applied for the detection of cancer metastases in pathology
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Ground truth Liver Spleen Pancreas

Figure 6: Examples of segmentation results for CT images from different datasets generated by the cond-dec model. The

results are presented in 2D for illustrative purposes, but actual results are 3D. Rows from top to bottom: Sliver07 [15], NIH

Pancreas [16], our own additional dataset of liver and spleen segmentations. From left to right: available ground truth outlines

in the datasets (green and yellow), and segmentation results conditioned on each cm 2 C = {liver, spleen, pancreas},

which are outlined in purple. Although the segmentation outlines for our additional dataset are shown together (green and

yellow), they were generated and stored separately in a form of binary masks.

images. Pathology datasets show similar fragmentation –

a unified database of pathology images of various biologi-

cal tissues, such as brain or breast, currently does not exist

and research focuses on separate subproblems. Similarly

to our experiments, a convnet can be conditioned on the

target type of metastasized cancel cells in different tissue

samples. Moreover, one can also imagine similar applica-

tions of conditioning a convnet for the purpose of instance-

level segmentation, where each instance can be conditioned

on certain attributes, such as size, color, etc, or something

more sophisticated, such as species or kind. Furthermore,

Rebuffi et al. [31] have described a method of learning data

representations in multiple visual domains for the purpose

of classification. Our framework can augment such works

for the purpose of segmentation.

Our future work will focus on expanding the problem

and incorporating images from different domains. Particu-

larly for radiological images, it will be interesting to see if

a model trained on a mixture of CT and MRI images will

be able to infer and transfer classes marked in one imaging

modality to another.
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