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Abstract

This paper addresses the problem of 3D pose estimation

for multiple people in a few calibrated camera views. The

main challenge of this problem is to find the cross-view cor-

respondences among noisy and incomplete 2D pose predic-

tions. Most previous methods address this challenge by di-

rectly reasoning in 3D using a pictorial structure model,

which is inefficient due to the huge state space. We pro-

pose a fast and robust approach to solve this problem. Our

key idea is to use a multi-way matching algorithm to cluster

the detected 2D poses in all views. Each resulting clus-

ter encodes 2D poses of the same person across different

views and consistent correspondences across the keypoints,

from which the 3D pose of each person can be effectively in-

ferred. The proposed convex optimization based multi-way

matching algorithm is efficient and robust against missing

and false detections, without knowing the number of peo-

ple in the scene. Moreover, we propose to combine geo-

metric and appearance cues for cross-view matching. The

proposed approach achieves significant performance gains

from the state-of-the-art (96.3% vs. 90.6% and 96.9% vs.

88% on the Campus and Shelf datasets, respectively), while

being efficient for real-time applications.

1. Introduction

Recovering 3D human pose and motion from videos has

been a long-standing problem in computer vision, which

has a variety of applications such as human-computer in-

teraction, video surveillance and sports broadcasting. In

particular, this paper focuses on the setting where there

are multiple people in a scene, and the observations come

from a few calibrated cameras (Figure 1). While remark-

able advances have been made in multi-view reconstruc-

tion of a human body, there are fewer works that address

a more challenging setting where multiple people interact

with each other in crowded scenes, in which there are sig-

nificant occlusions.
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Figure 1: This work proposes a novel approach for fast and

robust recovery of 3D poses of multiple people from a few

camera views. The main challenge is to establish consistent

correspondences of 2D observations among multiple views,

e.g., 2D human-body keypoints in images, which may be

noisy and incomplete.

Existing methods typically solve this problem in two

stages. The first stage detects human-body keypoints or

parts in separate 2D views, which are aggregated in the

second stage to reconstruct 3D poses. Given the fact that

deep-learning based 2D keypoint detection techniques have

achieved remarkable performance [8, 30], the remaining

challenge is to find cross-view correspondences between

detected keypoints as well as which person they belong to.

Most previous methods [1, 2, 21, 12] employ a 3D picto-

rial structure (3DPS) model that implicitly solves the cor-

respondence problem by reasoning about all hypotheses in

3D that are geometrically compatible with 2D detections.

However, this 3DPS-based approach is computationally ex-

pensive due to the huge state space. In addition, it is not

robust particularly when the number of cameras is small, as

it only uses multi-view geometry to link the 2D detections

17792



across views, or in other words, the appearance cues are ig-

nored.

In this paper, we propose a novel approach for multi-

person 3D pose estimation. The proposed approach solves

the correspondence problem at the body level by matching

detected 2D poses among multiple views, producing clus-

ters of 2D poses where each cluster includes 2D poses of the

same person in different views. Then, the 3D pose can be

inferred for each person separately from matched 2D poses,

which is much faster than joint inference of multiple poses

thanks to the reduced state space.

However, matching 2D poses across multiple views is

challenging. A typical approach is to use the epipolar con-

straint to verify if two 2D poses are projections of the same

3D pose for each pair of views [23]. But this approach may

fail for the following reasons. First, the detected 2D poses

are often inaccurate due to heavy occlusion and truncation,

as shown in Figure 2(b), which makes geometric verifica-

tion difficult. Second, matching each pair of views sepa-

rately may produce inconsistent correspondences which vi-

olate the cycle consistency constraint, that is, two corre-

sponding poses in two views may be matched to different

people in another view. Such inconsistency leads to incor-

rect multi-view reconstructions. Finally, as shown in Fig-

ure 2, different sets of people appear in different views and

the total number of people is unknown, which brings addi-

tional difficulties to the matching problem.

We propose a multi-way matching algorithm to address

the aforementioned challenges. Our key ideas are: (i)

combing the geometric consistency between 2D poses with

the appearance similarity among their associated image

patches to reduce matching ambiguities, and (ii) solving

the matching problem for all views simultaneously with a

cycle-consistency constraint to leverage multi-way informa-

tion and produce globally consistent correspondences. The

matching problem is formulated as a convex optimization

problem and an efficient algorithm is developed to solve the

induced optimization problem.

In summary, the main contributions of this work are:

• We propose a novel approach for fast and robust multi-

person 3D pose estimation. We demonstrate that, in-

stead of jointly inferring multiple 3D poses using a

3DPS model in a huge state space, we can greatly re-

duce the state space and consequently improve both

efficiency and robustness of 3D pose estimation by

grouping the detected 2D poses that belong to the same

person in all views.

• We propose a multi-way matching algorithm to find the

cycle-consistent correspondences of detected 2D poses

across multiple views. The proposed matching algo-

rithm is able to prune false detections and deal with

partial overlaps between views, without knowing the

true number of people in the scene.

• We propose to combine geometric and appearance

cues to match the detected 2D poses across views. We

show that the appearance information, which is mostly

ignored by previous methods, is important to link the

2D detections across views.

• The proposed approach outperforms the state-of-the-

art methods by a large margin without using any

training data from the evaluated datasets. The code

is available at https://zju3dv.github.io/

mvpose/.

2. Related work

Multi-view 3D human pose: Markerless motion capture

has been investigated in computer vision for a decade. Early

works on this problem aim to track the 3D skeleton or ge-

ometric model of human body through a multi-view se-

quence [38, 43, 11]. These tracking-based methods require

initialization in the first frame and are prone to local op-

tima and tracking failures. Therefore, more recent works

are generally based on a bottom-up scheme where the 3D

pose is reconstructed from 2D features detected from im-

ages [36, 6, 32]. Recent work [22] shows remarkable re-

sults by combing statistical body models with deep learning

based 2D detectors.

In this work, we focus on the multi-person 3D pose es-

timation. Most previous works are based on 3DPS models

in which nodes represent 3D locations of body joints and

edges encode pairwise relations between them [1, 20, 2, 21,

12]. The state space for each joint is often a 3D grid rep-

resenting a discretized 3D space. The likelihood of a joint

being at some location is given by a joint detector applied to

all 2D views and the pairwise potentials between joints are

given by skeletal constraints [1, 2] or body parts detected in

2D views [21, 12]. Then, the 3D poses of multiple people

are jointly inferred by maximum a posteriori estimation.

As all body joints for all people are considered simulta-

neously, the entire state space is huge, resulting in heavy

computation in inference. Another limitation of this ap-

proach is that it only uses multi-view geometry to link 2D

evidences, which is sensitive to the setup of cameras. As

a result, the performance of this approach degrades signif-

icantly when the number of views decreases [21]. Recent

work [23] proposes to match 2D poses between views and

then reconstructs 3D poses from the 2D poses belonging to

the same person. But it only utilizes epipolar geometry to

match 2D poses for each pair of views and ignores the cycle

consistency constraint among multiple views, which may

result in inconsistent correspondences.

Single-view pose estimation: There is a large body of

literature on human pose estimation from single images.
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Figure 2: Overview of the proposed approach. Given images from a few calibrated cameras (a), an off-the-shelf human

pose detector is used to produce 2D bounding boxes and associated 2D poses in each view, which may be inaccurate and

incomplete (b). Then, the detected bounding boxes are clustered by a novel multi-view matching algorithm. Each resulting

cluster includes the bounding boxes of the same person in different views (c). The isolated bounding boxes that have no

matches in other views are regarded as false detections and discarded. Finally, the 3D pose of each person is reconstructed

from the corresponding bounding boxes and associated 2D poses (d).

Single-person pose estimation [41, 34, 42, 30, 17] local-

izes 2D body keypoints of a person in a cropped image.

There are two categories of multi-person pose estimation

methods: top-down methods [10, 17, 15, 13] that first detect

people in the image and then apply single-person pose esti-

mation to the cropped image of each person, and bottom-up

methods [25, 29, 8, 35, 18] that first detect all keypoints

and then group them into different people. In general, the

top-down methods are more accurate, while the bottom-

up methods are relatively faster. In this work, We adopt

the Cascaded Pyramid Network [10], a state-of-the-art ap-

proach for multi-person pose detection, as an initial step in

our pipeline.

The advances in learning-based methods also make it

possible to recover 3D human pose from a single RGB im-

age, either lifting the detected 2D poses into 3D [28, 47,

9, 27] or directly regressing 3D poses [40, 37, 39, 45, 31]

and even 3D body shapes from RGB [4, 24, 33]. But the

reconstruction accuracy of these methods is not comparable

with the multi-view results due to the inherit reconstruction

ambiguity when only a single view is available.

Person re-ID and multi-image matching: Person re-ID

aims to identify the same person in different images [44],

which is used as a component in our approach. Multi-image

matching is to find feature correspondences among a collec-

tion of images [16, 46]. We make use of the recent results

on cycle consistency [16] to solve the correspondence prob-

lem in multi-view pose estimation.

3. Technical approach

Figure 2 presents an overview of our approach. First, an

off-the-shelf 2D human pose detector is adopted to produce

bounding boxes and 2D keypoint locations of people in each

view (Section 3.1). Given the noisy 2D detections, a multi-

way matching algorithm is proposed to establish the cor-

respondences of the detected bounding boxes across views

and get rid of the false detections (Section 3.2). Finally,

the 3DPS model is used to reconstruct the 3D pose for each

person from the corresponding 2D bounding boxes and key-

points (Section 3.3).

3.1. 2D human pose detection

We adopt the recently-proposed Cascaded Pyramid Net-

work [10] trained on the MSCOCO [26] dataset for 2D pose

detection in images. The Cascaded Pyramid Network con-

sists of two stages: the GlobalNet estimates human poses

roughly whereas the RefineNet gives optimal human poses.

Despite its state-of-the-art performance on benchmarks, the

detections may be quite noisy as shown in Figure 2(b).

3.2. Multi­view correspondences

Before reconstructing the 3D poses, the detected 2D

poses should be matched across views, i.e., we need to find

in all views the 2D bounding boxes belonging to the same

37794



person. However, this is a challenging task as we discussed

in the introduction.

To solve this problem, we need 1) a proper metric to

measure the likelihood that two 2D bounding boxes belong

to the same person (a.k.a. affinity), and 2) a matching algo-

rithm to establish the correspondences of bounding boxes

across multiple views. In particular, the matching algorithm

should not place any assumption about the true number of

people in the scene. Moreover, the output of the matching

algorithm should be cycle-consistent, i.e. any two corre-

sponding bounding boxes in two images should correspond

to the same bounding box in another image.

Problem statement: Before introducing our approach in

details, we first briefly describe some notations. Suppose

there are V cameras in the scene and pi detected bound-

ing boxes in view i. For a pair of views (i, j), the affinity

scores can be calculated between the two sets of bounding

boxes in view i and view j. We use Aij ∈ R
pi×pj to de-

note the affinity matrix, whose elements represent the affin-

ity scores. The correspondences to be estimated between

the two sets of bounding boxes are represented by a partial

permutation matrix Pij ∈ {0, 1}
pi×pj , which satisfies the

doubly stochastic constraints:

0 ≤ Pij1 ≤ 1,0 ≤ P T
ij 1 ≤ 1. (1)

The problem is to take {Aij |∀i, j} as input and output

the optimal {Pij |∀i, j} that maximizes the corresponding

affinities and is also cycle-consistent across multiple views.

Affinity matrix: We propose to combine the appearance

similarity and the geometric compatibility to calculate the

affinity scores between bounding boxes.

First, we adopt a pre-trained person re-identification (re-

ID) network to obtain a descriptor for a bounding box.

The re-ID network trained on massive re-ID datasets is ex-

pected to be able to extract discriminative appearance fea-

tures that are relatively invariant to illumination and view-

point changes. Specifically, we feed the cropped image

of each bounding box through the publicly available re-ID

model proposed in [44] and extract the feature vector from

the “pool5” layer as the descriptor for each bounding box.

Then, we compute the Euclidean distance between the de-

scriptors of a bounding box pair and map the distances to

values in (0, 1) using the sigmoid function as the appear-

ance affinity score of this bounding box pair.

Besides appearances, another important cue to associate

two bounding boxes is that their associated 2D poses should

be geometrically consistent. Specifically, the corresponding

2D joint locations should satisfy the epipolar constraint, i.e.

a joint in the first view should lie on the epipolar line as-

sociated with its correspondence in the second view. Sup-

pose x ∈ R
N×2 denotes a 2D pose composed of N joints.

Figure 3: An illustration of cycle consistency. The green

lines denote a set of consistent correspondences and the red

lines show a set of inconsistent correspondences.

Then, the geometric consistency between xi and xj from

two views can be measured by the following distance:

Dg(xi,xj) =
1

2N

N
∑

n=1

dg(x
n
i ,Lij(x

n
j )) + dg(x

n
j ,Lji(x

n
i )),

where xn
i denotes the 2D location of the n-th joint of pose

i, Lij(x
n
j ) the epipolar line associated with xn

j from the

other view, and dg(·, l) the point-to-line distance for l. The

distances Dg are also mapped to values in (0, 1) using the

sigmoid function as the final geometric affinity scores.

Based on the fact that a pair of correctly detected and

matched 2D poses must satisfy the geometric constraint (Dg

is small), we combine the two affinity matrices as follows:

Aij(·) =







√

Aa
ij(·)×A

g
ij(·), if Dg ≤ th,

0, otherwise,
(2)

where Aij(·), A
a
ij(·), and A

g
ij(·) ∈ [0, 1] denote values

of the fused affinity matrix, appearance affinity matrix, and

geometry affinity matrix of view pair (i, j), respectively. th

denotes a threshold. Experimental results demonstrate that

this simple combination of appearance and geometry is su-

perior to merely using one of them.

Multi-way matching with cycle consistency: If there

are only two views to match, one can simply maximize

〈Pij ,Aij〉 and find the optimal matching by the Hungarian

algorithm. But when there are multiple views, solving the

matching problem separately for each pair of views ignores

the cycle-consistency constraint and may lead to inconsis-

tent results. Figure 3 shows an example, where the corre-

spondences in red are inconsistent and the ones in green are

cycle-consistent as they form a closed cycle.
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We make use of the results in [16] to solve this prob-

lem. Suppose the correspondences among all m =
∑V

i=1 pi
detected bounding boxes in all views are denoted by P ∈
{0, 1}m×m:

P =











P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 · · · · · · Pnn











, (3)

where Pii should be identity. Then, it can be shown that the

cycle consistency constraint is satisfied if and only if

rank(P ) ≤ s, P � 0, (4)

where s is the underlying number of people in the scene.

The intuition is that, if the correspondences are cycle-

consistent, P can be factorized as Y Y T where Y ∈
R

m×s denotes the correspondences between all 2D bound-

ing boxes and 3D people.

As s is unknown in advance, we propose to minimize the

following objective function to estimate the low-rank and

positive semidefinite matrix P :

f(P ) = −

n
∑

i=1

n
∑

j=1

〈Aij ,Pij〉+ λ · rank(P ),

= −〈A,P 〉+ λ · rank(P ),

(5)

where A is concatenation of all Aij similar to the form in

(3), λ denotes the weight of low-rank constraint.

The benefits of formulating the problem in this way are

two-fold. First, the cycle consistency constraint aggregates

the multi-way information to improve the matching and

prune the false detections, which can hardly be realized if

only two views are considered. Second, the rank minimiza-

tion will automatically recover a rank (the number of people

in the scene) that can best explain the observations.

Optimization: To make the optimization tractable, we

have to make appropriate relaxations. Instead of minimiz-

ing the rank, which is a discrete operator, we minimize the

nuclear norm ‖P ‖∗, which is the tightest convex surrogate

of rank [14]. We replace the integer constraint on P by

saying that P is a real matrix with values in [0, 1]:

0 ≤ P ≤ 1, (6)

which is a common practice in matching algorithms. We

remove the semidefinite constraint and only require P to be

symmetric:

Pij = P T
ji , 1 ≤ i, j ≤ n, i 6= j, (7)

Pii = Ipi
, 1 ≤ i ≤ n. (8)

Finally, we solve the following optimization problem:

min
P
−〈A,P 〉+ λ‖P ‖∗,

s.t. P ∈ C,
(9)

where C denotes the set of matrices satisfying the con-

straints (1), (6), (7), and (8).

Note that the problem in (9) is convex and we use the

alternating direction method of multipliers (ADMM) [5] to

solve it. The problem is first rewritten as follows by intro-

ducing an auxiliary variable Q:

min
P ,Q

−〈A,P 〉+ λ‖Q‖∗,

s.t. P = Q, P ∈ C.
(10)

Then, the augmented Lagrangian of (10) is:

Lρ(P ,Q,Y ) = −〈A,P 〉+ λ‖Q‖∗ + 〈Y ,P −Q〉

+
ρ

2
‖P −Q‖2F ,

(11)

where Y denotes the dual variable and ρ denotes a penalty

parameter. Each primal variable and the dual variable are al-

ternately updated until convergence. The overall algorithm

is shown in Algorithm 1, where D denotes the operator for

singular value thresholding [7] and PC(·) denotes the or-

thogonal projection to C.

Algorithm 1: Consistent Multi-Way Matching

Input: Affinity matrix A

Output: Consistent correspondences P

1 randomly initialize P and Y = 0 ;

2 while not converged do

3 Q← Dλ
ρ
( 1
ρ
Y + P ) ;

4 P ← PC(Q−
1
ρ
(Y −A)) ;

5 Y ← Y k + ρ(P −Q) ;

6 end

7 quantize P with a threshold equal to 0.5.

The output P gives us the cycle-consistent correspon-

dences of bounding boxes across all views. Figure 2 shows

an example. The bounding boxes with no matches in other

views are regarded as false detections and discarded.

3.3. 3D pose reconstruction

Given the estimated 2D poses of the same person in dif-

ferent views, we reconstruct the 3D pose. This can be sim-

ply done by triangulation, but the gross errors in 2D pose

estimation may largely degrade the reconstruction. In order

to fully integrate uncertainties in 2D pose estimation and in-

corporate the structural prior on human skeletons, we make
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use of the 3DPS model and propose an approximate algo-

rithm for efficient inference.

3D pictorial structure: We use a joint-based represen-

tation of 3D poses, i.e., T = {ti|i = 1, ..., N}, where

ti ∈ R
3 denotes the location of joint i. Given 2D images

from multiple views I = {Iv|v = 1, ..., V }, the posterior

distribution of 3D poses can be written as:

p(T |I) ∝
V
∏

v=1

N
∏

i=1

p(Iv|πv(ti))
∏

(i,j)∈ε

p(ti, tj), (12)

where πv(ti) denotes the 2D projection of ti in the v-th

view and the likelihood p(Iv|πv(ti)) is given by the 2D heat

map output by the CNN-based 2D pose detector [10], which

characterizes the 2D spatial distribution of each joint.

The prior term p(ti, tj) denotes the structural depen-

dency between joint ti and tj , which implicitly constrains

the bone length between them. Here, we use a Gaussian

distribution to model the prior on bone length:

p(ti, tj) ∝ N(‖ti − tj‖|Lij , σij), (13)

where ‖ti − tj‖ denotes the Euclidean distance between

joint ti and tj , Lij and σij denote the mean and stan-

dard deviation respectively, learned from the Human3.6M

dataset [19].

Inference: The typical strategy to maximize p(T |I) is

first discretizing the state space as a uniform 3D grid, and

applying the max-product algorithm [6, 32]. However, the

complexity of the max-product algorithm grows fast with

the dimension of the state space.

Instead of using grid sampling, we set the state space for

each 3D joint to be the 3D proposals triangulated from all

pairs of corresponding 2D joints. As long as a joint is cor-

rectly detected in two views, its true 3D location is included

in the proposals. In this way, the state space is largely re-

duced, resulting in much faster inference without sacrificing

the accuracy.

4. Empirical evaluation

We evaluate the proposed approach on three public

datasets including both indoor and outdoor scenes and com-

pare it with previous works as well as several variants of the

proposed approach.

4.1. Datasets

The following three datasets are used for evaluation:

Campus [1]: It is a dataset consisting of three people inter-

acting with each other in an outdoor environment, captured

with three calibrated cameras. We follow the same evalua-

tion protocol as in previous works [1, 3, 2, 12] and use the

percentage of correctly estimated parts (PCP) to measure

the accuracy of 3D location of the body parts.

Shelf [1]: Compared with Campus, this dataset is more

complex, which consists of four people disassembling a

shelf at a close range. There are five calibrated cameras

around them, but each view suffers from heavy occlusion.

The evaluation protocol follows the prior work and the eval-

uation metric is also 3D PCP.

CMU Panoptic [20]: This dataset is captured in a studio

with hundreds of cameras, which contains multiple people

engaging in social activities. For the lack of ground truth,

we qualitatively evaluate our approach on the CMU Panop-

tic dataset.

4.2. Ablation analysis

We first give an ablation analysis to justify the algorithm

design in the proposed approach. The Campus and Shelf

datasets are used for evaluation.

Appearance or geometry? As described in section 3.2,

our approach combines appearance and geometry informa-

tion to construct the affinity matrix. Here, we compare it

with the alternatives using appearance or geometry alone.

The detailed results are presented in Table 1.

On the Campus, using appearance only achieves compet-

itive results, since the appearance difference between actors

is large. The result of using geometry only is worse be-

cause the cameras are far from the people, which degrades

the discrimination ability of the epipolar constraint. On the

Shelf, the performance of using appearance alone drops a

lot. Especially, the result of actor 2 is erroneous, since his

appearance is similar to another person. In this case, the

combination of appearance and geometry greatly improve

the performance.

Direct triangulation or 3DPS? Given the matched 2D

poses in all views, we use a 3DPS model to infer the final

3D poses, which is able to integrate the structural prior on

human skeletons. A simple alternative is to reconstruct 3D

pose by triangulation, i.e., finding the 3D pose that has the

minimum reprojection errors in all views. The result of this

baseline method (‘NO 3DPS’) is presented in Table 1.

The result shows that when the number of cameras in

the scene is relatively small, for example, in the Campus

dataset (three cameras), using 3DPS can greatly improve

the performance. When a person is often occluded in many

views, for example, actor 2 in the Shelf dataset, the 3DPS

model can also be helpful.

Matching or no matching? Our approach first matches

2D poses across views and then applies the 3DPS model to

each cluster of matched 2D poses. An alternative approach
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Campus Actor 1 Actor 2 Actor 3 Average

Ours 97.6 93.3 98.0 96.3

Appearance 97.6 93.3 96.5 95.8

Geometry 97.4 90.1 89.4 92.3

No 3DPS 90.6 89.2 97.7 92.5

No matching 84.8 89.0 71.5 81.8

Shelf Actor 1 Actor 2 Actor 3 Average

Ours 98.8 94.1 97.8 96.9

Appearance 98.6 60.5 94.3 84.5

Geometry 97.2 79.5 96.5 91.1

No 3DPS 97.9 89.5 97.8 95.1

No matching 98.1 91.1 92.8 94.0

Table 1: Ablative study on the Campus and Shelf datasets.

Appearance and geometry denote the different types of

affinity matrices, i.e., using appearance only and using ge-

ometry only. ‘No 3DPS’ uses triangulation instead of the

3DPS model to reconstruct 3D poses. ‘No matching’ repre-

sents the 3DPS model without bounding box matching, an

approach typically used in previous methods [2, 21]. We re-

implement this approach with the state-of-the-art 2D pose

detector. The numbers are the percentage of correctly esti-

mated parts (PCP).

in most previous works [2, 21] is to directly apply the 3DPS

model to infer multiple 3D poses from all detected 2D poses

without matching. Here, we give a comparison between

them. As Belagiannis et al. [2] did not use the most recent

CNN-based keypoint detectors and Joo et al. [21] did not

report results on public benchmarks, we re-implement their

approach with the state-of-the-art 2D pose detector [8] for

a fair comparison. The implementation details are given in

the supplementary materials. Table 1 shows that the 3DPS

without matching obtained decent results on the Self dataset

but performed much worse on the Campus dataset, where

there are only three cameras. The main reason is that the

3DPS model implicitly uses multi-view geometry to link

the 2D detections across views but ignores the appearance

cues. When using a sparse set of camera views, the multi-

view geometric consistency alone is sometimes insufficient

to differentiate the correct and false correspondences, which

leads to false 3D pose estimation. This observation coin-

cides with the other results in Table 1 as well as the observa-

tion in [21]. The proposed approach explicitly leverage the

appearance cues to find cross-view correspondences, lead-

ing to more robust results. Moreover, the matching step

significantly reduces the size of state space and makes the

3DPS model inference much faster.

4.3. Comparison with state­of­the­art

We compare with the following baseline methods. Bela-

giannis et al. [1, 3] were among the first to introduce 3DPS

Campus Actor 1 Actor 2 Actor 3 Average

Belagiannis et al. [1] 82.0 72.4 73.7 75.8

Belagiannis et al. [3] 83.0 73.0 78.0 78.0

Belagiannis et al. [2] 93.5 75.7 84.4 84.5

Ershadi-Nasab et al. [12] 94.2 92.9 84.6 90.6

Ours w/o 3DPS 90.6 89.2 97.7 92.5

Ours 97.6 93.3 98.0 96.3

Shelf Actor 1 Actor 2 Actor 3 Average

Belagiannis et al. [1] 66.1 65.0 83.2 71.4

Belagiannis et al. [3] 75.0 67.0 86.0 76.0

Belagiannis et al. [2] 75.3 69.7 87.6 77.5

Ershadi-Nasab et al. [12] 93.3 75.9 94.8 88.0

Ours w/o 3DPS 97.9 89.5 97.8 95.1

Ours 98.8 94.1 97.8 96.9

Table 2: Quantitative comparison on the Campus and Shelf

datasets. The numbers are percentage of correctly estimated

parts (PCP). The results of other methods are taken from

respective papers. ‘Ours w/o 3DPS’ means using triangu-

lation instead of the 3DPS model to reconstruct 3D poses

from matched 2D poses.

model-based multi-person pose estimation and their method

was extended to the video case to leverage temporal consis-

tency [2]. Ershadi-Nasab et al. [12] is a very recent method

that proposed to cluster the 3D candidate joints to reduce

the state space.

The results on the Campus and Shelf datasets are pre-

sented in Table 2. Note that the 2D pose detector [10] and

the reID network [44] used in our approach are the released

pre-trianed models without any fine-tuning on the evaluated

datasets. Even with the generic models, our approach out-

performs the state-of-the-art methods by a large margin. In

particular, our approach significantly improves the perfor-

mance on Actor 3 in the Campus dataset and Actor 2 in the

Shelf dataset, which suffer from severe occlusion. We also

include our results without the 3DPS model but using trian-

gulation to reconstruct 3D poses from matched 2D poses.

Due to the robust and consistent matching, direct triangula-

tion also obtains better performance than previous methods.

4.4. Qualitative evaluation

Figure 4 shows some representative results of the pro-

posed approach on the Shelf and CMU Panoptic dataset.

Taking inaccurate 2D detections as input, our approach is

able to establish their correspondences across views, iden-

tify the number of people in the scene automatically, and

finally reconstruct their 3D poses. The final 2D pose esti-

mates obtained by projecting the 3D poses back to 2D views

are also much more accurate than the original detections.
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Figure 4: Qualitative results on the Shelf (top) and CMU panoptic (bottom) datasets. The first row shows the 2D bound-

ing boxes and pose detections. The second row shows the result of our matching algorithm where the colors indicate the

correspondences of bounding boxes across views. The third row shows the 2D projections of the estimated 3D poses.

4.5. Running time

We report running time of our algorithm on the se-

quences with four people and five views in the Shelf dataset,

tested on a desktop with an Intel i7 3.60 GHz CPU and a

GeForce 1080Ti GPU. Our unoptimized implementation on

average takes 25 ms for running reID and constructing affin-

ity matrices, 20 ms for the multi-way matching algorithm,

and 60 ms for 3D pose inference. Moreover, the results in

Table 2 show that our approach without the 3DPS model

also obtains very competitive performance, which is able to

achieve real-time performance at > 20fps.

5. Summary

In this paper, we propose a novel approach to multi-view

3D pose estimation that can fastly and robustly recover 3D

poses of a crowd of people with a few cameras. Com-

pared with the previous 3DPS based methods, our key idea

is to use a multi-way matching algorithm to cluster the de-

tected 2D poses to reduce the state space of the 3DPS model

and thus improves both efficiency and robustness. We also

demonstrate that the 3D poses can be reliably reconstructed

from clustered 2D poses by triangulation even without us-

ing the 3DPS model. This shows the effectiveness of the

proposed multi-way matching algorithm, which leverages

the combination of geometric and appearance cues as well

as the cycle-consistency constraint for matching 2D poses

across multiple views.
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