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Abstract

We present a new model to determine relative skill from

long videos, through learnable temporal attention modules.

Skill determination is formulated as a ranking problem,

making it suitable for common and generic tasks. However,

for long videos, parts of the video are irrelevant for assess-

ing skill, and there may be variability in the skill exhibited

throughout a video. We therefore propose a method which

assesses the relative overall level of skill in a long video by

attending to its skill-relevant parts.

Our approach trains temporal attention modules,

learned with only video-level supervision, using a novel

rank-aware loss function. In addition to attending to task-

relevant video parts, our proposed loss jointly trains two

attention modules to separately attend to video parts which

are indicative of higher (pros) and lower (cons) skill. We

evaluate our approach on the EPIC-Skills dataset and ad-

ditionally annotate a larger dataset from YouTube videos

for skill determination with five previously unexplored tasks.

Our method outperforms previous approaches and classic

softmax attention on both datasets by over 4% pairwise ac-

curacy, and as much as 12% on individual tasks. We also

demonstrate our model’s ability to attend to rank-aware

parts of the video.

1. Introduction

Skill determination is the problem of assessing how well

a subject performs a given task. Automatic skill assessment

from video will enable us to explore the wealth of online

videos capturing daily tasks, such as crafts and cooking, for

training humans and intelligent agents - which video should

a robot imitate to prepare you scrambled eggs for breakfast?

For long videos, previous approaches make a naive as-

sumption; the same level of skill is exhibited throughout the

video, and thus skill can be determined in any (or all) of its

parts [7, 23, 29, 38, 40]. Take for example the task of ‘ty-

ing a tie’; draping the tie around the neck or straightening

the tie may be uninformative when determining a subject’s

skill, however the way the subject crosses one side over and

Figure 1. Rank-aware attention for skill ranking. We determine

a video’s rank by using high (green) and low (red) skill attention

modules, which determine each segment’s influence to the rank.

Both modules are fused (orange) for an overall skill assessment of

the video. Line opacity indicates the attention value for a segment

and the line thickness indicates the score.

pushes the tie into the loop are key. Additionally, there may

be variation in skill across the video: when comparing two

videos, one subject may perform better at neatly crossing

the tie but worse at pulling through the loop.

Accordingly, we consider skill determination to be a

fine-grained video understanding problem, where it is im-

portant to first localize relevant temporal regions to distin-

guish between instances [25]. We target skill determination

for common tasks, where ranking videos [2, 7, 21] is more

suitable than estimating an objective score [23, 27, 40]. For

many tasks, objective scores would be hard to articulate or

find expert bodies to certify. Instead, crowd-sourcing can

obtain a ranking on any task, which is consistent through

consensus of judgment. Therefore, we devise a Siamese

CNN over temporal segments, including attention modules

adapted from [22], which we train to be rank-aware using

a novel loss function. This is because relevance may differ

depending on the skill displayed in the video - e.g. mistakes

may not appear in higher-ranked videos. When trained with
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our proposed loss, these modules specialize to separately

attend to parts of the video informative for high skill or sub-

standard performance (see Fig. 1).

While temporal attention has previously been used to

indicate relevance in long videos [22, 25], no prior work

has proposed to learn rank-aware temporal attention. Our

main contribution is that we address the challenges of fine-

grained video ranking by demonstrating the need for rank-

aware temporal attention and propose a model to learn this

effectively. We additionally contribute a new skill determi-

nation dataset, by collecting and annotating 5 tasks from

YouTube, each containing 100 videos. In total, our dataset

is 26 hours of video, twice the size of existing skill determi-

nation datasets, with videos up to 10 minutes in length. We

outperform our previous effort as well as alternative atten-

tion baselines on EPIC Skills [7] and our newly collected

dataset, BEST, and present a comprehensive evaluation of

the contribution of rank-aware attention.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the related work. We introduce our proposed

method in Section 3 and our new dataset in Section 4. Sec-

tion 5 presents quantitative and qualitative results of our

method, followed by the conclusion in Section 6.

2. Related Work

In this section, we first review skill determination works

in video, both task-specific and widely applicable methods.

We then review works proposing attention modules, specif-

ically temporal attention, for a variety of problems.

Skill Determination. Several seminal works attempted

skill determination in video [13, 14, 37]. Gordon [13]

was the first to explore the viability of automated skill as-

sessment from videos, as well as identifying appropriate

tasks for analysis, with a case study on skill assessment

of gymnastic vaults from skeleton trajectories. Despite the

importance of automatic skill assessment from video for

training and guidance [5, 1], following works remain lim-

ited [2, 7, 23, 27, 29, 35, 38, 40, 41]. These works demon-

strate good performance by focusing on features specific to

the task, such as skeleton trajectory in diving [27] or entropy

between repeated sutures in surgery [40]. Parallel efforts in-

stead perform skill determination from non-visual sensors

such as inertial measurement units [8, 9, 21, 33, 39].

Several datasets have been introduced in prior work

[7, 11, 23, 27, 35]. MIT Dive [27] and UNLV datasets [23]

only include short video clips (< 5s), whilst the remain-

ing [11, 7, 27] are small scale datasets. Fis-V [35] con-

tains 500 figure skating videos, however this is not publicly

available. We test on our previous dataset, EPIC-Skills [7],

as this includes the JIGSAWS [11] dataset re-annotated for

ranking alongside 3 other tasks. We also present a new

dataset for skill assessment from longer videos (avg length

= 188s), consisting of 500 videos across 5 daily-living tasks.

To assess skill in long videos, different approaches have

been proposed. One is to first localize pre-selected events

specific to the task [2], such as shooting or passing the

ball in a basketball game. Alternatively, global features

from the entire video have been used [27, 29, 38, 40], such

as skeleton trajectories [27], features averaged across the

video [23], or from randomly sampled segments in our pre-

vious work [7]. The only work to use attention in long

videos is [35] for figure-skating. They use a self-attentive

LSTM and a multi-scale skip LSTM to learn local (techni-

cal movements) and global (performance of players) scores

respectively. This method uses a regression framework

specifically for predicting the components of figure skating

scores, not appropriate for common tasks.

We differ from all previous works in that we train a

model to attend to skill-relevant parts of a video; learnable

thus applicable to any task. We use a convolutional network

with temporal segments and propose a novel rank-aware

loss function. We do not use LSTMs due to the reported

issues with maintaining information over longer videos [30,

32], and inferior performance compared to non-recurrent

networks in many sequence-based tasks [3, 12, 32].

Attention Modules. Attention is increasingly used in fine-

grained recognition, as intelligently weighting input is key

to distinguishing between similar categories. This is a com-

mon problem in image recognition [10, 31] where atten-

tion can localize discriminative attributes in the object of

interest. For instance, Fu et al. [10] present RA-CNN to

recursively zoom into the most discrimative image region

with an inter-scale ranking loss. Singh et al. [31] adapt the

spatial transformer network [15] into a Siamese network to

perform relevant attribute ranking. Similarly, in person re-

identification from video, attention [16, 19, 34] is utilized to

select the frames with the best view of identifying attributes.

Attention has also been adopted in the video domain for

action recognition [25, 26] and localization [17, 28, 22, 24],

including for weakly supervised localization from video-

level labels [22, 24]. Pei et al. [25] combine an attention

module with a gated recurrent network to classify actions

in untrimmed video. Piergeovanni et al. [26] present tem-

poral attention filters to discover latent sub-events in activ-

ities. Nguyen et al. [22] use attention filters within a CNN

to identify a sparse set of video segments which minimize

a video’s classification loss. They use this in combination

with class-specific attention from the activations to localize

target actions. We build on the class-agnostic attention fil-

ters used in this work for our rank-aware attention (Sec 3.3).

Using class-specific attention is a common technique in

existing temporal attention works [22, 24]. In this work, we

propose the first model to train rank-specific (which we call

rank-aware) attention, and demonstrate that it outperforms

rank-agnostic attention and existing methods.
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Figure 2. Rank-Aware Attention Network. Given a ranked pair of videos (pi, pj) where pi exhibits higher skill: each video is uniformly

split into segments. Extracted features (I3D) are passed into a pair of attention modules to produce video-level representations for the

ranking functions (FC layers). Each ranking function produces a score s+ (green) or s− (red). Additionally, a uniformly weighted video

representation produces a third ranking score u (blue). Three types of losses are defined: the ranking loss maximizes the margin (green-

to-green, red-to-red, blue-to-blue) between the pair of ranked videos, the disparity loss ensures attention branches outperform uniform

(green-to-blue, red-to-blue) and the final loss optimizes the attention modules to become rank-aware (green-to-red).

3. Rank-Aware Attention Network

In this section, we re-formulate the skill determination

problem in long videos. We then detail the combination of

training losses used to achieve rank-aware attention.

3.1. Problem Formulation

We propose a pairwise ranking supervised learning ap-

proach for skill determination. In this setup the training

set comprises of all pairs of videos, P , where each pair

(pi, pj) ∈ P , has been annotated such that video pi dis-

plays more skill than pj . Such pairwise annotations can

be acquired for any task using crowd-sourcing (see Sec. 4).

The aim is then to learn a ranking function f(·) for an indi-

vidual task such that

f(pi) > f(pj) ∀(pi, pj) ∈ P (1)

For long videos, previously we assumed these pair-

wise skill annotations can be propagated to any part of the

video [7]. Given pit is the tth video segment, t ∈ [0, T ),
skill annotations were propagated so that,

f(pit) > f(pjt) ∀t ∈ [0, T ); (pi, pj) ∈ P (2)

Another approach to deal with long videos [23, 36], is to

use a uniform weighting of feature vectors to learn a video

level ranking. This assumes all parts of the video are equally

important for skill assessment, i.e. u(pi) > u(pj) where,

u(pi) = f(
1

T

∑

t

pit) (3)

In this work, we believe these assumptions do not hold.

First, some parts of the video may not exhibit any differ-

ence in skill, or may even show reversed ranking - where

the overall better video has segments exhibiting less skill.

Second, non-uniform pooling should better represent the

video’s overall skill by increasing the weight for segments

more pertinent to a subject’s skill. Third, comparing cor-

responding video chunks (pit, pjt) assumes tasks are per-

formed in a set order, at the same speed. We deviate from

these assumptions, and instead aim to jointly learn temporal

attention α(·), alongside ranking function r(·) such that

s(pi) > s(pj); s(pi) = r(
∑

t

α(pit)pit) (4)

While α(·) is a standard attention module for relevance,

we observe that the segments most crucial to determining

skill may differ depending on the subject’s skill; a low-skill

subject may perform certain actions (e.g. mistakes) not per-

formed by a high-skill subject and vice-versa. Therefore,

we propose to train two general attention modules to pro-

duce scores s+, s−, for all pairs (pi, pj) ∈ P , such that:

s+(pi) > s+(pj); s−(pi) > s−(pj); s+(pi) ≫ s−(pj) (5)

In particular, s+(pi) ≫ s−(pj), encourages the two at-

tention modules to diverge, such that one attends to seg-

ments which display a high skill (α+) and the other to low

skill (α−), along with differing ranking functions g, h:

s+(pi) = g(
∑

t

α+(pit)pit) (6)

s−(pi) = h(
∑

t

α−(pit)pit) (7)

3.2. Rank­Aware Attention and Overall Network

We show our overall architecture in Fig. 2. The Siamese

network takes a video pair (pi, pj) and splits each into T
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segments of uniform length. The features from all seg-

ments {pit} are then passed to three branches. Within each

branch, we first obtain a video level representation from all

segments either weighted by our learned attention functions

α+(·) and α−(·) (Sec. 3.3), or through uniform weighting
1
T

∑T

t pit. Three ranking functions are then learned (one

per branch) g(·), h(·) and f(·) with a fully connected (FC)

layer to produce corresponding scores per video s+ (Eq. 6),

s− (Eq. 7) and u (Eq. 3). The FC layers are separate for each

weighting function, but shared by both sides of the Siamese

network. These scores are then evaluated by different loss

types: ranking loss, disparity loss and rank-aware loss, each

of which is explained below.

For each branch, a margin ranking loss function ensures

pi is ranked higher that pj ,

L+
rank =

∑

(pi,pj)∈P

max(0,m− s+(pi) + s+(pj)) (8)

where s+(pi) is the final score of video pi from the high-

skill attention module and m is a constant margin. The

ranking loss is defined similarly for the low-skill and uni-

form weighting branches:

L−
rank =

∑

(pi,pj)∈P

max(0,m− s−(pi) + s−(pj)) (9)

Lu
rank =

∑

(pi,pj)∈P

max(0,m− u(pi) + u(pj)) (10)

While the need for uniform weighting may not be obvious,

we empirically noted that ranking using the attention mod-

ule frequently falls into local-minima during training. The

learned attention weights for such a local-minimum per-

form worse than uniform weighting. We avoid this by in-

troducing an attention disparity loss, which explicitly en-

courages an attention branch to outperform uniform:

L+
disp =

∑

(pi,pj)∈P

max(0,m2 − (s+(pi)− s+(pj))

+ (u(pi)− u(pj))) (11)

Here, m2 is a separate margin from m specific to this loss.

For a video pair (pi, pj), this loss encourages the difference

between scores (s+(pi), s
+(pj)) to be greater than the dif-

ference between scores (u(pi), u(pj)), thereby encouraging

the attention module to produce video-level representations

better at distinguishing between the skill displayed in the

two videos than uniform weighting. This loss alone could

instead cause the performance of f(·) to degrade, however

by jointly optimizing with Eq. 10 this is avoided. An anal-

ogous loss L−
disp is defined for the low-skill branch.

Using the loss functions defined so far, the two learned

attention modules α+(·), α−(·) are indistinguishable. They

attend to skill-relevant segments to form video-level repre-

sentations and g(·) and h(·) perform the ranking. We finally
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Figure 3. The attention module consists of K attention filters,

each outputting a scalar weight per segment, used to produce the

weighted video-level feature.

optimize these filters to achieve the desired response with

our proposed rank-aware loss:

LrAware =
∑

(pi,pj)∈P

max(0,m3 − (s+(pi)− s−(pj))

+ (u(pi)− u(pj))) (12)

With Eq. 12, we ensure s+ attends to higher skill parts of the

better video pi while s− attends to video parts with lower

skill from pj . To optimize for rank-aware attention, we use

a larger margin m3 compared to single branches m2. The

overall training is then conducted by combining the losses:

LR =
∑

i={+,−,u}

Li
rank +

∑

i={+,−}

Li
disp + LrAware (13)

As training iterates through pairs in P , the same video

will be considered higher skill in one pair and lower in an-

other (e.g. (pi, pj) ∈ P, (pj , pk) ∈ P ). The network ac-

cordingly optimizes the shared weights so as to learn rank-

aware attention modules.

When testing the network, a single video is evaluated

and its rank is assigned through its ranking score:

R(pi) = s+(pi) + s−(pi) (14)

Note that in training we learn s+(·) and s−(·) such that

s+(pi) > s+(pj) and s−(pi) > s−(pj) which implies

s+(pi) + s−(pi) > s+(pj) + s−(pj). Although α−(·) at-

tends to low-skill segments, the overall score s− reflects the

correct ranking of the videos. We do not include u(pi) as

the attention alone should be sufficient (shown in Fig. 5).

3.3. Multi­filter Attention Module

Our attention modules α+(·) and α−(·) each take a set

of T video segments and learn a weighting of these seg-

ments informative for skill ranking. As the attention mod-

ules have the same structure, we will refer to the generic

attention module α(·) for simplicity. We show the architec-

ture of the attention module in Fig. 3. The attention mod-

ule consists of K filters, each comprised of two FC layers,
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the first followed by a ReLU activation function, the second

followed by a softmax. This is based on the attention filter

used in [22] with a softmax activation instead of sigmoid.

Filters are combined to achieve segment level attention:

α(pit) =

K
∑

k=1

αk(pit) (15)

where αk refers to the kth attention filter for the attention

module α(·), and importantly
∑T

t=1 αk(pit) = 1 for each

of the K filters. We include multiple attention filters to en-

courage a module to attend to multiple skill-relevant sub-

tasks in the long videos; a single filter typically focuses on

only one element of the task [20]. To regularize the K fil-

ters, we use a diversity loss. We define the K x T attention

matrix relating to video pi as:

Ai =











α1(pi1) α1(pi2) . . . α1(pit)
α2(pi1) α2(pi2) . . . α2(pit)

...
...

. . .
...

αk(pi1) αk(pi2) . . . αk(pit)











(16)

and use the following diversity loss:

Ldiv =
∑

(pi,pj)∈P

‖AiA
T
i − I‖2F + ‖AjA

T
j − I‖2F (17)

where I is the identity matrix and ‖ · ‖2F denotes the Frobe-

nius norm. Similar losses have been used successfully in

other applications, such as text embedding [18] - here we

use it to regularize temporal attention in video. In our net-

work, this loss encourages each filter to learn a different

aspect of the video. Without such a loss, all filters attend

to the same most discriminative part in the video, rendering

more than one filter redundant. This loss also encourages

filters to be sparse and pick the few most informative seg-

ments. We assess the effect of multiple filters in Section 5.

Note that the diversity loss is within an attention module;

diversity is not enforced between modules. Attentions are

allowed to overlap and do so when the segment is relevant

for different skill levels. Our overall training loss is:

LR =
∑

i={+,−,u}

Li
rank+λ

∑

i={+,−}

Li
div+

∑

i={+,−}

Li
disp+LrAware (18)

4. Tasks and Datasets

We evaluate our model on our previous dataset, EPIC-

Skills [7]. It consists of four distinct tasks: surgery (knot-

tying, needle passing, and suturing) from [11], dough-

rolling from [6] as well as self-recorded drawing (two draw-

ings) and chopstick-using. Every (sub-)task consists of up

to 40 videos, with pairwise annotations indicating the rank-

ing of videos in a pair. A limitation of this dataset is that

each task is collected in a single environment with the same

Task #Videos #Pairs %Pairs Av. Length (s)

E
P

IC
-S

k
il

ls Chopstick Using 40 536 69% 46 ± 17

Dough Rolling 33 181 34% 102 ± 29

Drawing 40 247 65% 101 ± 47

Surgery 103 1659 95% 92 ± 41

B
E

S
T

Scramble Eggs 100 2112 43% 170 ± 113

Tie Tie 100 3843 77% 81 ± 47

Apply Eyeliner 100 3743 76% 122 ± 105

Braid Hair 100 3847 78% 179 ± 91

Origami 100 3237 65% 386 ± 193

Table 1. Comparing EPIC-Skills with BEST: #videos, #of pairs

and average and standard deviation of video length.

perspective and only minor variations in the background.

We therefore collect and annotate a new skill determination

dataset over twice as large, from online videos and thus with

a variety of individuals, environments, and viewpoints.

4.1. BEST Dataset

We collect and annotate the Bristol Everyday Skill Tasks

(BEST) 2019 dataset consisting of five skill tasks with 100

videos per task, publicly available1. This dataset gives us

an opportunity to test on a larger variety of skill tasks with

more and longer videos per task from varied environments.

Video Collection. We selected five tasks which can be com-

pleted using various methods and may be challenging for

novices: scrambling eggs, braiding hair, tying a tie, making

an origami crane and applying eyeliner. The tasks selected

are deliberately varied in their content and also differ from

the tasks in EPIC-Skills as this allows a more thorough test-

ing of the proposed model.

To obtain 100 videos per task, we first retrieve the top-

400 videos from YouTube using the task name as a query.

We then ask AMT workers to answer questions about each

video to determine its suitability for our dataset. These en-

sure the selected videos contain the relevant task, are good

quality videos, contain a clear view of the task and the com-

plete performance of the task with minimal edits. We also

ask AMT workers for their initial opinion of the skill of the

person performing the task: ‘Beginner’, ‘Intermediate’ or

‘Expert’. This initial labelling ensures we select sufficient

beginner videos before pairwise annotations.

As only a portion of the YouTube video may contain the

desired task, we annotate the start and end of the relevant

activity via AMT, using the same approach for annotations

from [4]. We use the agreement of 4 workers.

Pairwise Annotation. As in [7], we ask AMT workers to

watch videos in a pair simultaneously and select the video

1https://github.com/hazeld/rank-aware-

attention-network
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which displays more skill. The pair is taken as ground-truth

only if all four workers agree on a pair’s ordering. It is un-

necessary to annotate all possible pairs. Instead, we anno-

tate 40% of the possible pairings, where each video appears

in an equal number of pairs. We remove the need for ex-

haustive annotation by utilizing the transitive nature of skill

ranking to obtain pairs outside of the original 40%. We then

perform a second round of annotations for pairs of a similar

rank, to ensure our dataset contains challenging pairs.

The number and percentage of pairs per task is shown

in Table 1, along with the average video length per task.

Our dataset is considerably larger than our previous effort

EPIC-Skills in terms of both videos and annotated pairs.

5. Experiments

We first describe the implementation details of our net-

work. We then present results on the two datasets alongside

baselines and analyze the contribution of the various com-

ponents in our method with an ablation study.

5.1. Implementation Details

We uniformly sample 400 stacks of 16 frames, at 10fps,

for each video. Images are re-scaled to have a height of 256

pixels then centre cropped to 224×224. We extract features

using I3D, pre-trained on Kinetics [3]. To prevent overfit-

ting we augment the features by adding noise N (0, 0.012)
per dimension as in [22]. All models are trained using the

Adam optimizer with a batch size of 128 and learning rate

of 10−4 for 2000 epochs. For stable training, we itera-

tively optimize the network’s parameters. We first fix the

attention module parameters and optimize the ranking FC

layer weights using Lrank losses (Eq 8, 9, 10). We then

fix the ranking FC layer weights and optimize the attention

module weights, using the remaining losses (Ldiv , Ldisp

and LrAware). In all experiments, we set the weight of λ

(Eq. 18) to 0.1, m1 = 1 (Eq. 8), m2 = 0.1 (Eq. 11) and

m3 = 0.3 (Eq. 12).

5.2. Quantitative Results

Evaluation Metric We evaluate tasks individually and re-

port pairwise accuracy (% of correctly ordered pairs) and

mean task accuracy for each dataset. For EPIC-Skills we

use the four-fold cross validation training and test splits

provided with the dataset [7]. For BEST we use a single

75%:25% split per task (provided with release), as the num-

ber of pairs is larger. Our test set consists exclusively of

pairs where neither video is present in the training set.

Baselines and Attention. In Table 2 we show the results of

our method in comparison with different baselines.

We outperform our previous work [7] by 4.3% and 5.4%

on EPIC-Skills and BEST respectively. We also use four

baselines for various temporal attention approaches. The

Method EPIC Skills BEST

Who’s Better [7] 76.0 75.8

Last Segment 76.8 61.0

Uniform Weighting 78.8 73.6

Softmax Attention 74.5 72.3

STPN [22] 74.3 70.0

Ours (Rank Aware Attention) 80.3 81.2

Table 2. Results of our method in comparison to baseline. Our

final method outperforms every baseline on both datasets.

first temporal attention baseline selects only the last seg-

ment of the video as skill-relevant. It could be argued that

this segment, displaying the final outcome of the task, is

sufficiently informative to attend to across tasks, however

this performs particularly poorly on BEST. We also use uni-

form weighting and softmax attention as temporal atten-

tion baselines. For softmax attention we use our method

with a single attention branch only optimized by Lrank.

Importantly, our proposed method shows an improvement

over both uniform weighting and standard softmax atten-

tion, particularly for BEST with longer videos. Interest-

ingly, we see the inclusion of softmax attention decreases

the accuracy for both datasets from a naive uniform weight-

ing of segments (-4.3% and -0.7%). Although softmax at-

tention achieves higher accuracy than uniform for several

tasks, we found softmax attention to be highly inconsis-

tent. To compare to existing temporal attention methods,

we adapt the class agnostic attention from Sparse Tempo-

ral Pooling Network (STPN) [22] into a pairwise ranking

framework. While this method works well for action local-

ization, in a ranking framework it performs worse than both

our method and uniform sampling.

In general the baselines struggle on BEST as they are af-

fected by the lengthy videos and increase in irrelevant parts,

while last segment is affected by variations in environment

and viewpoint. By focusing on key segments indicative of

skill, our method is able to combat these difficulties and

gain a larger increase on this dataset.

Ablation Study. In Fig. 4 we perform a per-task abla-

tion study, testing the individual contributions of the com-

ponents of our loss function (Eq. 13). The inclusion

of the diversity loss increases the result by 2% for both

datasets. It is particularly useful for Drawing (+7.3%) and

Tie Tie (+6%), as videos in these tasks consistently have

many skill-relevant segments.

From Fig. 4 we see training the attention module along-

side the uniform weighting with the disparity loss improves

the results further. Ldisp encourages the network to learn

attention better at discriminating between videos than the

uniform weighting and decreases the sensitivity to initial-

7867



Figure 4. Ablation study of loss functions on all tasks. In general each additional loss term gives an improvement, the most significant

improvement being the rank-aware loss which gives an average 5% improvement for BEST.

Figure 5. Contribution of different branches in the network. The addition of L+

disp and L−

disp cause both the high and low skill branches to

perform better than uniform in most tasks. These branches offer complementary information causing an improvement in our final result.
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Figure 6. We test the number of filters (K) for all tasks. The num-

ber of filters causes a clear increase in many tasks, with the major-

ity of tasks peaking at K = 3

ization. In tasks like Chopstick Using and Scramble Eggs,

where attention optimized with only the ranking loss per-

forms similarly to uniform, this can help significantly.

Our final rank-aware loss further improves the results,

particularly for BEST (average improvement of 5%). This

is especially true for Scramble Eggs and Apply Eyeliner

(+10.4% and +8.8% respectively). These tasks contain

more instances of subtasks specific to subjects with higher

or lower skill, as can be seen in Section 5.3.

We note three exceptions to this trend: Drawing, Surgery

and Origami. Surgery maintains a similar score throughout

the ablation test and has the lowest final score of all tasks.

We believe this is due to the I3D features not being able to

capture the difference between the fine-grained detail of sur-

gical motions of different abilities. Drawing and Origami

both drop with the addition of Ldisp. In Drawing the atten-

tion branch struggles to be better at separating videos than

the uniform branch, indicating most segments are relevant

for determining skill. In Origami, the uniform weighting

has poor performance due to the visual subtlety of placing

neat folds in the paper. Therefore, optimizing the attention

branch to be better than uniform does not improve training.

Figure 7. We test correlation of high and low skill filters for all

tasks, to check they attend to different video segments.

Branch Contribution. Having trained our model with the

overall loss, we now assess skill ranking using single or

multiple branch scores. From Fig. 5 we see we are able

to learn high and low skill branches which are both more

informative than uniform. This is particularly true for tasks

such as Chopstick Using and Scramble Eggs which see little

improvement with attention until the disparity loss is intro-

duced (Fig. 4). Within tasks, the performance of high and

low skill branches can vary. We can see this for Tie Tie,

with the low-skill branch performing best (+4.3%). Here,

the presence of hesitation in lower-ranked videos proves ef-

fective for skill ranking.

The fusion of high and low skill branches further im-

proves the result (EPIC-Skills +2.9% and BEST +3.2%). In

many tasks the branches offer complementary information,

as each branch can attend to separate video segments, spe-

cific to either high or low skill (see Sec 5.3).

Number of Filters. In Fig. 6 we test the effect of K, the

number of filters per attention module (Sec. 3.3). The previ-

ous sections report results using K=3. This shows a small

improvement over one filter in the majority of tasks. How-

ever, with K>3 the accuracy does not increase further, as

additional less-informative segments are included.
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Figure 8. Attention values of the high-skill (green) and low-skill (red) modules with the corresponding video segments for examples from

‘Scramble Eggs’ and ‘Tie Tie’. The intensity of the color indicates the attention value. We show the predicted ranking from both branches.

We also compared two rank-aware attention modules,

with 3 filters each, to a single standard (i.e. rank-agnostic)

module containing 6 attention filters. Results demonstrate

a clear advantage of our rank-aware modules. For BEST,

81.2% accuracy drops to 75.0% without our novel loss.

Filter Correlation. To ensure our high and low skill filters

are attending to different video segments we plot the cor-

relation of pairs of filters between high and low attention

modules, averaged over all videos for BEST. From Fig. 7

we can see most filter pairs have low correlation, demon-

strating these are attending to different segments. There are

some cases where filters have a higher correlation (Braid

Hair at ρ = 0.8) as it can be helpful for at least one of

the high and low skill filters to attend to the same segments

when relevant at all levels of skill.

5.3. Qualitative Results

In Fig. 8 we show attention weights with corresponding

frames for the Scramble Eggs and Tie Tie tasks. Firstly, the

figure shows we are able to filter out irrelevant segments

using attention, for instance turning on the stove-top and

opening the cupboard in ‘Scramble Eggs’. Secondly, we

can see our rank-aware attention allows the modules to fo-

cus on different aspects of the video. In the Scramble Eggs

task the high-skill module consistently focuses on whisking

the eggs and stirring the mixture in the pan, while the low-

skill module attends to adding milk/cream to the eggs and

pouring. For ‘Tie Tie’ the high skill module gives a strong

weighting to segments displaying a tight inner knot and

straightening the tie before folding across, while the low-

skill module focuses mainly on hesitation and repetition.

We also observe cases where the filters attend to segments

seemingly irrelevant to skill; in Scramble Eggs the low-skill

module attends to segments containing bread. Video results

are included in the supplementary material.

6. Conclusion

In this paper we have presented a new model for rank-

aware attention, trained using a novel loss function. Our

rank-aware loss enables us to learn the most informative

segments to attend to in relation to the skill shown in the

video. We also use the disparity loss to directly optimize the

attention to pick more informative segments than the uni-

form distribution, solving the instability in optimizing the

standard softmax attention in ranking. We have tested this

method on two datasets, one of which we introduce in this

paper, and show our method achieves state-of-the-art results

for skill determination, with an average performance of over

80% in both datasets. Future work involves exploring appli-

cations of the attention segments to improve people’s skill

in a task, as well as transfer learning to unseen tasks.
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Luca Zappella, Benjamın Béjar, David D Yuh, et al. JHU-

ISI Gesture and Skill Assessment Working Set (JIGSAWS):

A Surgical Activity Dataset for Human Motion Modeling. In

MICCAI Workshop: M2CAI, volume 3, page 3, 2014. 2, 5

[12] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,

and Yann N Dauphin. Convolutional Sequence to Sequence

Learning. arXiv preprint arXiv:1705.03122, 2017. 2

[13] Andrew S Gordon. Automated Video Assessment of Human

Performance. In Proceedings of AI-ED, pages 16–19, 1995.

2

[14] Winfried Ilg, Johannes Mezger, and Martin Giese. Estima-

tion of Skill Levels in Sports Based on Hierarchical Spatio-

Temporal Correspondences. In Joint Pattern Recognition

Symposium, pages 523–531. Springer, 2003. 2

[15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial Transformer Networks. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 2017–2025, 2015. 2

[16] Shuang Li, Slawomir Bak, Peter Carr, and Xiaogang Wang.

Diversity Regularized Spatiotemporal Attention for Video-

Based Person Re-Identification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

June 2018. 2

[17] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain,

and Cees GM Snoek. VideoLSTM Convolves, Attends and

Flows for Action Recognition. Computer Vision and Image

Understanding, 166:41–50, 2018. 2

[18] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos,

Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. A

Structured Self-Attentive Sentence Embedding. In Proceed-

ings of the International Conference on Learning Represen-

tations (ICLR), 2017. 5

[19] Xihui Liu, Haiyu Zhao, Maoqing Tian, Lu Sheng, Jing Shao,

Shuai Yi, Junjie Yan, and Xiaogang Wang. HydraPlus-Net:

Attentive Deep Features for Pedestrian Analysis. In The

IEEE International Conference on Computer Vision (ICCV),

October 2017. 2

[20] Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao

Liu, and Shilei Wen. Attention Clusters: Purely Attention

Based Local Feature Integration for Video Vlassification.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018. 5

[21] Anand Malpani, S Swaroop Vedula, Chi Chiung Grace Chen,

and Gregory D Hager. Pairwise Comparison-Based Objec-

tive Score for Automated Skill Assessment of Segments in a

Surgical Task. In International Conference on Information

Processing in Computer-Assisted Interventions, pages 138–

147. Springer, 2014. 1, 2

[22] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han.

Weakly Supervised Action Localization by Sparse Temporal

Pooling Network. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 1, 2, 5,

6

[23] Paritosh Parmar and Brendan Tran Morris. Learning to Score

Olympic Events. In Computer Vision and Pattern Recogni-

tion Workshops (CVPRW), 2017 IEEE Conference on, pages

76–84. IEEE, 2017. 1, 2, 3

[24] Sujoy Paul, Sourya Roy, and Amit K. Roy-Chowdhury. W-

TALC: Weakly-supervised Temporal Activity Localization

and Classification. In European Conference on Computer

Vision (ECCV), September 2018. 2

7870



[25] Wenjie Pei, Tadas Baltrusaitis, David MJ Tax, and Louis-

Philippe Morency. Temporal attention-gated model for ro-

bust sequence classification. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE,

July 2017. 1, 2

[26] AJ Piergiovanni, Chenyou Fan, and Michael S Ryoo. Learn-

ing Latent Sub-events in Activity Videos Using Temporal

Attention Filters. In Proceedings of the AAAI Conference

on Artificial Intelligence, 2017. 2

[27] Hamed Pirsiavash, Carl Vondrick, and Antonio Torralba. As-

sessing the Quality of Actions. In European Conference on

Computer Vision, pages 556–571. Springer, 2014. 1, 2

[28] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov.

Action Recognition using Visual Attention. arXiv preprint

arXiv:1511.04119, 2015. 2

[29] Yachna Sharma, Vinay Bettadapura, Thomas Plötz, Nils
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