
Evading Defenses to Transferable Adversarial Examples by

Translation-Invariant Attacks

Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu∗

Dept. of Comp. Sci. and Tech., BNRist Center, State Key Lab for Intell. Tech. & Sys.,

Institute for AI, THBI Lab, Tsinghua University, Beijing, 100084, China

{dyp17, pty17}@mails.tsinghua.edu.cn, {suhangss, dcszj}@mail.tsinghua.edu.cn

Abstract

Deep neural networks are vulnerable to adversarial ex-

amples, which can mislead classifiers by adding impercep-

tible perturbations. An intriguing property of adversarial

examples is their good transferability, making black-box at-

tacks feasible in real-world applications. Due to the threat

of adversarial attacks, many methods have been proposed

to improve the robustness. Several state-of-the-art defenses

are shown to be robust against transferable adversarial ex-

amples. In this paper, we propose a translation-invariant

attack method to generate more transferable adversarial ex-

amples against the defense models. By optimizing a pertur-

bation over an ensemble of translated images, the generated

adversarial example is less sensitive to the white-box model

being attacked and has better transferability. To improve

the efficiency of attacks, we further show that our method

can be implemented by convolving the gradient at the un-

translated image with a pre-defined kernel. Our method is

generally applicable to any gradient-based attack method.

Extensive experiments on the ImageNet dataset validate the

effectiveness of the proposed method. Our best attack fools

eight state-of-the-art defenses at an 82% success rate on av-

erage based only on the transferability, demonstrating the

insecurity of the current defense techniques.

1. Introduction

Despite the great success, deep neural networks have

been shown to be highly vulnerable to adversarial exam-

ples [3, 32, 10]. These maliciously generated adversar-

ial examples are indistinguishable from legitimate ones by

adding small perturbations, but make deep models produce

unreasonable predictions. The existence of adversarial ex-

amples, even in the physical world [15, 8, 2], has raised

concerns in security-sensitive applications, e.g., self-driving

cars, healthcare and finance.
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Figure 1. The adversarial examples generated by the fast gradient

sign method (FGSM) [10] and the proposed translation-invariant

FGSM (TI-FGSM) for the Inception v3 [31] model.

Attacking deep neural networks has drawn an increas-

ing attention since the generated adversarial examples can

serve as an important surrogate to evaluate the robustness

of different models [5] and improve the robustness [10, 20].

Several methods have been proposed to generate adversarial

examples with the knowledge of the gradient information of

a given model, such as fast gradient sign method [10], basic

iterative method [15], and Carlini & Wagner’s method [5],

which are known as white-box attacks. Moreover, it is

shown that adversarial examples have cross-model transfer-

ability [19], i.e., the adversarial examples crafted for one

model can fool a different model with a high probability.

The transferability enables practical black-box attacks to

real-world applications and induces serious security issues.

The threat of adversarial examples has motivated ex-

tensive research on building robust models or techniques

to defend against adversarial attacks. These include train-

ing with adversarial examples [10, 33, 20], image denois-

ing/transformation [18, 36, 11], theoretically-certified de-

fenses [26, 35], and others [24, 29, 28]. Although the non-

certified defenses have demonstrated robustness against

common attacks, they do so by causing obfuscated gradi-

ents, which can be easily circumvented by new attacks [1].
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Figure 2. Demonstration of the different discriminative regions of the defense models compared with normally trained models. We adopt

class activation mapping [38] to visualize the attention maps of three normally trained models—Inception v3 [31], Inception ResNet

v2 [30], ResNet 152 [12] and four defense models [33, 18, 36, 11]. These defense models rely on different discriminative regions for

predictions compared with normally trained models, which could affect the transferability of adversarial examples.

However, some of the defenses [33, 18, 36, 11] claim to

be resistant to transferable adversarial examples, making it

difficult to evade them by black-box attacks.

The resistance of the defense models against transferable

adversarial examples is largely due to the phenomenon that

the defenses make predictions based on different discrimi-

native regions compared with normally trained models. For

example, we show the attention maps of several normally

trained models and defense models in Fig. 2, to represent

the discriminative regions for their predictions. It can be

seen that the normally trained models have similar attention

maps while the defenses induce different attention maps. A

similar observation is also found in [34] that the gradients of

the defenses in the input space align well with human per-

ception, while those of normally trained models appear very

noisy. This phenomenon of the defenses is caused by either

training under different data distributions [33] or transform-

ing the inputs before classification [18, 36, 11]. For black-

box attacks based on the transferability [10, 19, 7], an adver-

sarial example is usually generated for a single input against

a white-box model. So the generated adversarial example is

highly correlated with the discriminative region or gradient

of the white-box model at the given input point, making it

hard to transfer to other defense models that depend on dif-

ferent regions for predictions. Therefore, the transferability

of adversarial examples is largely reduced to the defenses.

To mitigate the effect of different discriminative regions

between models and evade the defenses by transferable ad-

versarial examples, we propose a translation-invariant at-

tack method. In particular, we generate an adversarial ex-

ample for an ensemble of images composed of a legitimate

one and its translated versions. We expect that the resultant

adversarial example is less sensitive to the discriminative

region of the white-box model being attacked, and has a

higher probability to fool another black-box model with a

defense mechanism. However, to generate such a pertur-

bation, we need to calculate the gradients for all images in

the ensemble, which brings much more computations. To

improve the efficiency of our attacks, we further show that

our method can be implemented by convolving the gradient

at the untranslated image with a pre-defined kernel under a

mild assumption. By combining the proposed method with

any gradient-based attack method (e.g., fast gradient sign

method [10], etc.), we obtain more transferable adversarial

examples with similar computation complexity.

Extensive experiments on the ImageNet dataset [27]

demonstrate that the proposed translation-invariant attack

method helps to improve the success rates of black-box at-

tacks against the defense models by a large margin. Our best

attack reaches an average success rate of 82% to evade eight

state-of-the-art defenses based only on the transferability,

thus demonstrating the insecurity of the current defenses.

2. Related Work

Adversarial examples. Deep neural networks have been

shown to be vulnerable to adversarial examples first in the

visual domain [32]. Then several methods are proposed to

generate adversarial examples for the purpose of high suc-

cess rates and minimal size of perturbations [10, 15, 5].

They also exist in the physical world [15, 8, 2]. Although

adversarial examples are recently crafted for many other do-

mains, we focus on image classification tasks in this paper.

Black-box attacks. Black-box adversaries have no ac-

cess to the model parameters or gradients. The transfer-

ability [19] of adversarial examples can be used to attack a

black-box model. Several methods [7, 37] have been pro-

posed to improve the transferability, which enable power-

ful black-box attacks. Besides the transfer-based black-box

attacks, there is another line of work that performs attacks

based on adaptive queries. For example, Papernot et al. [25]

use queries to distill the knowledge of the target model and

train a surrogate model. They therefore turn the black-

box attacks to the white-box attacks. Recent methods use

queries to estimate the gradient or the decision boundary of

the black-box model [6, 4] to generate adversarial examples.
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However, these methods usually require a large number of

queries, which is impractical in real-world applications. In

this paper, we resort to transfer-based black-box attacks.

Attacks for an ensemble of examples. An adversarial

perturbation can be generated for an ensemble of legitimate

examples. In [22], the universal perturbations are generated

for the entire data distribution, which can fool the models on

most of natural images. In [2], the adversarial perturbation

is optimized over a distribution of transformations, which

is similar to our method. The major difference between the

method in [2] and ours is three-fold. First, we want to gen-

erate transferable adversarial examples against the defense

models, while the authors in [2] propose to synthesize ro-

bust adversarial examples in the physical world. Second,

we only use the translation operation, while they use a lot

of transformations such as rotation, translation, addition of

noise, etc. Third, we develop an efficient algorithm for op-

timization that only needs to calculate the gradient for the

untranslated image, while they calculate the gradients for a

batch of transformed images by sampling.

Defend against adversarial attacks. A large variety of

methods have been proposed to increase the robustness of

deep learning models. Besides directly making the models

produce correct predictions for adversarial examples, some

methods attempt to detect them instead [21, 23]. How-

ever, most of the non-certified defenses demonstrate the

robustness by causing obfuscated gradients, which can be

successfully circumvented by new attacks [1]. Although

these defenses are not robust in the white-box setting, some

of them [33, 18, 36, 11] empirically show the resistance

against transferable adversarial examples in the black-box

setting. In this paper, we focus on generating more transfer-

able adversarial examples against these defenses.

3. Methodology

In this section, we provide the detailed description of

our algorithm. Let xreal denote a real example and y de-

note the corresponding ground-truth label. Given a classi-

fier f(x) : X → Y that outputs a label as the prediction for

an input, we want to generate an adversarial example xadv

which is visually indistinguishable from xreal but fools the

classifier, i.e., f(xadv) 6= y.1 In most cases, the Lp norm of

the adversarial perturbation is required to be smaller than a

threshold ǫ as ||xadv − xreal||p ≤ ǫ. In this paper, we use

the L∞ norm as the measurement. For adversarial exam-

ple generation, the objective is to maximize the loss func-

tion J(xadv, y) of the classifier, where J is often the cross-

entropy loss. So the constrained optimization problem can

be written as

argmax
x

adv

J(xadv, y), s.t. ‖xadv − xreal‖∞ ≤ ǫ. (1)

1This corresponds to untargeted attack. The method in this paper can

be simply extended to targeted attack.

To solve this optimization problem, the gradient of the loss

function with respect to the input needs to be calculated,

termed as white-box attacks. However, in some cases, we

cannot get access to the gradients of the classifier, where we

need to perform attacks in the black-box manner. We resort

to transferable adversarial examples which are generated for

a different white-box classifier but have high transferability

for black-box attacks.

3.1. Gradient­based Adversarial Attack Methods

Several methods have been proposed to solve the opti-

mization problem in Eq. (1). We give a brief introduction

of them in this section.

Fast Gradient Sign Method (FGSM) [10] generates an

adversarial example xadv by linearizing the loss function in

the input space and performing one-step update as

xadv = xreal + ǫ · sign(∇xJ(x
real, y)), (2)

where ∇xJ is the gradient of the loss function with respect

to x. sign(·) is the sign function to make the perturba-

tion meet the L∞ norm bound. FGSM can generate more

transferable adversarial examples but is usually not effec-

tive enough for attacking white-box models [16].

Basic Iterative Method (BIM) [15] extends FGSM by

iteratively applying gradient updates multiple times with a

small step size α, which can be expressed as

xadv
t+1 = xadv

t + α · sign(∇xJ(x
adv
t , y)), (3)

where xadv
0 = xreal. To restrict the generated adversarial

examples within the ǫ-ball of xreal, we can clip xadv
t after

each update, or set α = ǫ/T , with T being the number of

iterations. It has been shown that BIM induces much more

powerful white-box attacks than FGSM at the cost of worse

transferability [16, 7].

Momentum Iterative Fast Gradient Sign Method

(MI-FGSM) [7] proposes to improve the transferability of

adversarial examples by integrating a momentum term into

the iterative attack method. The update procedure is

gt+1 = µ · gt +
∇xJ(x

adv
t , y)

‖∇xJ(xadv
t , y)‖1

, (4)

xadv
t+1 = xadv

t + α · sign(gt+1), (5)

where gt gathers the gradient information up to the t-th it-

eration with a decay factor µ.

Diverse Inputs Method [37] applies random transfor-

mations to the inputs and feeds the transformed images into

the classifier for gradient calculation. The transformation

includes random resizing and padding with a given proba-

bility. This method can be combined with the momentum-

based method to further improve the transferability.
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Carlini & Wagner’s method (C&W) [5] is a powerful

optimization-based method, which solves

argmin
x

adv

‖xadv − xreal‖p − c · J(xadv, y), (6)

where the loss function J could be different from the cross-

entropy loss. This method aims to find adversarial examples

with minimal size of perturbations, to measure the robust-

ness of different models. It also lacks the effectiveness for

black-box attacks like BIM.

3.2. Translation­Invariant Attack Method

Although many attack methods [7, 37] can generate ad-

versarial examples with very high transferability across nor-

mally trained models, they are less effective to attack de-

fense models in the black-box manner. Some of the de-

fenses [33, 18, 36, 11] are shown to be quite robust against

black-box attacks. So we want to answer that: Are these de-

fenses really free from transferable adversarial examples?

We find that the discriminative regions used by the de-

fenses to identify object categories are different from those

used by normally trained models, as shown in Fig. 2. When

generating an adversarial example by the methods intro-

duced in Sec. 3.1, the adversarial example is only optimized

for a single legitimate example. So it may be highly corre-

lated with the discriminative region or gradient of the white-

box model being attacked at the input data point. For other

black-box defense models that have different discriminative

regions or gradients, the adversarial example can hardly re-

main adversarial. Therefore, the defenses are shown to be

robust against transferable adversarial examples.

To generate adversarial examples that are less sensitive

to the discriminative regions of the white-box model, we

propose a translation-invariant attack method. In partic-

ular, rather than optimizing the objective function at a single

point as Eq. (1), the proposed method uses a set of translated

images to optimize an adversarial example as

argmax
x

adv

∑

i,j

wijJ(Tij(x
adv), y),

s.t. ‖xadv − xreal‖∞ ≤ ǫ,

(7)

where Tij(x) is the translation operation that shifts image

x by i and j pixels along the two-dimensions respectively,

i.e., each pixel (a, b) of the translated image is Tij(x)a,b =
xa−i,b−j , and wij is the weight for the loss J(Tij(x

adv), y).
We set i, j ∈ {−k, ..., 0, ..., k} with k being the maximal

number of pixels to shift. With this method, the generated

adversarial examples are less sensitive to the discriminative

regions of the white-box model being attacked, which may

be transferred to another model with a higher success rate.

We choose the translation operation in this paper rather than

other transformations (e.g., rotation, scaling, etc.), because

we can develop an efficient algorithm to calculate the gradi-

ent of the loss function by the assumption of the translation-

invariance [17] in convolutional neural networks.

3.2.1 Gradient Calculation

To solve the optimization problem in Eq. (7), we need to

calculate the gradients for (2k + 1)2 images, which intro-

duces much more computations. Sampling a small number

of translated images for gradient calculation is a feasible

way [2]. But we show that we can calculate the gradient for

only one image under a mild assumption.

Convolutional neural networks are supposed to have the

translation-invariant property [17], that an object in the in-

put can be recognized in spite of its position. In practice,

CNNs are not truly translation-invariant [9, 14]. So we

make an assumption that the translation-invariant property

is nearly held with very small translations (which is empiri-

cally validated in Sec. 4.2). In our problem, we shift the im-

age by no more than 10 pixels along each dimension (i.e.,

k ≤ 10). Therefore, based on this assumption, the trans-

lated image Tij(x) is almost the same as x as inputs to the

models, as well as their gradients

∇xJ(x, y)
∣

∣

x=Tij(x̂)
≈ ∇xJ(x, y)

∣

∣

x=x̂
. (8)

We then calculate the gradient of the loss function defined

in Eq. (7) at a point x̂ as

∇x

(

∑

i,j

wijJ(Tij(x), y)
)∣

∣

x=x̂

=
∑

i,j

wij∇xJ(Tij(x), y)
∣

∣

x=x̂

=
∑

i,j

wij

(

∇Tij(x)J(Tij(x), y) ·
∂Tij(x)

∂x

)

∣

∣

∣

x=x̂

=
∑

i,j

wijT−i−j

(

∇xJ(x, y)
∣

∣

x=Tij(x̂)

)

≈
∑

i,j

wijT−i−j(∇xJ(x, y)
∣

∣

x=x̂
).

(9)

Given Eq. (9), we do not need to calculate the gradients for

(2k+1)2 images. Instead, we only need to get the gradient

at the untranslated image x̂ and then average all the shifted

gradients. This procedure is equivalent to convolving the

gradient with a kernel composed of all the weights wij as

∑

i,j

wijT−i−j(∇xJ(x, y)
∣

∣

x=x̂
) ⇔ W ∗ ∇xJ(x, y)

∣

∣

x=x̂
,

where W is the kernel matrix of size (2k + 1)× (2k + 1),
with Wi,j = w−i−j . We will specify W in the next section.

3.2.2 Kernel Matrix

There are many options to generate the kernel matrix W . A

basic design principle is that the images with bigger shifts
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should have relatively lower weights to make the adversarial

perturbation fool the model at the untranslated image effec-

tively. In this paper, we consider three different choices:

(1) A uniform kernel that Wi,j = 1/(2k+1)2;

(2) A linear kernel that W̃i,j = (1− |i|/k+1) · (1− |j|/k+1),
and Wi,j = W̃i,j/

∑
i,j

W̃i,j;

(3) A Gaussian kernel that W̃i,j = 1
2πσ2 exp(−

i2+j2

2σ2 )
where the standard deviation σ = k/

√
3 to make the

radius of the kernel be 3σ, and Wi,j = W̃i,j/
∑

i,j
W̃i,j .

We will empirically compare the three kernels in Sec. 4.3.

3.2.3 Attack Algorithms

Note that in Sec. 3.2.1, we only illustrate how to calculate

the gradient of the loss function defined in Eq. (7), but do

not specify the update algorithm for generating adversar-

ial examples. This indicates that our method can be inte-

grated into any gradient-based attack method, e.g., FGSM,

BIM, MI-FGSM, etc. For gradient-based attack methods

presented in Sec. 3.1, in each step we calculate the gradient

∇xJ(x
adv
t , y) at the current solution xadv

t , then convolve

the gradient with the pre-defined kernel W , and finally ob-

tain the new solution xadv
t+1 following the update rule in dif-

ferent attack methods. For example, the combination of

our translation-invariant method and the fast gradient sign

method [10] (TI-FGSM) has the following update rule

xadv = xreal + ǫ · sign(W ∗ ∇xJ(x
real, y)). (10)

Also, the integration of the translation-invariant method into

the basic iterative method [15] yields the TI-BIM algorithm

xadv
t+1 = xadv

t + α · sign(W ∗ ∇xJ(x
adv
t , y)). (11)

The translation-invariant method can be similarly integrated

into MI-FGSM [7] and DIM [37] as TI-MI-FGSM and TI-

DIM, respectively.

4. Experiments

In this section, we present the experimental results to

demonstrate the effectiveness of the proposed method. We

first specify the experimental settings in Sec. 4.1. Then we

validate the translation-invariant property of convolutional

neural networks in Sec. 4.2. We further conduct two exper-

iments to study the effects of different kernels and size of

kernels in Sec. 4.3 and Sec. 4.4. We finally compare the

results of the proposed method with baseline methods in

Sec. 4.5 and Sec. 4.6.

4.1. Experimental Settings

We use an ImageNet-compatible dataset2 comprised of

1,000 images to conduct experiments. This dataset was used

2https://github.com/tensorflow/cleverhans/tree/

master/examples/nips17_adversarial_competition/

dataset
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(a) Inc-v3 (b) Inc-v4

(c) Inc-Res-v2 (d) Res-v2-152

Figure 3. We show the loss surfaces of Inc-v3, Inc-v4, IncRes-v2,

and Res-v2-152 given the translated images at each position.

in the NIPS 2017 adversarial competition. We include eight

defense models which are shown to be robust against black-

box attacks on the ImageNet dataset. These are

• Inc-v3ens3, Inc-v3ens4, IncRes-v2ens [33];

• high-level representation guided denoiser (HGD, rank-

1 submission in the NIPS 2017 defense competi-

tion) [18];

• input transformation through random resizing and

padding (R&P, rank-2 submission in the NIPS 2017

defense competition) [36];

• input transformation through JPEG compression or to-

tal variance minimization (TVM) [11];

• rank-3 submission3 in the NIPS 2017 defense compe-

tition (NIPS-r3).

To attack these defenses based on the transferability, we

also include four normally trained models—Inception v3

(Inc-v3) [31], Inception v4 (Inc-v4), Inception ResNet v2

(IncRes-v2) [30], and ResNet v2-152 (Res-v2-152) [13], as

the white-box models to generate adversarial examples.

In our experiments, we integrate our method into the

fast gradient sign method (FGSM) [10], momentum iter-

ative fast gradient sign method (MI-FGSM) [7], and di-

verse inputs method (DIM) [37]. We do not include the

basic iterative method [15] and C&W’s method [5] since

that they are not good at generating transferable adversarial

examples [7]. We denote the attacks combined with our

translation-invariant method as TI-FGSM, TI-MI-FGSM,

and TI-DIM, respectively.

For the settings of hyper-parameters, we set the maxi-

mum perturbation to be ǫ = 16 among all experiments with

pixel values in [0, 255]. For the iterative attack methods,

we set the number of iteration as 10 and the step size as

α = 1.6. For MI-FGSM and TI-MI-FGSM, we adopt the

default decay factor µ = 1.0. For DIM and TI-DIM, the

3https://github.com/anlthms/nips-2017/tree/

master/mmd
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Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

TI-FGSM

Uniform 25.0 27.9 21.1 15.7 19.1 24.8 32.3 21.9

Linear 30.7 32.4 24.2 20.9 23.3 28.1 34.6 25.8

Gaussian 28.2 28.9 22.3 18.4 19.8 25.5 30.7 24.5

TI-MI-FGSM

Uniform 30.0 32.2 22.8 21.7 22.8 26.4 32.7 25.9

Linear 35.8 35.0 26.8 25.5 23.4 29.0 35.8 27.5

Gaussian 35.8 35.1 25.8 25.7 23.9 28.2 34.9 26.7

TI-DIM

Uniform 32.6 34.6 25.6 24.1 27.2 30.2 34.9 28.8

Linear 45.2 47.0 34.9 35.6 35.2 38.5 43.6 39.7

Gaussian 46.9 47.1 37.4 38.3 36.8 37.0 44.2 41.4

Table 1. The success rates (%) of black-box attacks against eight defenses with different choices of kernels. The adversarial examples are

crafted for Inc-v3 by TI-FGSM, TI-MI-FGSM and TI-DIM with the uniform kernel, the linear kernel, and the Gaussian kernel, respectively.
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Figure 4. The success rates (%) of black-box attacks against IncRes-v2ens, HGD, R&P, TVM, and NIPS-r3. The adversarial examples are

generated for Inc-v3 with the kernel length ranging from 1 to 21.

transformation probability is set to 0.7. Please note that the

settings for each attack method and its translation-invariant

version are the same, because our method is not concerned

with the specific attack procedure.

4.2. Translation­Invariant Property of CNNs

We first verify the translation-invariant property of con-

volutional neural networks in this section. We use the orig-

inal 1,000 images from the dataset and shift them by −10
to 10 pixels in each dimension. We input the original im-

ages as well as the translated images into Inc-v3, Inc-v4,

IncRes-v2, and Res-v2-152, respectively. The loss of each

input image is given by the models. We average the loss

over all translated images at each position, and show the

loss surfaces in Fig. 3.

It can be seen that the loss surfaces are generally smooth

with the translations going from −10 to 10 in each dimen-

sion. So we could make the assumption that the translation-

invariant property is almost held within a small range. In

our attacks, the images are shifted by no more than 10 pix-

els along each dimension. The loss values would be very

similar for the original and translated images. Therefore,

we regard that a translated image is almost the same as the

corresponding original image as inputs to the models.

4.3. The Results of Different Kernels

In the section, we show the experimental results of the

proposed translation-invariant attack method with different

choices of kernels. We attack the Inc-v3 model by TI-

FGSM, TI-MI-FGSM, and TI-DIM with three types of ker-

nels, i.e., uniform kernel, linear kernel, and Gaussian ker-

nel, as introduced in Sec. 3.2.2. In Table 1, we report the

success rates of black-box attacks against the eight defense

models we study, where the success rates are the misclassi-

fication rates of the corresponding defense models with the

generated adversarial images as inputs.

We can see that for TI-FGSM, the linear kernel leads to

better results than the uniform kernel and the Gaussian ker-

nel. And for more powerful attacks such as TI-MI-FGSM

and TI-DIM, the Gaussian kernel achieves similar or even

better results than the linear kernel. However, both of the

linear kernel and the Gaussian kernel are more effective

than the uniform kernel. It indicates that we should design

the kernel that has lower weights for bigger shifts, as dis-

cussed in Sec. 3.2.2. We simply adopt the Gaussian kernel

in the following experiments.

4.4. The Effect of Kernel Size

The size of the kernel W also plays a key role for im-

proving the success rates of black-box attacks. If the kernel

size equals to 1 × 1, the translation-invariant based attacks

degenerate to their vanilla versions. Therefore, we conduct

an ablation study to examine the effect of kernel sizes.

We attack the Inc-v3 model by TI-FGSM, TI-MI-FGSM,

and TI-DIM with the Gaussian kernel, whose length ranges

from 1 to 21 with a granularity 2. In Fig. 4, we show the suc-
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Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

Inc-v3
FGSM 15.6 14.7 7.0 2.1 6.5 19.9 18.8 9.8

TI-FGSM 28.2 28.9 22.3 18.4 19.8 25.5 30.7 24.5

Inc-v4
FGSM 16.2 16.1 9.0 2.6 7.9 21.8 19.9 11.5

TI-FGSM 28.2 28.3 21.4 18.1 21.6 27.9 31.8 24.6

IncRes-v2
FGSM 18.0 17.2 10.2 3.9 9.9 24.7 23.4 13.3

TI-FGSM 32.8 33.6 28.1 25.4 28.1 32.4 38.5 31.4

Res-v2-152
FGSM 20.2 17.7 9.9 3.6 8.6 24.0 22.0 12.5

TI-FGSM 34.6 34.5 27.8 24.4 27.4 32.7 38.1 30.1

Table 2. The success rates (%) of black-box attacks against eight defenses. The adversarial examples are crafted for Inc-v3, Inc-v4,

IncRes-v2, and Res-v2-152 respectively using FGSM and TI-FGSM.

Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

Inc-v3
MI-FGSM 20.5 17.4 9.5 6.9 8.7 20.3 19.4 12.9

TI-MI-FGSM 35.8 35.1 25.8 25.7 23.9 28.2 34.9 26.7

Inc-v4
MI-FGSM 22.1 20.1 12.1 9.6 12.1 26.0 24.8 15.6

TI-MI-FGSM 36.7 39.2 28.7 27.8 28.0 31.6 38.4 29.5

IncRes-v2
MI-FGSM 31.3 27.2 19.7 19.6 18.6 31.6 34.4 22.7

TI-MI-FGSM 50.7 51.7 49.3 45.1 45.2 45.9 55.4 46.2

Res-v2-152
MI-FGSM 25.1 23.7 13.3 15.1 14.6 31.2 24.5 18.0

TI-MI-FGSM 39.9 37.7 32.8 31.8 31.1 38.3 41.2 34.4

Table 3. The success rates (%) of black-box attacks against eight defenses. The adversarial examples are crafted for Inc-v3, Inc-v4,

IncRes-v2, and Res-v2-152 respectively using MI-FGSM and TI-MI-FGSM.

Kernel Length=1 Kernel Length=3 Kernel Length=5 Kernel Length=7 Kernel Length=9 Kernel Length=11 Kernel Length=13 Kernel Length=15

Figure 5. The adversarial examples generated for Inc-v3 by TI-FGSM with different kernel sizes.

cess rates against five defense models—IncRes-v2ens, HGD,

R&P, TVM, and NIPS-r3. The success rate continues in-

creasing at first, and turns to remain stable after the kernel

size exceeds 15× 15. Therefore, the size of the kernel is set

to 15× 15 in the following.

We also show the adversarial images generated for the

Inc-v3 model by TI-FGSM with different kernel sizes in

Fig. 5. Due to the smooth effect given by the kernel, we

can see that the adversarial perturbations are smoother when

using a bigger kernel.

4.5. Single­Model Attacks

In this section, we compare the black-box success rates

of the translation-invariant based attacks with baseline at-

tacks. We first perform adversarial attacks for Inc-v3, Inc-

v4, IncRes-v2, and Res-v2-152 respectively using FGSM,

MI-FGSM, DIM, and their extensions by combining with

the translation-invariant attack method as TI-FGSM, TI-MI-

FGSM, and TI-DIM. We adopt the 15× 15 Gaussian kernel

in this set of experiments. We then use the generated ad-

versarial examples to attack the eight defense models we

consider based only on the transferability. We report the

success rates of black-box attacks in Table 2 for FGSM and

TI-FGSM, Table 3 for MI-FGSM and TI-MI-FGSM, and

Table 4 for DIM and TI-DIM.

From the tables, we observe that the success rates against

the defenses are improved by a large margin when using

the proposed method regardless of the attack algorithms

or the white-box models being attacked. In general, the

translation-invariant based attacks consistently outperform

the baseline attacks by 5% ∼ 30%. In particular, when us-

ing TI-DIM, the combination of our method and DIM, to

attack the IncRes-v2 model, the resultant adversarial exam-

ples have about 60% success rates against the defenses (as

shown in Table 4). It demonstrates the vulnerability of the

current defenses against black-box attacks. The results also

validate the effectiveness of the proposed method. Although

we only compare the results of our attack method with base-
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Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

Inc-v3
DIM 24.2 24.3 13.0 9.7 13.3 30.7 24.4 18.0

TI-DIM 46.9 47.1 37.4 38.3 36.8 37.0 44.2 41.4

Inc-v4
DIM 28.3 27.5 15.6 14.6 17.2 38.6 29.1 14.1

TI-DIM 48.6 47.5 38.7 40.3 39.3 43.5 45.6 41.9

IncRes-v2
DIM 41.2 40.0 27.9 32.4 30.2 47.2 41.7 37.6

TI-DIM 61.3 60.1 59.5 58.7 61.4 55.7 66.2 61.5

Res-v2-152
DIM 40.5 36.0 24.1 32.6 26.4 42.4 36.8 34.4

TI-DIM 56.1 55.5 49.5 51.8 50.4 50.8 55.7 52.9

Table 4. The success rates (%) of black-box attacks against eight defenses. The adversarial examples are crafted for Inc-v3, Inc-v4,

IncRes-v2, and Res-v2-152 respectively using DIM and TI-DIM.

Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

FGSM 27.5 23.7 13.4 4.9 13.8 38.1 30.0 19.8

TI-FGSM 39.1 38.8 31.6 29.9 31.2 43.3 39.8 33.9

MI-FGSM 50.5 48.3 32.8 38.6 32.8 67.7 50.1 43.9

TI-MI-FGSM 76.4 74.4 69.6 73.3 68.3 77.2 72.1 71.4

DIM 66.0 63.3 45.9 57.7 51.7 82.5 64.1 63.7

TI-DIM 84.8 82.7 78.0 82.6 81.4 83.4 79.8 83.1

Table 5. The success rates (%) of black-box attacks against eight defenses. The adversarial examples are crafted for the ensemble of Inc-v3,

Inc-v4, IncRes-v2, and Res-v2-152 using FGSM, TI-FGSM, MI-FGSM, TI-MI-FGSM, DIM, and TI-DIM.

line methods against the defense models, our attacks remain

the success rates of baseline attacks in the white-box setting

and the black-box setting against normally trained models,

which will be shown in the Appendix.

We show two adversarial images generated for the Inc-v3

model by FGSM and TI-FGSM in Fig. 1. It can be seen that

by using TI-FGSM, in which the gradients are convolved by

a kernel W before applying to the raw images, the adver-

sarial perturbations are much smoother than those generated

by FGSM. The smooth effect also exists in other translation-

invariant based attacks.

4.6. Ensemble­based Attacks

In this section, we further present the results when adver-

sarial examples are generated for an ensemble of models.

Liu et al. [19] have shown that attacking multiple models

at the same time can improve the transferability of the gen-

erated adversarial examples. It is due to that if an example

remains adversarial for multiple models, it is more likely to

transfer to another black-box model.

We adopt the ensemble method proposed in [7], which

fuses the logit activations of different models. We attack

the ensemble of Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152

with equal ensemble weights using FGSM, TI-FGSM, MI-

FGSM, TI-MI-FGSM, DIM, and TI-DIM respectively. We

also use the 15 × 15 Gaussian kernel in the translation-

invariant based attacks.

In Table 5, we show the results of black-box attacks

against the eight defenses. The proposed method also im-

proves the success rates across all experiments over the

baseline attacks. It should be noted that the adversarial ex-

amples generated by TI-DIM can fool the state-of-the-art

defenses at an 82% success rate on average based on the

transferability. And the adversarial examples are generated

for normally trained models unaware of the defense strate-

gies. The results in the paper demonstrate that the current

defenses are far from real security, and cannot be deployed

in real-world applications.

5. Conclusion

In this paper, we proposed a translation-invariant attack

method to generate adversarial examples that are less sen-

sitive to the discriminative regions of the white-box model

being attacked, and have higher transferability against the

defense models. Our method optimizes an adversarial im-

age by using a set of translated images. Based on an as-

sumption, our method is efficiently implemented by con-

volving the gradient with a pre-defined kernel, and can be

integrated into any gradient-based attack method. We con-

ducted experiments to validate the effectiveness of the pro-

posed method. Our best attack, TI-DIM, the combination

of the proposed translation-invariant method and diverse in-

puts method [37], can fool eight state-of-the-art defenses

at an 82% success rate on average, where the adversar-

ial examples are generated against four normally trained

models. The results identify the vulnerability of the cur-

rent defenses, and thus raise security issues for the develop-

ment of more robust deep learning models. We make our

codes public at https://github.com/dongyp13/

Translation-Invariant-Attacks.

Acknowledgements

This work was supported by the National Key

Research and Development Program of China (No.

2017YFA0700904), NSFC Projects (Nos. 61620106010,

61621136008, 61571261), Beijing NSF Project (No.

L172037), DITD Program JCKY2017204B064, Tiangong

Institute for Intelligent Computing, NVIDIA NVAIL Pro-

gram, and the projects from Siemens and Intel.

4319



References

[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-

cated gradients give a false sense of security: Circumventing

defenses to adversarial examples. In ICML, 2018. 1, 3

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin

Kwok. Synthesizing robust adversarial examples. In ICML,

2018. 1, 2, 3, 4

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-

son, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Eva-

sion attacks against machine learning at test time. In Joint

European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 387–402, 2013. 1

[4] Wieland Brendel, Jonas Rauber, and Matthias Bethge.

Decision-based adversarial attacks: Reliable attacks against

black-box machine learning models. In ICLR, 2018. 2

[5] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In IEEE Symposium on Secu-

rity and Privacy, 2017. 1, 2, 4, 5

[6] Pin Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and

Cho Jui Hsieh. Zoo: Zeroth order optimization based black-

box attacks to deep neural networks without training substi-

tute models. In ACM Workshop on Artificial Intelligence and

Security (AISec), pages 15–26, 2017. 2

[7] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun

Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-

tacks with momentum. In CVPR, 2018. 2, 3, 4, 5, 8

[8] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,

Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi

Kohno, and Dawn Song. Robust physical-world attacks on

deep learning visual classification. In CVPR, 2018. 1, 2

[9] Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe,

and Andrew Y Ng. Measuring invariances in deep networks.

In NIPS, 2009. 4

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In ICLR,

2015. 1, 2, 3, 5

[11] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens

Van Der Maaten. Countering adversarial images using input

transformations. In ICLR, 2018. 1, 2, 3, 4, 5

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

2016. 5

[14] Eric Kauderer-Abrams. Quantifying translation-invariance

in convolutional neural networks. arXiv preprint

arXiv:1801.01450, 2017. 4

[15] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-

versarial examples in the physical world. arXiv preprint

arXiv:1607.02533, 2016. 1, 2, 3, 5

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-

sarial machine learning at scale. In ICLR, 2017. 3

[17] Yann LeCun and Yoshua Bengio. Convolutional networks

for images, speech, and time series. Handbook of Brain The-

ory and Neural Networks, 1995. 4

[18] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang,

Xiaolin Hu, and Jun Zhu. Defense against adversarial attacks

using high-level representation guided denoiser. In CVPR,

2018. 1, 2, 3, 4, 5

[19] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.

Delving into transferable adversarial examples and black-

box attacks. In ICLR, 2017. 1, 2, 8

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learning

models resistant to adversarial attacks. In ICLR, 2018. 1

[21] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and

Bastian Bischoff. On detecting adversarial perturbations. In

ICLR, 2017. 3

[22] Seyed Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, and Pascal Frossard. Universal adversarial perturba-

tions. In CVPR, 2017. 3

[23] Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. To-

wards robust detection of adversarial examples. In NeurIPS,

2018. 3

[24] Tianyu Pang, Chao Du, and Jun Zhu. Max-mahalanobis lin-

ear discriminant analysis networks. In ICML, 2018. 1

[25] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practi-

cal black-box attacks against machine learning. In Proceed-

ings of the 2017 ACM on Asia Conference on Computer and

Communications Security, 2017. 2

[26] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Cer-

tified defenses against adversarial examples. In ICLR, 2018.

1

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 2

[28] Pouya Samangouei, Maya Kabkab, and Rama Chellappa.

Defense-gan: Protecting classifiers against adversarial at-

tacks using generative models. In ICLR, 2018. 1

[29] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Er-

mon, and Nate Kushman. Pixeldefend: Leveraging genera-

tive models to understand and defend against adversarial ex-

amples. In ICLR, 2018. 1

[30] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In AAAI, 2017.

2, 5

[31] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, 2016. 1, 2, 5

[32] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-

triguing properties of neural networks. In ICLR, 2014. 1,

2
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