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Abstract

Face recognition has obtained remarkable progress in

recent years due to the great improvement of deep convo-

lutional neural networks (CNNs). However, deep CNNs are

vulnerable to adversarial examples, which can cause fateful

consequences in real-world face recognition applications

with security-sensitive purposes. Adversarial attacks are

widely studied as they can identify the vulnerability of the

models before they are deployed. In this paper, we evaluate

the robustness of state-of-the-art face recognition models in

the decision-based black-box attack setting, where the at-

tackers have no access to the model parameters and gradi-

ents, but can only acquire hard-label predictions by sending

queries to the target model. This attack setting is more prac-

tical in real-world face recognition systems. To improve the

efficiency of previous methods, we propose an evolutionary

attack algorithm, which can model the local geometry of the

search directions and reduce the dimension of the search

space. Extensive experiments demonstrate the effectiveness

of the proposed method that induces a minimum perturba-

tion to an input face image with fewer queries. We also ap-

ply the proposed method to attack a real-world face recog-

nition system successfully.

1. Introduction

Recent progress in deep convolutional neural networks

(CNNs) [26, 29, 11] has led to substantial performance im-

provements in a broad range of computer vision tasks. Face

recognition, as one of the most important computer vision

tasks, has been greatly facilitated by deep CNNs [31, 28, 23,

33, 16, 32, 5]. There are usually two sub-tasks in face recog-

nition: face verification and face identification [12, 15]. The

former distinguishes whether a pair of face images repre-

sent the same identity, while the latter classifies an image
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Figure 1. Demonstration of the decision-based black-box attack

setting. Given a black-box model, the attackers use queries to gen-

erate adversarial examples with minimum perturbations.

to an identity. The state-of-the-art face recognition models

realize these two tasks by using deep CNNs to extract face

features that have minimum intra-class variance and maxi-

mum inter-class variance. Due to the excellent performance

of these models, face recognition has been widely used for

identity authentication in enormous applications, such as fi-

nance/payment, public access, criminal identification, etc.

Despite the great success in various applications, deep

CNNs are known to be vulnerable to adversarial exam-

ples [30, 9, 19, 6]. These maliciously generated adversarial

examples are often indistinguishable from legitimate ones

for human observers by adding small perturbations. But

they can make deep models produce incorrect predictions.

The face recognition systems based on deep CNNs have

also been shown their vulnerability against such adversar-

ial examples. For instance, adversarial perturbations can

be made to the eyeglass that, when worn, allows attackers

to evade being recognized or impersonate another individ-

ual [24, 25]. The insecurity of face recognition systems in

real-world applications, especially those with sensitive pur-

poses, can cause severe consequences and security issues.

To evaluate the robustness of face recognition systems in

real-world applications, adversarial attacks can serve as an

important surrogate, as they can identify the vulnerability of
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these systems [2] and help to improve the robustness [9, 18].

However, existing attack methods [24, 25] for face recogni-

tion are mainly based on the white-box scenario, where the

attackers know the internal structure and parameters of the

system being attacked. Accordingly, the attack objective

function can be directly optimized by gradient-based meth-

ods. This setting is clearly impractical in real-world cases,

when the attackers cannot get access to the model details.

Instead, we focus on a more realistic and general decision-

based black-box setting [1], where no model information

is exposed except that the attackers can only query the tar-

get model and obtain corresponding hard-label predictions.

The goal of attacks is to generate adversarial examples with

minimum perturbations by limited queries. This attack sce-

nario is much more challenging, since that the gradient can-

not be directly computed and the predicted probability is not

provided. On the other hand, it is much more realistic and

important, because most of the real-world face recognition

systems are black-box and only provide hard-label outputs.

To the best of our knowledge, it is the first attempt to con-

duct adversarial attacks on face recognition in this setting.

Several methods [1, 14, 4] have been proposed to per-

form decision-based black-box attacks. However, they lack

the efficiency in the sense that they usually require a tremen-

dous number of queries to converge, or get a relatively large

perturbation given a limited budget of queries. Therefore,

we consider how to efficiently generate adversarial exam-

ples for decision-based black-box attacks by inducing a

smaller perturbation to each sample with fewer queries.

To address the aforementioned issues, we propose an

evolutionary attack method for query-efficient adversarial

attacks in the decision-based black-box setting. Given the

attack objective function, the proposed method is able to op-

timize it in the black-box manner through queries only. Our

method can find better search directions by modeling their

local geometry. It further improves the efficiency by reduc-

ing the dimension of the search space. We apply the pro-

posed method to comprehensively study the robustness of

several state-of-the-art face recognition models, including

SphereFace [16], CosFace [32], and ArcFace [5], under the

decision-based black-box scenario. Extensive experiments

conducted on the most popular public-domain face recogni-

tion datasets such as Labeled Face in the Wild (LFW) [12]

and MegaFace Challenge [15] demonstrate the effectiveness

of the proposed method. We further apply our method to at-

tack a real-world face recognition system to show its practi-

cal applicability. In summary, our major contributions are:

• We propose a novel evolutionary attack method un-

der the decision-based black-box scenario, which can

model the local geometry of the search directions and

meanwhile reduce the dimension of the search space.

The evolutionary attack method is generally applica-

ble for any image recognition task, and significantly

improves the efficiency over existing methods.

• We thoroughly evaluate the robustness of several state-

of-the-art face recognition models by decision-based

black-box attacks in various settings. We demonstrate

the vulnerability of these face models in this setting.

• We show the practical applicability of the proposed

method by successfully attacking a real-world face

recognition system.

2. Related Work

Deep face recognition. DeepFace [31] and DeepID [28]

treat face recognition as a multi-class classification prob-

lem and use deep CNNs to learn features supervised by the

softmax loss. Triplet loss [23] and center loss [33] are pro-

posed to increase the Euclidean margin in the feature space

between classes. The angular softmax loss is proposed in

SphereFace [16] to learn angularly discriminative features.

CosFace [32] uses the large margin cosine loss to maximize

cosine margin. The additive angular margin loss is proposed

in ArcFace [5] to learn highly discriminative features.

Adversarial attacks on face recognition. Deep CNNs

are highly vulnerable to adversarial examples [30, 9, 19].

Face recognition has also been shown the vulnerability

against attacks. In [24], the perturbations are constrained to

the eyeglass region and generated by gradient-based meth-

ods, which fool face recognition systems even in the physi-

cal world. The adversarial eyeglasses can also be produced

by generative networks [25]. However, these methods rely

on the white-box manipulations of face recognition models,

which is unrealistic in real-world applications. Instead, we

focus on evaluating the robustness of face recognition mod-

els in the decision-based black-box attack setting.

Black-box attacks. Black-box attacks can be divided

into transfer-based, score-based and decision-based attacks.

Transfer-based attacks generate adversarial examples for a

white-box model and attack the black-box model based on

the transferability [17, 6]. In score-based attacks, the pre-

dicted probability is given by the model. Several methods

rely on approximated gradients to generate adversarial ex-

amples [3, 14]. In decision-based attacks, we can only ob-

tain the hard-label predictions. The boundary attack method

is based on random walk on the decision boundary [1]. The

optimization-based method [4] formulates this problem as a

continuous optimization problem and estimate the gradient

for optimization. However, it needs to calculate the distance

to the decision boundary along a direction by binary search.

In [14], the predicted probability is estimated by hard-label

predictions. Then, the natural evolution strategy (NES) is

used to maximize the target class probability or minimize

the true class probability. These methods generally require

a large number of queries to generate an adversarial exam-

ple with a minimum perturbation, or converge to a large

perturbation with few queries .
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3. Methodology

In this section, we first introduce the decision-based

black-box attack setting against a face recognition model,

and then detail the proposed evolutionary attack method.

3.1. Attack Setting

Let f(x) : X → Y (X ⊂ R
n) denote the face recogni-

tion model that predicts a label for an input face image. For

face verification, the model relies on another face image to

identify whether the pair of images belong to the same iden-

tity, and outputs a binary label in Y = {0, 1}. For face

identification, the model f(x) compares the input image x

with a gallery set of face images, and then classifies x as a

specific identity. So it can be viewed as a multi-class clas-

sification task, where Y = {1, 2, ...,K}, with K being the

number of identities. Although the face recognition model

f(x) uses an additional face image or a set of face images

for recognizing x, we do not explicitly describe the depen-

dency of f(x) on the compared images for simplicity.

Given a real face image x, the goal of attacks is to gen-

erate an adversarial face image x∗ in the vicinity of x but is

misclassified by the model. It can be obtained by solving a

constrained optimization problem

min
x

∗

D(x∗,x), s.t. C(f(x∗)) = 1, (1)

where D(·, ·) is a distance metric, and C(·) is an adversar-

ial criterion that takes 1 if the attack requirement is satisfied

and 0 otherwise. We use the L2 distance as D. The con-

strained problem in Eq. (1) can be equivalently reformu-

lated as the following unconstrained optimization problem

min
x

∗

L(x∗) = D(x∗,x) + δ
(

C(f(x∗)) = 1
)

, (2)

where δ(a) = 0 if a is true, otherwise δ(a) = +∞. By

optimizing Eq. (2), we can obtain an image x
∗ with a min-

imum perturbation, which is also adversarial according to

the criterion. Note that in the above objective functions, C
cannot be defined as a continuous criterion such as cross-

entropy loss, since that the model f(x) only gives discrete

hard-label outputs in this problem. In particular, we specify

C according to the following two types of attacks.

Dodging attack corresponds to generating an adversarial

image that is recognized wrong or not recognized. Dodg-

ing attack could be used to protect personal privacy against

excessive surveillance. For face verification, given a pair

of face images belonging to the same identity, the attacker

seeks to modify one image and make the model recog-

nize them as not the same identity. So the criterion is

C(f(x∗)) = I(f(x∗) = 0), where I is the indicator func-

tion. For face identification, the attacker generates an ad-

versarial face image with the purpose that it is recognized as

any other identity. The criterion is C(f(x∗)) = I(f(x∗) 6=
y), where y is the true identity of the real image x.

Impersonation attack works as seeking an adversarial

image recognized as a specific identity, which could be used

to evade the face authentication systems. For face verifica-

tion, the attacker tries to find an adversarial image that is

recognized as the same identity of another image, while the

original images are not from the same identity. The crite-

rion is C(f(x∗)) = I(f(x∗) = 1). For face identification,

the generated adversarial image needs to be classified as a

specific identity y∗, so C(f(x∗)) = I(f(x∗) = y∗).

3.2. Evolutionary Attack

Since we cannot get access to the configuration and pa-

rameters of f(x) but can only send queries to probe the

model, we resort to black-box optimization techniques to

minimize the objective function in Eq. (2). Gradient estima-

tion methods [20, 8, 7] approximate the gradient of the ob-

jective function by finite difference and update the solution

by gradient descent, which are commonly used for score-

based black-box attacks, when the predicted probability is

given by the model [3, 14]. However, in the case of hard-

label output, the attack objective function is discontinuous

and the output is insensitive to small input perturbations.

So the gradient estimation methods cannot be directly used.

Some methods [4, 14] successfully reformulate the discon-

tinuous optimization problem in Eq. (2) as some continuous

optimization problems and use gradient estimation methods

for optimization. But they need to calculate the distance of

a point to the decision boundary or estimate the predicted

probability by the hard-label outputs, which are less effi-

cient as demonstrated in the experiments. Therefore, we

consider how to directly optimize Eq. (2) efficiently.

In this paper, we propose a novel evolutionary attack

method to solve the black-box optimization problem. Our

method is based on a simple and efficient variant of covari-

ance matrix adaptation evolution strategy (CMA-ES) [10],

which is the (1+1)-CMA-ES [13]. In each update iteration

of the (1+1)-CMA-ES, a new offspring (candidate solution)

is generated from its parent (current solution) by adding a

random noise, the objective of these two solutions are eval-

uated, and the better one is selected for the next iteration.

This method is capable for solving black-box optimization

problems. However, directly applying the (1+1)-CMA-ES

to optimize Eq. (2) is inefficient due to the high dimension

of x∗. Considering the query limit in decision-based black-

box attacks for face images, the original (1+1)-CMA-ES

may be infeasible. To accelerate this algorithm, we design

an appropriate distribution to sample the random noise in

each iteration, which can model the local geometry of the

search directions. We also propose several techniques to re-

duce the dimension of the search space by considering the

special characteristics of this problem.

The overall evolutionary attack algorithm is outlined in

Algorithm 1. Rather than the original n-dimensional input
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Algorithm 1 The evolutionary attack algorithm

Input: The attack objective function L(x∗); the original face im-

age x; the dimension n ∈ N+ of the input space (x∗

∈ R
n);

the dimension m ∈ N+ of the search space; the number of

coordinates k ∈ N+ for stochastic coordinate selection.

Input: The total number of queries T .

1: Initialize C = Im, pc = 0, σ, µ, cc, ccov ∈ R+, x̃∗

∈ R
n;

2: for t = 1 to T do

3: Sample z ∼ N (0, σ2
C);

4: Select k coordinates from m with probability proportional

to each diagonal element in C;

5: Set the non-selected coordinates of z to 0;

6: Upscale z to R
n by bilinear interpolation and obtain z̃;

7: z̃ ← z̃ + µ(x− x̃
∗);

8: if L(x̃∗ + z̃) < L(x̃∗) then

9: x̃
∗

← x̃
∗ + z̃;

10: Update pc and C by z according to Eq. (3) and Eq. (4);

11: end if

12: end for

13: return x̃
∗.

space, we perform search in a lower dimensional space R
m

with m < n. In each iteration, we first sample a random

vector z from N (0, σ2
C) such that z ∈ R

m, where C is

a diagonal covariance matrix to model the local geometry

of the search directions. We then select k coordinates ran-

domly for search, according to the assumption that only a

fraction of pixels are important for finding an adversarial

image. We keep the value of the selected k coordinates of z

by setting the others to 0. We upscale z to the input space

by bilinear interpolation and get z̃ ∈ R
n. We further add a

bias to z̃ to minimize the distance between the adversarial

and original images. We finally test whether we get a better

solution. If we indeed find a better solution, we jump to it

and update the covariance matrix. In the following, we will

give a detailed description of each step in the algorithm.

3.2.1 Initialization

In Algorithm 1, x̃∗ should be initialized at first (in Step 1).

If the initial x̃∗ does not satisfy the adversarial criterion,

L(x̃∗) equals to +∞. For subsequent iterations, adding a

random vector can rarely make the search point adversar-

ial due to that deep CNNs are generally robust to random

noises [30], and thus the loss function will keep being +∞.

So we initialize x̃
∗ with a sample that already satisfies the

adversarial criterion. The following updates will also keep

x̃
∗ adversarial, and at the same time minimize the distance

between x̃
∗ and x. For dodging attack, the initial x̃∗ can

be simply set as a random vector. For impersonation attack,

we use the target image as the initial point of x̃∗.

3.2.2 Mean of Gaussian Distribution

We explain why we need to add a bias term to the random

vector in Step 7. Assume now that the dimension of the

search space is the same as that of the input space and we

select all coordinates for search (i.e., k = m = n). In each

iteration, a random vector z is sampled from a Gaussian

distribution. In general, the distribution should be unbiased

(with zero mean) for better exploration in the search space.

But in our problem, sampling the random vector from a zero

mean Gaussian distribution will result in nearly zero proba-

bility of updates as n → ∞, given by Theorem 1.

Theorem 1 (Proof in Appendix A) Assume that the covari-

ance matrix C is positive definite. Let λmax and λmin(> 0)
be the largest and smallest eigenvalues of C, respectively.

Then, we have

P
z∼N (0,σ2C)

(

L(x̃∗ + z) < L(x̃∗)
)

≤
4λmax‖x̃

∗ − x‖2

σ2λ2
minn

2
.

From Theorem 1, we need to draw O(n2) samples from

the zero mean Gaussian distribution for only one success-

ful update, which is inefficient and costly when n is large.

This happens because in high dimensional search space, a

randomly drawn vector z is almost orthogonal to x̃
∗ − x,

thus the distance D(x̃∗ + z,x) will be rarely smaller than

D(x̃∗,x). To address this problem, the random vector z

should be sampled from a biased distribution towards min-

imizing the distance of x̃∗ from the original image x. So

we add a bias term µ(x − x̃
∗) to z̃ (the same as z when

k = m = n) in Step 7, where µ is a critical hyper-parameter

controlling the strength of going towards the original image

x. We will specify the update procedure of µ in Sec. 3.2.6.

3.2.3 Covariance Matrix Adaptation

The adaptation of covariance matrix C is suitable for solv-

ing non-separable optimization problems since it can model

the local geometry of the search directions [10]. For ex-

ample, an appropriately set covariance matrix can make the

random vectors generated predominantly in the direction of

narrow valleys. In learning all pair-wise dependencies be-

tween dimensions, the storage and computation complexity

of the covariance matrix is at least O(m2), which is unac-

ceptable when m is large. For black-box adversarial attacks,

the dimension of the search space is extremely large (e.g.,

m = 45× 45× 3 in our experiments). Therefore, we relax

the covariance matrix to be a diagonal matrix for efficient

computation. Inspired by [22] which uses a diagonal co-

variance matrix for CMA-ES, we design an update rule for

the adaptation of the diagonal covariance matrix C (in Step

10) after each successful trial as

pc = (1− cc)pc +
√

cc(2− cc)
z

σ
, (3)

cii = (1− ccov)cii + ccov(pc)
2
i , (4)

where pc ∈ R
m is called the evolution path as it stores

the exponentially decayed successful search directions; for

i = 1, ...,m, cii is the diagonal element of C and (pc)i is

the i-th element of pc. cc and ccov are two hyper-parameters
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Model SphereFace [16] CosFace [32] ArcFace [5]

Queries 1,000 5,000 10,000 100,000 1,000 5,000 10,000 100,000 1,000 5,000 10,000 100,000

Dodging

Boundary [1] 2.3e-2 9.3e-3 7.0e-4 1.9e-5 2.0e-2 7.5e-3 7.7e-4 1.6e-5 2.4e-2 1.6e-2 1.5e-3 2.3e-5

Optimization [4] 1.2e-2 2.9e-3 1.3e-3 7.1e-5 1.1e-2 2.9e-3 1.3e-3 6.6e-5 1.5e-2 5.4e-3 2.6e-3 9.9e-5

NES-LO [14] 1.4e-1 3.8e-2 2.4e-2 7.4e-3 1.4e-1 3.5e-2 2.0e-2 6.5e-3 1.4e-1 3.9e-2 2.3e-2 1.5e-2

Evolutionary 1.6e-3 8.9e-5 3.4e-5 1.3e-5 1.7e-3 9.1e-5 3.3e-5 1.1e-5 2.8e-3 1.5e-4 5.2e-5 1.6e-5

Impersonation

Boundary [1] 1.5e-2 6.3e-3 5.7e-4 1.6e-5 1.1e-2 2.9e-3 2.8e-4 7.4e-6 2.0e-2 9.2e-3 1.2e-3 1.7e-5

Optimization [4] 1.1e-2 3.3e-3 1.3e-3 6.1e-5 7.7e-3 1.9e-3 7.1e-4 2.8e-5 1.6e-2 7.0e-3 3.3e-3 7.7e-5

NES-LO [14] 8.4e-2 2.6e-2 1.7e-2 5.5e-3 9.3e-2 2.0e-2 1.2e-2 3.1e-3 9.3e-2 3.0e-2 1.9e-2 8.1e-3

Evolutionary 1.2e-3 7.2e-5 2.9e-5 1.2e-5 6.5e-4 3.7e-5 1.5e-5 5.3e-6 2.3e-3 1.2e-4 3.9e-5 1.2e-5

Table 1. The results on face verification. We report the average distortion (MSE) of the adversarial images generated by different methods

for SphereFace, CosFace, and ArcFace given 1,000, 5,000, 10,000, and 100,000 queries, based on the LFW dataset.

of CMA. An intuitive explanation of this update is that the

variance along the past successful directions should be en-

larged for future search.

3.2.4 Stochastic Coordinate Selection

For adversarial attacks, the perturbations added to the im-

ages could be very sparse to fool deep CNNs [27], indi-

cating that only a fraction of coordinates (pixels) are suf-

ficient for finding the adversarial images. We can also ac-

celerate the black-box optimization if we could identify the

important coordinates. However, this is non-trivial in the

decision-based black-box attack setting. Fortunately, our

algorithm provides a natural way to find the useful coor-

dinates for search since the elements in the diagonal co-

variance matrix C represent the preferred coordinates of the

past successful trials, i.e., larger cii indicates that searching

along the i-th coordinate may induce a higher success rate

based on the past experience. According to this, in each it-

eration we select k (k ≪ m) coordinates to generate the

random vector z with the probability of selecting the i-th
coordinate being proportional to cii (in Step 4-5).

3.2.5 Dimensionality Reduction

It has been proved that the dimensionality reduction of

the search space is useful for acceleration of black-box at-

tacks [3]. Based on this, we sample the random vector z in

a lower dimensional space R
m with m < n (in Step 3). We

then adopt an upscaling operator to project z to the original

space Rn (in Step 6). Note that we do not change the dimen-

sion of an input image but only reduce the dimension of the

search space. Specifically, we use the bilinear interpolation

method as the upscaling operator.

3.2.6 Hyper-parameter Adjustment

There are also several hyper-parameters in the proposed al-

gorithm, including σ, µ, cc, and ccov . We simply set cc =
0.01 and ccov = 0.001. σ is set as 0.01 · D(x̃∗,x) based

on the intuition that σ should shrink gradually when the dis-

tance from x decreases. µ is a critical hyper-parameter that

needs to be tuned carefully. If µ is too large, the search

point may probably violate the adversarial criterion and the

success rate of updates is low. On the other hand, if µ is too

small, we would make little progress towards minimizing

the distance between x̃
∗ and x although the success rate is

high. So we adopt the 1/5th success rule [21], which is a

traditional method for hyper-parameter control in evolution

strategies, to update µ as µ = µ · exp(Psuccess− 1/5), where

Psuccess is the success rate of several past trials.

4. Experiments

In this section, we present the experimental results to

demonstrate the effectiveness of the proposed evolutionary

attack method. We comprehensively evaluate the robustness

of several state-of-the-art face recognition models under the

decision-based black-box attack scenario. We further apply

the proposed method to attack a real-world face recognition

system to demonstrate its practical applicability.

4.1. Experimental Settings

Target models. We study three state-of-the-art face recog-

nition models, including SphereFace [16], CosFace [32] and

ArcFace [5]. In testing, the feature representation for each

image is first extracted by these models. Then, the cosine

similarity between feature representations of different im-

ages are calculated. Finally, we use the thresholding strat-

egy and nearest neighbor classifier for face verification and

identification, respectively.

Datasets. We conduct experiments on the Labeled Face in

the Wild (LFW) [12] and MegaFace [15] datasets. For face

verification, in each dataset, we select 500 pairs of face im-

ages for dodging attack, in which each pair represent the

same identity. And, we select another 500 pairs of face im-

ages for impersonation attack, in which the images of each

pair are from different identities. For face identification, in

each dataset, we select 500 images of 500 different identi-

ties to form a gallery set, and corresponding 500 images of

the same identities to form a probe set. We perform dodging

and impersonation attacks for images in the probe set. For

impersonation attack, the target identity is chosen randomly.

The input image size (i.e., the dimension of the input space

n) is 112×112×3. All the selected images can be correctly

recognized by the three face recognition models.

Compared methods. We compare the performance of the

evolutionary attack method with all existing methods for
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Model SphereFace [16] CosFace [32] ArcFace [5]

Queries 1,000 5,000 10,000 100,000 1,000 5,000 10,000 100,000 1,000 5,000 10,000 100,000

Dodging

Boundary [1] 2.4e-2 6.5e-3 4.7e-4 1.4e-5 2.0e-2 5.1e-3 5.4e-4 1.2e-5 3.1e-2 1.7e-2 1.6e-3 2.3e-5

Optimization [4] 1.1e-2 2.1e-3 8.3e-4 4.6e-5 1.0e-2 2.0e-3 8.2e-4 4.0e-5 2.0e-2 6.1e-3 2.7e-3 9.8e-5

NES-LO [14] 1.4e-1 4.0e-2 2.5e-2 5.5e-3 1.5e-1 3.6e-2 2.2e-2 4.7e-3 1.5e-1 4.5e-2 3.1e-2 1.3e-2

Evolutionary 1.3e-3 6.6e-5 2.5e-5 9.9e-6 1.2e-3 6.2e-5 2.3e-5 7.5e-6 3.2e-3 1.6e-4 5.4e-5 1.6e-5

Impersonation

Boundary [1] 2.4e-2 1.1e-2 1.7e-3 3.6e-5 2.5e-2 8.9e-3 1.3e-3 2.3e-5 2.5e-2 1.3e-2 2.5e-3 3.8e-5

Optimization [4] 1.9e-2 7.7e-3 3.7e-3 1.6e-4 1.9e-2 7.1e-3 3.3e-3 1.1e-4 2.0e-2 1.1e-2 6.0e-3 3.5e-4

NES-LO [14] 7.9e-2 3.8e-2 2.8e-2 1.0e-2 8.8e-2 3.7e-2 2.7e-2 8.8e-3 8.8e-2 3.4e-2 2.3e-2 1.1e-2

Evolutionary 2.5e-3 1.6e-4 6.3e-5 2.3e-5 2.2e-3 1.3e-4 4.6e-5 1.5e-5 3.7e-3 2.5e-4 8.8e-5 2.6e-5

Table 2. The results on face identification. We report the average distortion (MSE) of the adversarial images generated by different methods

for SphereFace, CosFace, and ArcFace given 1,000, 5,000, 10,000, and 100,000 queries, based on the LFW dataset.
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Figure 2. The results on face verification. We show the curves of

the average distortion (MSE) of the adversarial images generated

by different attack methods for SphereFace, CosFace, and ArcFace

over the number of queries, based on the LFW dataset.

decision-based black-box attacks, including the boundary

attack method [1], optimization-based method [4] and an

extension of NES in the label-only setting (NES-LO) [14].

Evaluation metrics. For all methods, the generated ad-

versarial examples are guaranteed to be adversarial. So we

measure the distortion between the adversarial and original

images by mean square error (MSE) to evaluate the perfor-

mance of different methods1. We set a maximum number

of queries to be 100,000 for each image across all experi-

ments. Due to the space limitation, we leave the results on

the MegaFace dataset in Appendix B. The results on both

datasets are consistent. Our method is generally applicable

beyond face recognition. We further present the results on

1Images are normalized to [0, 1].
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Figure 3. The results on face identification. We show the curves of

the average distortion (MSE) of the adversarial images generated

by different attack methods for SphereFace, CosFace, and ArcFace

over the number of queries, based on the LFW dataset.

the ImageNet dataset in Appendix C.

4.2. Experimental Results

We report the results on the LFW dataset in this section.

We perform dodging attack and impersonation attack by

Boundary, Optimization, NES-LO and the proposed Evolu-

tionary method against SphereFace, CosFace, and ArcFace,

respectively. For our method, we set the dimension of the

search space as m = 45×45×3, and k = m/20 for stochas-

tic coordinate selection. For other methods, we adopt the

default settings. We calculate the distortion (MSE) of the

adversarial images generated by each method averaged over

the selected 500 images. And, the distortion curves over

the number of queries for face verification are shown in

Fig. 2, while those for face identification in Fig. 3. Besides,
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Figure 4. Examples of dodging and impersonation attacks on face verification for the ArcFace [5] model. The initial adversarial image is a

random noise or the target image for each kind of attacks. The distortion between the adversarial image and the original image decreases

gradually. We show the total number of queries and the mean square error until each point.

SphereFace CosFace ArcFace

wo/ CMA, wo/ SCS 2.6e-4/1.9e-4 2.5e-4/9.2e-5 4.2e-4/2.6e-4

w/ CMA, wo/ SCS 2.4e-4/1.8e-4 2.3e-4/8.5e-5 3.8e-4/2.5e-4

w/ CMA, w/ SCS (C) 1.7e-4/1.3e-4 1.6e-4/6.4e-5 2.6e-4/1.7e-4

w/ CMA, w/ SCS (In) 2.0e-4/1.5e-4 1.9e-4/7.5e-5 3.0e-4/2.0e-4

Table 3. Comparisons of the evolutionary method with four set-

tings: without CMA or SCS; with CMA, without SCS; with CMA

and SCS where the selection probability is proportional to the ele-

ments in C; with CMA and SCS where the selection probability is

set equally. We report the average distortion (MSE) given 10,000

queries for dodging/impersonation attacks on face verification.

for 1,000, 5,000, 10,000, and 100,000 queries, we report

the corresponding distortion values of different methods for

face verification in Table 1, while those for face identifica-

tion in Table 2. Two visual examples are also presented in

Fig. 4 for dodging and impersonation attacks.

Above results demonstrate that our method converges

much faster and achieves smaller distortions compared with

other methods consistently across both tasks (i.e., face ver-

ification and identification), both attack settings (i.e., dodg-

ing and impersonation) and all face models. For example,

as shown in Table 1 and 2, given 5,000 queries our method

obtains the distortions which are about 30 times smaller

than those generated by the second best method (i.e., Opti-

mization), which validates the effectiveness of the proposed

method. From Fig. 4, it can be seen that 2,000 queries are

sufficient to generate visually indistinguishable adversarial

examples. For NES-LO, the hard-label predictions are first

used to estimate the predicted probability (e.g., 25 queries)

and then it approximates the gradient by NES (e.g., 40 tri-

als). In consequence, this method requires more than 1,000

queries for only one update, which leads to the worst results.

It should be noted that the face recognition models are

extremely vulnerable to adversarial examples. These mod-

els can be fooled in the black-box manner by adversarial

examples with about only 1e−5 distortions, which are visu-

ally imperceptible for humans, as shown in Fig. 4.
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Figure 5. We show the curves of the average distortion (MSE)

of the adversarial images generated by the evolutionary method

with different dimensions of the search space over the number of

queries. We perform dodging and impersonation attacks against

SphereFace, CosFace, and ArcFace on face verification.

4.3. Ablation Study

We perform ablation study in this section to validate the

effectiveness of each component in the proposed method.

We conduct experiments based on face verification on the

LFW dataset. In particular, we study the effects of covari-

ance matrix adaptation, stochastic coordinate selection and

dimensionality reduction respectively.

Covariance matrix adaptation (CMA). To examine the
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usefulness of CMA, we compare CMA with a baseline

method that the covariance matrix is set to In without up-

dating. We do not include stochastic coordinate selection or

dimensionality reduction in this part for solely examining

the effect of CMA. We show the results of the average dis-

tortion given 10,000 queries in the first two rows of Table 3.

CMA improves the results over the baseline method.

Stochastic coordinate selection (SCS). We study two

aspects of SCS. The first is whether SCS is useful. The sec-

ond is whether we should select the coordinates with prob-

ability being proportional to the diagonal elements in the

covariance matrix C. We further perform experiments with

SCS, where we compare the performance of SCS with the

selection probability of each coordinate being proportional

to each diagonal element in C or In (equal probability for

each coordinate). By comparing the 2-4 rows of Table 3, it

can be seen that SCS is beneficial for obtaining better results

and sampling coordinates with probability proportional to

cii is better than sampling with equal probability.

Dimensionality reduction. We finally study the influ-

ence of dimensionality reduction. We set the dimension m
of the search space as 15×15×3, 30×30×3, 45×45×3,

60×60×3, and 112×112×3. We perform dodging and im-

personation attacks against SphereFace, CosFace, and Arc-

Face with each m, and compare the results in Fig. 5. It can

be seen that the evolutionary method converges faster in a

lower dimensional search space. However, if the dimension

of the search space is too small (e.g., 15 × 15 × 3), the at-

tack results in relatively large distortions. So we choose a

medium dimension as 45×45×3 in the above experiments.

4.4. Attacks on a RealWorld Application

In this section, we apply the evolutionary attack method

to the face verification API in Tencent AI Open Platform2.

This face verification API allows users to upload two face

images, and outputs a similarity score of them. We set the

threshold to be 90, i.e., if the similarity score is larger than

90, the two images are predicted to be the same identity;

and if not, they are predicted to be different identities.

We choose 10 pairs of images from the LFW dataset to

perform impersonation attack. The original two face images

of each pair are from different identities. We generate a per-

turbation for one of them and make the API recognize the

adversarial image to be the same identity as the other im-

age. We set the maximum number of queries to be 10,000.

We use the proposed evolutionary method to attack the face

verification API and compare the results with Boundary [1]

and Optimization [4]. We do not present the result of NES-

LO [14], as it fails to generate an adversarial image within

10,000 queries. We show the average distortion between the

adversarial and original images in Table 4. Our method still

obtains a smaller distortion than other baseline methods.

2https://ai.qq.com/product/face.shtml#compare

Attack Method Distortion (MSE)

Boundary [1] 1.63e-2

Optimization [4] 1.71e-2

Evolutionary 2.54e-3

Table 4. The results of impersonation attack on the real-world face

verification API. We report the average distortion (MSE) of the

selected 10 pairs of images by different attack methods.

Evolutionary Boundary OptimizationOriginal pair

Figure 6. Examples of impersonation attack on the real-world face

verification API. We show the original pairs of images as well as

the adversarial images generated by each method.

We also show two examples in Fig. 6. It can be seen that

the adversarial images generated by our method are more

visually similar to the original images, while those gener-

ated by other methods have large distortions, making them

distinguishable from the original images.

5. Conclusion

In this paper, we proposed an evolutionary attack al-

gorithm to generate adversarial examples in the decision-

based black-box setting. Our method improves the effi-

ciency over the other methods by modeling the local ge-

ometry of the search directions and meanwhile reducing

the dimension of the search space. We applied the pro-

posed method to comprehensively study the robustness of

several state-of-the-art face recognition models, and com-

pared against the other methods. The extensive experiments

consistently demonstrate the effectiveness of the proposed

method. We showed that the existing face recognition mod-

els are extremely vulnerable to adversarial attacks in the

black-box manner, which raises security concerns for de-

veloping more robust face recognition models. We finally

attacked a real-world face recognition system by the pro-

posed method, demonstrating its practical applicability.
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