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Abstract

Cross-modal transfer is helpful to enhance modality-

specific discriminative power for scene recognition. To

this end, this paper presents a unified framework to inte-

grate the tasks of cross-modal translation and modality-

specific recognition, termed as Translate-to-Recognize Net-

work (TRecgNet). Specifically, both translation and recog-

nition tasks share the same encoder network, which allows

to explicitly regularize the training of recognition task with

the help of translation, and thus improve its final general-

ization ability. For translation task, we place a decoder

module on top of the encoder network and it is optimized

with a new layer-wise semantic loss, while for recogni-

tion task, we use a linear classifier based on the feature

embedding from encoder and its training is guided by the

standard cross-entropy loss. In addition, our TRecgNet al-

lows to exploit large numbers of unlabeled RGB-D data to

train the translation task and thus improve the representa-

tion power of encoder network. Empirically, we verify that

this new semi-supervised setting is able to further enhance

the performance of recognition network. We perform exper-

iments on two RGB-D scene recognition benchmarks: NYU

Depth v2 and SUN RGB-D, demonstrating that TRecgNet

achieves superior performance to the existing state-of-the-

art methods, especially for recognition solely based on a

single modality.

1. Introduction

Recently computer vision community has concentrated

on applying convolutional neural networks (CNN) [15] to

various vision tasks [10, 22, 8, 28, 30, 29]. Meanwhile, the

rapid development of cost-affordable depth sensors (e.g.,

Microsoft Kinect and Intel Realsense) have triggered more

attractions to revisit computer vision problems using RGB-

D data, such as object detection [7, 34], image segmenta-

tion [19], activity recognition [36, 31].

In this paper, we focus on enhancing the modality-

specific network’s representative power of RGB-D scene

recognition, the goal of which is to accurately classify the
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given scene images with aligned color and depth informa-

tion. It is a highly challenging classification task on un-

derstanding RGB-D scene data on one hand for its essen-

tially diverse combination of cluttered objects, bounding in

different semantic representations for indoors scenes, and

importantly on the other hand for the data scarcity prob-

lem. The amount of the largest RGB-D dataset [25] is still

order-of-magnitude insufficient to provide enough labeled

RGB-D data. Since pre-trained RGB CNN models are eas-

ily adapted for new RGB data, recent works have focused

on learning effective depth features. A few methods [27, 40]

directly use the pre-trained RGB CNN weights to fine tune

a depth CNN, but only limited improvements are given.

[7] directly transferred semantic supervision from labeled

RGB images to unlabeled depth images, which has limits

on transform direction.

This paper tackles major challenges mentioned above

from two aspects: 1) We propose to enhance the discrim-

inative power for both RGB and depth’s single-modal net-

works by a cross-modal translation procedure, and 2) we

enhance training data sampling with the generated images

of high semantic relevance for the classification task. The

basic idea is that the modality translation enhances the de-

scription power of the encoding network as it forces the

RGB/depth data to infer information towards its comple-

mentary modality. RGB→ depth translation network could

improve the representation ability of RGB scene network,

by learning generating depth data which encodes better

on geometric and appearance invariant cues, while depth

scene network get benefited learning color and texture cues

through depth→ RGB translation. Meanwhile, this transla-

tion process produces new cross-modal data of high quality

for the other modality data’s classification task.

Specifically, we propose to couple an arbitrary modality-

specific scene Recognition network with a modal-

ity Translation network trained in a multi-task manner,

termed as TRecgNet; both branches share the same Encod-

ing Network (E Net), as shown in Figure 1. The effective-

ness of TRecgNet that boost modality-specific description

power essentially lies on the effect of modality translation,

i.e., how the RGB-D data could effectively learn the seman-

tic similarity from the paired data to boost the jointly learn-
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Figure 1. TRecgNet. Cubes are feature maps with dimensions and size represented as #features@height∗width. The pipeline consists

of two parallel streams: 1) Recognition Branch is for recognizing scene images, in which E → C Nets are updated using supervised

classification loss. 2) Translation Branch aims at constructing paired complementary-modal data of input through E → D Nets. The

translation procedure is constrained by semantic supervision S Net. We jointly train the two branches in an end-to-end manner. In the test

phase, we only use the Recognition Branch.

ing task. We do not simply use the pixel-level Euclidean

distance loss as the supervision like many reconstruction

works did [35]. We argue that this difference is unreliable,

especially for RGB → depth translation, since the ground

truth images of depth data usually exist many outliers be-

cause of the equipment’s limitations and operation errors.

Also, low level pixel-wise similarity fails to provide any se-

mantic relevance. Instead, we perform the translation pro-

cess using pre-trained semantic model, which is inspired by

the style transfer related works [3, 13, 2]. It has been shown

that CNNs trained with sufficient labeled data on specific vi-

sion tasks, such as object classification, has already learned

to extract semantic content representations. This general-

ized ability is not limited to specific datasets or tasks. In

these works, authors use the perceptual constraint from one

specific layer, usually conv4 x of VGG model, to keep the

”rough” content of the image when transforming it to an-

other style. In contrast, we propose to leverage perceptual

loss from multiple layers supervising the translation pro-

cess, for a simple yet effective intuition that higher layer

tends to preserve the semantic content while lower one does

better in capturing the detailed information, which could

provide enough and effective cues for cross-modal similar-

ity learning.

We test the TRecgNet on the two benchmarks of

the RGB-D Indoor scene recognition task, SUN RGB-D

dataset and NYU Depth dataset v2. Our TRecgNet could

obtain an evident improvement on both modality-specific

and RGB-D settings. The main contributions of this paper

are two-fold:

• A TRecgNet is proposed to transfer complementary

cues through a label-free modality translation process,

which improves modality-specific classification task

in an end-to-end manner and achieves state-of-the-art

performance on RGB-D indoor scene benchmarks.

• TRecgNet can generate more photo-realistic and se-

mantically related data to enhance training data sam-

pling which alleviates the data scarcity problem and

effectively improves the classification performance.

2. Related Work

RGB-D Scene Recognition. Earlier works relied on

handcrafted features to capture the characteristic properties

of the scene. Banica et al. [1] used second-order pooling

to quantize local features for segmentation and scene clas-

sification. Gupta et al. [5] proposed to quantize segmenta-

tion outputs by detecting contours from depth images as lo-

cal features for scene classification. Recently, multi-layered

networks such as CNNs is able to learn useful representa-

tions from large amounts of data. In general, they learned

modality-specific features from RGB and depth images sep-

arately, and then performed the fusion. Wang et al. [27]

extracted and combine deep discriminative features from

different modalities in a component aware fusion manner.

Gupta et al. [7] transferred the RGB model to depth net us-

ing unlabeled paired data according to their mid-level rep-

resentations. However, these methods only consider trans-

ferring color cues to depth net and ignore that depth cues

could also benefit the RGB net. More recently, the recogni-

tion power of depth net has been comprehensively studied.

In [26], Song et al. argued that learning depth features from

pre-trained RGB CNN models are biased and seek to learn
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depth features from scratch using weakly supervised depth

patches. However, since depth data still suffers from data

scarcity problem, the structure of the depth nets fail to go

deep which limits its extendibility .

Paired Image-to-Image Translation. Paired image-to-

image translation problems could be formulated as pixel

level mapping functions, however, each pixel is translated

independently from others in this manner [37]. Recently,

GANs [4, 21] have achieved impressive results in image

generation. Wang et al. [32] factored the generation into

two steps: surface normal generation and content gener-

ation. They used a pixel-wise surface normal constraints

as additional supervision. In [18], the authors proposed to

use GANs to learn the mapping functions between paired

images. These GAN constraints help generate more var-

iegated images from data distribution learning, however,

GAN based model is hard to train and generated images

tend to lack the semantic consistency of source images that

are hard to be leveraged in subsequent semantics related

work, such as classification or segmentation tasks. More

recently, in many style transfer works [3, 13, 2], they use

perceptual loss from specific layer of pre-trained RGB mod-

els, to maintain the structural content during the translation.

However, most of them only use content constraint from one

specific layer, usually conv4 x of VGG model, ignoring that

pre-trained models could perform different levels of seman-

tic supervisions which are good enough for image transla-

tion. In this paper, we propose to leverage perceptual loss

from multiple layers to constrain the translation process of

RGB-D data. Unlike pure image generation task, we focus

on how this translation process finally benefits the classifi-

cation task and the performance of data augmentation using

generated images.

3. Method

This section details the description of our Translate-to-

Recognize Network (TRecgNet). The proposed framework

is illustrated in Figure 1. Assume that in RGB-D setting

we would like to train a classification network using one

modality data. Let (MA,MB) be the paired RGB-D im-

ages of specific classes from set L = {1, 2, ..., Nc}, where

Nc is the total number of scene classes. Our object is to

learn an embedding E : MA → R
d with a translation

mapping T : R
d → MB and a class prediction function

C : Rd → L. The core problem is how the translation pro-

cess could make the modality-specific Encoder Network (E

Net) learn effective complementary-modal cues to benefit

the classification task.

3.1. The TRecgNet Architecture

TRecgNet consists of four parts including Encoder Net-

work (E Net), Classification Net (C Net), Decoder Net (D

Net) and Semantic Content Network (S Net). Figure 1

Conv 1X1,

BatchNormInterpolate (scale=2)

Conv 1X1,

BatchNorm

Conv 3X3,

BatchNormReLU ReLU

basic residual block
residual upsample layer

Figure 2. Architecture of the residual upsample layer. The input

feature maps get upsampled with scale 2 followed by one basic

residual block.

shows the exemplar architecture of RGB TRecgNet built on

ResNet-18, which uses pre-trained ResNet18 as the E and

C Nets. D decodes the feature maps from E to reconstruct

the complementary data. Depth TRecgNet uses the same

structure only by exchanging the position of source and tar-

get modalities. We make three measures to enhance the

translation process. First, we empirically remove the first

max-pooling operation of ResNet. In the whole structure,

feature maps only shrink by convolution operation with

stride and less information would get lost which is very im-

portant for image translation process. Second, we introduce

residual upsample layer in the D Net. A residual upsample

layer upsamples feature maps with a bilinear interpolation

operation accompanied with one residual block which mim-

ics the basic residual block of ResNet. Figure 2 shows the

architecture of the residual upsample layer. Third, we prop-

agate the context information from three stages of E to the

corresponding outputs of D similar with [23]. We use the

plus operation instead of concatenation which could reduce

the number of parameters in the D Net.

3.2. Layer­wise Content Supervised Translation

The translation network aims to improve the presentation

ability of E Net learning characteristics of complementary

data, the procedure of which is supervised by a semantic

RGB CNN model, which uses the combination of percep-

tual constrains from lower layers to higher ones, measuring

the layer-wise similarity of the generated and the paired

data.

We use the ResNet model pre-trained on ImageNet [38]

as the supervision content network S, for the consideration

of accordance with the architecture of E Net. More details

could be referred to Section 3.1. We denote the image rep-

resentations of S Net as Φ = {φl
M , l ∈ [1, 2, 3, 4]}, where

φi
M is the ith layer representation for input data M. It maps

an input image from modality M to a feature vector in R
d.

Specifically, we define the L1 loss between two feature vec-

tors for translation supervision. Suppose we are training the

classification task for MA. Generated images y′i and MB

are fed into the S Net, and we can get layer-wise presenta-

tions from y′i and MB. We constrain them from every each

layer (layer1-layer4 in ResNet) be the same by L1 loss:
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Lcontent(yi, y
′

i, l) =

L∑

l=1

‖φl
yi
− φl

T (xi)
‖1 (1)

3.3. Training Strategy

In this section, we introduce our optimization procedure

in detail. To jointly learn the embedding and the trans-

lation pair, we optimize E,C,D networks in a multi-task

manner. Specifically, given a pair of RGB-D images, let

eMA
= E({xi}) be the embeddings from E Net computed

on MA and dMB
= D(E({xi}) be the generated modality

B data decoded from D. We simultaneously update 1) the

E → D → S to minimize the distance of layer-wise vectors

to constrain their semantic similarity, and 2) the E → C us-

ing a cross entropy loss function for classification task. The

total loss is updated with a linear combination:

Ltotal = αLcontent + βLCcls
(2)

where Lcontent is Equation (1) described in Section 3.2,

Lcls is the cross-entropy loss for classification task, with

their coefficients α, β set as 10, 1 from the best trials.

As the datasets we use in Section 4 are character-

ized by unbalanced images for categories, we use rescal-

ing weights given to each category for cross-entropy loss-

Rescaling weights aims to assign different weights to differ-

ent classes to handle the issue of imbalance training. Specif-

ically, we use the following rescaling strategy:

Lweighted cls =
1

N

∑

i

−w(yi) log
f(xi)yi∑
j f(xi)j

. (3)

The weight w(y) is computed as:

w(y) =
N(y)−N(c min) + δ

N(c max)−N(c min)
, (4)

where Ny is the number of images of class y. c min and

c max represent the class with the least and the most num-

ber of training images. The δ is set as 0.01.

In the test phase, we only use the recognition branch for

recognition prediction, as illustrated in Figure 1.

Imbalanced translations between two modalities.

There are several factors demonstrating that the translations

from RGB-to-depth and depth-to-RGB are imbalanced. For

example, translation from RGB to depth images is more

relatively natural procedure while it would become an ill-

posed problem from the reversed direction. What’s more,

the ground truth of depth data comes with much more value

errors due to the characteristics of collecting equipments

and process. Therefore, we sample a random noise vec-

tor from N(0,1) concatenated to the input feature to D in

RGB Encoding Net

Depth Encoding Net

1024

F
C

F
C

1024

concatenation
Global Average 

pooling F
C

Classes num

Weights fixed

Figure 3. Fusion Network. We only use Encoding Nets from RGB

and Depth TRecgNets for fusion. The weights of two E Nets are

fixed, and only weights of the classifier are updated.

the Depth TRecgNet (translation from depth to RGB). We

found it useful to stable the training of Depth TRecgNet.

The generated RGB images also get an interpretable con-

trol from the sampled noise. The dimensionality of noise is

set as 128 in our experiments.

Initialization with unlabeled RGB-D data. As men-

tioned in Section 1, the sizes of most existing labeled RGB-

D datasets are in small orders of magnitude compared with

RGB datasets. However, there are a large number of unla-

beled RGB-D pairs, for example, from RGB-D video se-

quences. A significant advantage of our method is that

we are capable of initializing the TRecgNet with these

unlabeled data. In other words, the modality translation

process is a label-free procedure, by which the TRecgNet

could learn rich representations from unlabeled RGB-D

data boosting the further task. Related experiments are de-

tailed in Section. 4.

3.4. Fusion

After we get two trained TRecgNets for RGB and depth

data, we compute two E Nets and concatenate modality-

specific features from them. The embedding is operated on

global average pooling (GAP) [18] to reduce the number of

parameters followed by three fully connected layers. The

whole structure is illustrated in Figure 3. We fix the Encod-

ing Networks and directly train the classifier in an end-to-

end manner. We find this would be superior to that directly

combines the two prediction results and show the effective-

ness of modality-specific networks more straightforwardly.

4. Experiments

In this section, we first introduce the evaluation datasets

and the implementation details of our proposed approach.

Then we discuss the ablation study of TRecgNet on effec-

tiveness and layer contribution of S. We also compare the

quality of generated images with other approaches. Finally,

we evaluate the performance of our approach with state-of-

the-art methods. We quantitatively report the average ac-

curacy over all scene categories following the conventional

evaluation scheme.

4.1. Datasets

SUN RGB-D Dataset is currently the largest RGB-D

dataset. It contains RGB-D images from NYU depth v2,

11839



Data Model Init Acc (%)

ResNet18 Places 47.4

RGB TRecg Places 49.8

TRecg Aug Places 50.6

ResNet18 random 38.1

ResNet18 Places 44.5

TRecg random 42.2

Depth TRecg Places 46.8

TRecg random/unlabeled 44.2

TRecg Places/unlabeled 47.6

TRecg Aug Places 47.9

Table 1. Ablation study of TRecg-ResNet18 on recognition per-

formance. The results are reported on the test set of SUN RGB-D

(Top-1’s mean accuracy %). “Aug” means using generated data in

training.

Berkeley B3DO [12], and SUN3D [33] and is compromised

of 3,784 Microsoft Kinect v2 images, 3,389 Asus Xtion im-

ages, 2,003 Microsoft Kinect v1 images and 1,159 Intel Re-

alSense images. Following the standard experimental set-

tings stated in [25], we only work with 19 major scene cate-

gories which contain more than 80 images. As per standard

splits, there are in total 4,845 images for training and 4,659

for testing.

NYU Depth Dataset V2 (NYUD2) is a relatively small

dataset; only a few of its 27 indoor categories are well pre-

sented. Following the standard split in [24], the categories

are grouped into ten including nine most common cate-

gories and an other category representing the rest. Also,

we use 795 / 654 images for training / testing following the

standard split.

4.2. Implementation Details

The proposed approach is implemented in popular deep

learning framework, Pytorch [20], on an NVIDIA TITAN

Xp GPU. We train the network using Adam stochastic op-

timization [14] to learn network parameters, with the batch

size set to 40. The RGB-D images are resized to 256× 256
and randomly cropped to 224×224. We train the TRecgNet

in 70 epochs, and the learning rate is initialized as 2× 10−4

at the first 20 epochs and linearly decades in the rest of

50. In the test phase, we use a center crop operation on

test images. We employ geocentric HHA (Horizontal dis-

parity, Height above ground and Angle with gravity) [6]

to encode depth images, which has been shown better per-

formance to capture the scenes structural and geometrical

properties of depth data for kinds of vision tasks. In the

subsequent experiments, we separately train two kinds of

TRecgNets for evaluation. The basic TRecgNet is trained

without using generated data while the TrecgNet Aug refers

to training a TRecgNet with generated data from the previ-

ous corresponding basic TRecgNet. (RGB TRecgNet Aug

M
e
a
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%
)

RGB TRecg Net
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e
a
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u
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(B) Depth TrecgNet

(A) RGB TrecgNet Number of Epochs

Figure 4. Effect of content model using different layer as super-

vision on classification for (A) RGB TRecgNet and (B) Depth

TRecgNet. Tested on SUN RGB-D dataset.

(A) Layer1 (B) Layer2 (C) Layer3 (D) Layer4 (E) Layer1-4

Figure 5. Examples of TRecgNet translating RGB images to depth

ones by semantic supervision from different layers. The combina-

tion of layer-wise content supervision gives the best photo-realist

translation. The input images are all from the test set of SUN

RGB-D dataset.

leverages the basic depth TRecgNet as the generated data

sampler, and vice versa). Specifically, in the training phase

of TrecgNet Aug, we randomly use the generated data, the

number of which is controlled as 30% of batch size, to

achieve the best performance.

4.3. Results on SUN RGB­D dataset

Study on the effectiveness of TRecgNet. We begin our

experiments by studying the effectiveness of TRecgNet for

RGB-D recognition task. We tend to prove that 1) learn-

ing essential similarity from modality translation branch

could effectively benefit classification task, and 2) Unla-

beled RGB-D data helps in training TRecgNet for recogni-

tion task, and 3) generated data improves training process.

11840



(A) RGB (B) generated depth (C) depth GT (A) RGB (B) generated depth (C) depth GT(D) Generated RGB (D) Generated RGB

Figure 6. Examples of generated data by our TrecgNet from test set of SUN RGB-D dataset. (B) are depth images translated from original

RGB data (A), and (D) are generated RGB images using original depth ones (C).

Loss Pixel Pixel+GAN Ours

Mean Acc (depth) 13.1% 17.7% 30.3%

Mean Acc (rgb) 7.3% 20.6% 18.4%

Table 2. We compare the quality of generated depth images by

training a vanilla ResNet18 pre-trained on Places dataset. The

training images are all generated using training data of SUN RGB-

D dataset by three methods. The results are reported on the test set

of SUN RGB-D (Top-1’s mean accuracy %). Images generated by

our TRecgNet achieve the best result.

Since patterns of color and depth information vary greatly

on visual appearance, geometry and surface, we use the fol-

lowing baselines: for the classification of RGB modality,

we fine tune pre-trained ResNet18 on RGB images; for the

depth modality, we train the network both from scratch and

from the pre-trained model.

We test our TRceg Net with following settings: a) the

same initialization schedule with baseline, b) the Depth

TRecgNet is pre-trained using 5k unlabeled RGB-D video

sequences from the NYUD2 dataset. c) Two TRecgNets ex-

tract the translation branches as the data augmentation sup-

plier to retrain the TRecgNet; 30% of original training data

is randomly replaced with generated data. The experimental

results are summarized in Table 1. We observe that for each

modality, our TRecgNet outperforms the baseline with big

margins. RGB TRecgNet outperforms the baseline by 2.4%

while Depth TRecgNet by 3.7% and 2.3% with randomly

initialization and pre-trained weights from Places dataset,

separately.

It is worth noting that unlabeled RGB-D data pre-

training for TRecgNet makes a further boosting of 2% and

0.8%, when training from scratch and using pre-trained

weights, respectively. Without pre-trained Places weights

but only 5k unlabeled data, the result is very comparable to

that of vanilla ResNet pre-trained on Places dataset could

achieve, only with quite less training data. This indicates

that we could flexibly design a E Net achieving acceptable

results without pre-training it using large-scale datasets like

ImageNet or Places dataset.

We also find promotions when using generated images

as training data, with 1.1% for the Aug-Depth and 0.8%

for Aug-RGB TRecgNets. We show some generated data

examples in Figure 6. It’s interesting to find that the gener-

ated depth images tend to be brighter and have better con-

tours than the original ones, due to the learned RGB con-

text information in the translation process. As for generated

RGB data, since the original depth data exists with non-

negligible measurement error, generated RGB data would

be inevitably of low quality on details, however, we turned

out to find it be alleviated by adding the random noise in the

training of Depth TRecgNet.

Study on layer contribution of Semantic Content Net-

work. The effectiveness of transferring complementary

cues relies much on the semantic content model S Net.

Therefore, we take an interest in how the S Net affects the

translation and recognition tasks using the different layer

as supervision. We separately use layer 1 ∼ layer 4 as

well as their combination as the translation constraint to test

the scene recognition performance of TRecgNet, compared

with directly fine tuning pre-trained ResNet18 model; all

the experiments are conducted on SUN RGB-D dataset. In

Figure 4, the accuracy is plotted against the number of train-

ing epochs. The following observations can be made: 1)

TRecgNet achieves markable improvement to varying de-

gree by using the different layer as supervision. 2) The

training procedure becomes more steady when using layer-

wise content constraint and achieves the best performance.

The result demonstrates the effectiveness of TRecgNet us-

ing S as the supervision for cross-modal translation. Fig-

ure 5 gives an example of RGB TrecgNet translating images

by semantic supervisions from different layers. Similarity

learning from lower layers’ supervision focus on keeping

textures while higher layers’ constraints try to capture more
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Accuracy (%)

Method RGB Init Depth Init RGB Depth Fusion

Baseline ResNet18 ImageNet ImageNet 46.6 44.5 50.1

ResNet18 Places Places 47.4 44.8 50.8

TRecgNet ImageNet ImageNet 48.7 46.9 55.5

Proposed TRecgNet Aug ImageNet ImageNet 49.2 47.9 56.1

TRecgNet Places Places 49.8 46.8 56.1

TRecgNet Aug Places Places 50.6 47.9 56.7

Multimodal fusion[40] Places Places 40.4 36.5 41.5

SOTA Modality&component fusion [27] Places Places 40.4 36.5 48.1

RGB-D-CNN+wSVM [26] Places Fast R-CNN 44.6 42.7 53.8

DF2Net metric learning [17] Places Places 46.3 39.2 54.6

Table 3. Comparison with state-of-the-art methods on the test set of the SUN RGB-D dataset. The performance is measured by Top-1’s

mean accuracy over classes. “Aug” means using generated data in training.

Accuracy (%)

Method RGB Init Depth Init RGB Depth Fusion

Baseline ResNet18 Places Places 59.8 52.3 63.8

TRecgNet Places Places 60.2 55.2 65.5

Proposed TRecgNet SUN RGB-D SUN RGB-D 63.8 56.7 66.5

TRecgNet Aug SUN RGB-D SUN RGB-D 64.8 57.7 69.2

Modality & component fusion [27] Places Places 53.5 51.5 63.9

SOTA RGB-D-CNN+wSVM [26] Places Fast R-CNN 53.4 56.4 67.5

DF2Net metric learning [17] Places Places 61.1 54.8 65.4

Table 4. Comparison with state-of-the-art methods on the test set of the NYUD2 dataset. The performance is measured by Top-1’s mean

accuracy over classes. “Aug” means using generated data in training.

semantic cues ignoring luminance or texture. In contrast,

layer-wise content supervision combines multi-layer char-

acteristics which could not only get better performance on

classification task but generate more photo-realistic images.

Study on quality of generated images. In this study,

we evaluate the quality of generated data from TRecgNet.

Since depth data suffers a lot from scarcity and value er-

ror problems, we focus on depth data generation. We com-

pare TRecgNet with two image generation approaches. The

first one is to generate depth data only using L1 loss on

pixel-level intensity, which is very common in images re-

construction works [16] as stated before. We also test im-

ages generated by pixel-to-pixel GAN supervision [11]. We

qualitatively compare some generated examples in Figure 7.

Images from pixel intensity supervision tend to be blurred

stiffly imitating the training data while our TRecgNet pro-

duce more natural images, especially for depth data, even

for cases that the ground truth is of significant errors, see the

bottom row. Interestingly, RGB images generated based on

GAN shows an impressive effect on color diversity. We also

quantitatively evaluate the quality of generated images by

fine tuning pre-trained ResNet18 only using generated im-

ages by different methods. Table 2 shows the results. Depth

images from our TRecgNet outperform other methods by a

big margin, indicating its effectiveness for depth data aug-

mentation while GAN based methods achieve a better result

on RGB images.

Comparison with state-of-the-art methods. We report

TRecgNet on SUN RGB-D test set compared with state-

of-the-art methods, as shown in Table 3. Most RGB-D

scene recognition methods build upon models pre-trained

on Places dataset [39]. Apart from that, we also report the

results using ImageNet pre-trained weights. Most of these

methods rely on fine tuning Places-CNN. Song et al. [26]

work on learning more effective depth representations from

supervised depth patches via SSP [9] and makes compre-

hensive investigations on fusion strategies, such as multi-

scale and aided from object detection. DF 2Net adopts

triplet loss based metric learning [17] to learn discrimi-

native and correlative features for modality-specific repre-

sentation and fusion learning. Our TRecgNets outperform

other state-of-the-art methods on both kinds of modalities

and their fusion by an evident margin. It is worth noting

that our method succeeds in learning modality-specific fea-

tures from cross-modal transfer learning, and we do not rely

much on any sophisticated and specifically designed fusion

strategy.
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(A) source modality (B) pixel similarity (C) pix2pix GAN (D) ours (E) target modality (GT)

Figure 7. Generated examples by different methods. RGB data translated to depth one is shown in the first two rows while images in the

last two rows give a reversed example. (A), (E) are ground truth of RGB and depth data. (B), (C) and (D) are generated images separately

from pixel-level L1 loss supervision, pixel-to-pixel GAN, and our TRecgNet.

4.4. Results on NYUD2 dataset

We also evaluate TRecgNet on the NYUD2 test set and

compare with other representative works. NYUD2 is a rel-

atively small RGB-D dataset, thus we only evaluate the

TRecgNet using pre-trained weights of Places dataset or

SUN RGB-D dataset. In particular, we study the general-

ization ability of learned TRecgNet representations on SUN

RGB-D. We transfer the learned TRecgNets from SUN

RGB-D and fine tune on data from the NYUD2 dataset. We

report the results in Table 4. We find that for RGB modality,

our RGB TRecgNet only yields a slightly better result. We

argue that it is mainly because the size of NYUD2 dataset is

too small. Negative effects from errors of depth maps badly

affects the translation from the RGB to the depth. However,

transferring pre-trained weights from SUN RGB-D datasets

encourages the TRecgNet to overcome this problem, en-

hance modality-specific representation power and improve

its final recognition performance. When adding the gener-

ated data, we observe further promotions for both modal-

ities. Experiments in NYUD2 dataset reveal TRecgNet’s

requirement on the scale of training data to some degree.

Translation using small dataset is difficult in benefiting the

multi-training task, especially for modalities that exist mea-

suring errors that can’t be ignored. Figure 4 also shows

some hints for problem that when training TRecgNet in the

first several epochs, it tends to behave more unstably than

that of fine tuning the backbone network directly and get

suboptimal results.

5. Conclusion and Future Work

In this paper, we have presented an effective Translate-

to-Recognize Network (TRecgNet) to learn modality-

specific RGB-D representation for RGB-D scene recogni-

tion task. TRecgNet enables a CNN classification network

to learn more discriminative feature by a translation process

learning essential similarity with cross-modal data. Train-

ing TRecgNet allows using unlabeled RGB-D data as ini-

tialization which makes up for the data scarcity problem.

As experiments demonstrated on SUN RGB-D and NYUD2

datasets, we both achieve the state-of-the-art results validat-

ing the effectiveness of the proposed method. In the future,

we plan to try instantiate more as well as deeper CNN mod-

els such as ResNet50 and VGG Network. We will also try

to handle the big error problem of depth data.
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