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Abstract

Zero-shot sketch-based image retrieval (SBIR) is an

emerging task in computer vision, allowing to retrieve nat-

ural images relevant to sketch queries that might not been

seen in the training phase. Existing works either require

aligned sketch-image pairs or inefficient memory fusion

layer for mapping the visual information to a semantic

space. In this work, we propose a semantically aligned

paired cycle-consistent generative (SEM-PCYC) model for

zero-shot SBIR, where each branch maps the visual infor-

mation to a common semantic space via an adversarial

training. Each of these branches maintains a cycle con-

sistency that only requires supervision at category levels,

and avoids the need of highly-priced aligned sketch-image

pairs. A classification criteria on the generators’ outputs

ensures the visual to semantic space mapping to be discrim-

inating. Furthermore, we propose to combine textual and

hierarchical side information via a feature selection auto-

encoder that selects discriminating side information within

a same end-to-end model. Our results demonstrate a signif-

icant boost in zero-shot SBIR performance over the state-of-

the-art on the challenging Sketchy and TU-Berlin datasets.

1. Introduction

Matching natural images with free-hand sketches, i.e.

sketch-based image retrieval (SBIR) [60, 58, 27, 33, 47, 43,

63, 7, 23] has received a lot of attention. Since sketches can

effectively express shape, pose and fine-grained details of

the target images, SBIR serves a favorable scenario com-

plementary to the conventional text-image cross-modal re-

trieval or the classical content based image retrieval proto-

col. This is also because in some situations it may be hard

to provide a textual description or a suitable image of the

desired query, whereas, an user can easily draw a sketch of

the desired object spontaneously on a touch screen.
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Figure 1. The proposed SEM-PCYC model learns to map visual

information from sketch and image to a semantic space through an

adversarial training based on the seen classes. During the testing

phase the learned mappings are used for generating embeddings

on the unseen classes for zero-shot SBIR.

As the visual information from all the classes gets ex-

plored by the system during training, with overlapping

training and test classes, existing SBIR methods perform

well [63]. Since in practice there is no guarantee that the

training data would include all possible queries, a more re-

alistic setting is zero-shot SBIR [43, 23] which combines

zero-shot learning (ZSL) [25, 54] and SBIR as a single task,

where the aim is an accurate class prediction and a compe-

tent retrieval performance. However, zero-shot SBIR is ex-

tremely challenging as it simultaneously deals with a signif-

icant domain gap, intra-class variability and limited knowl-

edge about the unseen classes.

One of the major shortcomings of the prior work on

ZS-SBIR is that sketch-image is retrieved after learning a

mapping from an input sketch to an output image using a

training set of labelled aligned pairs [23]. The supervision

of paired correspondence is to enhance the correlation of

multi-modal data (here, sketch-image) so that learning can

be guided by semantics. However, for many realistic sce-

narios, obtaining paired (aligned) training data is either un-

available or very expensive. Furthermore, often a joint rep-

resentation of two or more modalities is obtained by using a

memory fusion layer [43], such as, tensor fusion [19], bilin-

ear pooling [62] etc. These fusion layers are often expensive
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in terms of memory [62], and extracting useful information

from this high dimensional space could result in informa-

tion loss [61].

To alleviate these shortcomings, we propose a seman-

tically aligned paired cycle consistent generative (SEM-

PCYC) model for zero-shot SBIR task, where each branch

either maps sketch or image features to a common semantic

space via an adversarial training. These two branches deal-

ing with two different modalities (sketch and image) con-

stitute an essential component for solving SBIR task. The

cycle consistency constraint on each branch guarantees the

mapping of sketch or image modality to a common seman-

tic space and their translation back to the original modality,

which further avoids the necessity of aligned sketch-image

pairs. Imposing a classification loss on the semantically

aligned outputs from the sketch and image space enforces

the generated features in the semantic space to be discrim-

inative which is very crucial for effective zero-shot SBIR.

Furthermore, inspired by the previous works on label em-

bedding [3], we propose to combine side information from

text-based and hierarchical models via a feature selection

auto-encoder [51] which selects discriminating side infor-

mation based on intra and inter class covariance.

The main contributions of the paper are: (1) We propose

the SEM-PCYC model for zero-shot SBIR task, that maps

sketch and image features to a common semantic space with

the help of adversarial training. The cycle consistency con-

straint on each branch of the SEM-PCYC model facilitates

bypassing the requirement of aligned sketch image pairs.

(2) Within a same end-to-end framework, we combine dif-

ferent side information via a feature selection guided auto-

encoder which effectively choose side information that min-

imizes intra-class variance and maximizes inter-class vari-

ance. (3) We evaluate our model on two datasets (Sketchy

and TU-Berlin) with varying difficulties and sizes, and pro-

vide an experimental comparison with latest models avail-

able for the same task, which further shows that our pro-

posed model consistently improves the state-of-the-art re-

sults of zero-shot SBIR on both datasets.

2. Related Work

As our work belongs at the verge of sketch-based image

retrieval and zero-shot learning task, we briefly review the

relevant literature from both the fields.

Sketch Based Image Retrieval (SBIR). Attempts for solv-

ing SBIR task mostly focus on bridging the domain gap be-

tween sketch and image, which can roughly be grouped in

hand-crafted and cross-domain deep learning-based meth-

ods [27]. Hand-crafted methods mostly work by extract-

ing the edge map from natural image and then matching

them with sketch using a Bag-of-Words model on top of

some specifically designed SBIR features, viz., gradient

field HOG [20], histogram of oriented edges [40], learned

key shapes [41] etc. However, the difficulty of reducing

domain gap remained unresolved as it is extremely chal-

lenging to match edge maps with unaligned hand drawn

sketch. This domain shift issue is further addressed by

neural network models where domain transferable features

from sketch to image are learned in an end-to-end man-

ner. Majority of such models use variant of siamese net-

works [36, 42, 58, 46] that are suitable for cross-modal re-

trieval. These frameworks either use generic ranking losses,

viz., contrastive loss [9], triplet ranking loss [42] or more

sophisticated HOLEF based loss [47]) for the same. Fur-

ther to these discriminative losses, Pang et al. [33] intro-

duced a discriminative-generative hybrid model for pre-

serving all the domain invariant information useful for re-

ducing the domain gap between sketch and image. Alter-

natively, some other works focus on learning cross-modal

hash code for category level SBIR within an end-to-end

deep model [27, 63]. In contrast, we propose a paired cy-

cle consistent generative model where each branch either

maps sketch or image features to a common semantic space

via adversarial training, which we found to be effective for

reducing the domain gap between sketch and image.

Zero-Shot Learning (ZSL). Zero-shot learning in com-

puter vision refers to recognizing objects whose instances

are not seen during the training phase; a comprehensive and

detailed survey on ZSL is available in [54]. Early works on

ZSL [25, 21, 5, 4] make use of attributes within a two-stage

approach to infer the label of an image that belong to the

unseen classes. However, the recent works [15, 39, 3, 2, 24]

directly learn a mapping from image feature space to a

semantic space. Many other ZSL approaches learn non-

linear multi-modal embedding [45, 2, 53, 6, 64], where

most of the methods focus to learn a non-linear mapping

from the image space to the semantic space. Mapping

both image and semantic features into another common in-

termediate space is another direction that ZSL approaches

adapt [66, 16, 67, 1, 28]. Although, most of the deep neu-

ral network models in this domain are trained using a dis-

criminative loss function, a few generative models also ex-

ist [52, 55, 8] that are used as a data augmentation mecha-

nism. In ZSL, some form of side information is required,

so that the knowledge learned from seen classes gets trans-

ferred to unseen classes. One popular form of side infor-

mation is attributes [25] that, however, require costly ex-

pert annotation. Thus, there has been a large group of stud-

ies [29, 3, 53, 38, 37, 11] which utilize other auxiliary infor-

mation, such as, text-based [30] or hierarchical model [32]

for label embedding. In this work, we address zero-shot

cross-modal (sketch to image) retrieval, for that, motivated

by [3], we effectively combine different side information

within an end-to-end framework, and map visual informa-

tion to the semantic space through an adversarial training.
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Zero-Shot Sketch-based Image Retrieval (ZS-SBIR).

Shen et al. [43] first combined zero-shot learning and

sketch based image retrieval, and proposed a generative

cross-modal hashing scheme for solving the zero-shot SBIR

task, where they used a graph convolution network for

aligning the sketch and image in the semantic space. In-

spired by them, Yelamarthi et al. [23] proposed two similar

autoencoder-based generative models for zero-shot SBIR,

where they have used the aligned pairs of sketch and image

for learning the semantics between them. In contrast, we

propose a paired cycle-consistent generative model where

each branch maps the visual information from sketch or im-

age to a semantic space through an adversarial training with

a common discriminator. The cycle consistency constraint

on each branch allows supervision only at category level,

and avoids the need of aligned sketch-image pairs.

3. SEM-PCYC Model

In this work, we propose the semantically aligned paired

cycle consistent generative (SEM-PCYC) model for zero-

shot sketch-based image retrieval. The sketch and image

data from the seen categories are only used for training the

underlying model. Our SEM-PCYC model encodes and

matches the sketch and image categories that remain un-

seen during the training phase. The overall pipeline of our

end-to-end deep architecture is shown in Figure 2.

Let Ds = {Xs,Ys} be a collection of sketch and image

data from the seen categories Cs that contain sketch images

Xs = {xs
i}

N
i=1

as well as natural images Ys = {ys
i }

N
i=1

for training, where N is the total number of sketch and im-

age pairs that are not necessarily aligned. Without loss of

generality, it can be assumed that sketch and image hav-

ing the same index, say, i, share the same category label.

Let Ss = {ssi}
N
i=1

be the set of side information useful

for transferring the supervised knowledge to the unseen

classes, which is an usual practice in ZSL methods. The

main aim of our model is to learn two deep functions Gsk(·)
and Gim(·) respectively for sketch and image for mapping

them to a common semantic space where the learned knowl-

edge can be applied to the unseen classes as well. Given

a set of sketch-image data Du = {Xu,Yu} from the un-

seen categories Cu for test, the proposed deep functions

Gsk : R
d → R

M , Gim : R
d → R

M (d is the dimen-

sion of the original data and M is the targeted dimension

of the common representation) map the sketch and natural

image to a common semantic space where the retrieval is

performed. Since the method considers SBIR in zero-shot

setting, it is evident that the seen and unseen categories re-

main exclusive, i.e. Cs ∩ Cu = ∅.

3.1. Paired Cycle Consistent Generative Model

For having the flexibility to handle sketch and image in-

dividually, i.e. even when they are not aligned sketch-image

pairs, during training Gsk and Gim, we propose a cycle con-

sistent generative model whose each branch is semantically

aligned with a common discriminator. The cycle consis-

tency constraint on each branch of the model ensures the

mapping of sketch or image modality to a common seman-

tic space, and their translation back to the original modality,

which only requires supervision at category level. Impos-

ing a classification loss on the output of Gsk and Gim allows

generating highly discriminative features.

Our main goal is to learn two mappings Gsk and Gim

that can respectively translate the unaligned sketch and nat-

ural image to a common semantic space. Zhu et al. [68]

pointed out about the existence of underlying intrinsic re-

lationship between modalities and domains, for example,

sketch or image of same object category have the same

semantic meaning, and possess that relationship. Even

though, we lack visual supervision as we do not have ac-

cess to aligned pairs, we can exploit semantic supervision

at category levels. We train a mapping Gsk : X → S so that

ŝi = Gsk(xi), where si ∈ S is the corresponding side infor-

mation and is indistinguishable from ŝi via an adversarial

training that classifies ŝi different from si. The optimal Gsk

thereby translates the modality X into a modality Ŝ which

is identically distributed to S. Similarly, another function

Gim : Y → S can be trained via the same discriminator

such that ŝi = Gim(yi).

Adversarial Loss. As shown in Figure 2, for mapping

the sketch and image representation to a common seman-

tic space, we introduce four generators Gsk : X → S,

Gim : Y → S, Fsk : S → X and Fim : S → Y. In ad-

dition, we bring in three adversarial discriminators: Dse(·),
Dsk(·) and Dim(·), where Dse discriminates among origi-

nal side information {s}, sketch transformed to side infor-

mation {Gsk(x)} and image transformed to side informa-

tion {Gim(y)}; likewise Dsk discriminates between original

sketch representation {x} and side information transformed

to sketch representation {Fsk(s)}; in a similar way Dim dis-

tinguishes between {y} and {Fim(s)}. For the generators

Gsk, Gim and their common discriminator Dse, the objec-

tive is as follows:

Ladv(Gsk, Gim, Dse,x,y, s) = 2× E [logDse(s)] (1)

+ E [log(1−Dse(Gsk(x)))] + E [log(1−Dse(Gim(y)))]

where Gsk and Gim generate side information similar to the

ones in S while Dse distinguishes between the generated

and original side information. Here, Gsk and Gim minimize

the objective against an opponent Dse that tries to maximize

it, i.e. minGsk,Gim
maxDse

Ladv(Gsk, Gim, Dse,x,y, s). In a

similar way, for the generator Fsk and its discriminator Dsk,

the objective is:

Ladv(Fsk, Dsk,x, s) = E [logDsk(x)]

+ E [log(1−Dsk(Fsk(s)))]
(2)
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Figure 2. The deep network structure of SEM-PCYC. The sketch (in light gray) and image cycle consistent networks (in light blue)

respectively map the sketch and image to the semantic space and then the original input space. An auto-encoder (light orange) combines

the semantic information based on text and hierarchical model, and produces a compressed semantic representation which acts as a true

example to the discriminator. During the test phase only the learned sketch (light gray region) and image (light blue region) encoders to

the semantic space are used for generating embeddings on the unseen classes for zero-shot SBIR. (best viewed in color)

Fsk minimizes the objective and its adversary Dsk intends

to maximize it, i.e. minFsk
maxDsk

Ladv(Fsk, Dsk,x, s).
Similarly, another adversarial loss is introduced for

the mapping Fim and its discriminator Dim, i.e.,

minFim
maxDim

Ladv(Fim, Dim,y, s).

Cycle Consistency Loss. The adversarial mechanism ef-

fectively reduces the domain or modality gap, however, it is

not guaranteed that an input xi and an output si are matched

well. To this end, we impose cycle consistency [68]. When

we map the feature of a sketch of an object to the corre-

sponding semantic space, and then further translate it back

from the semantic space to the sketch feature space, we

should reach back to the original sketch feature. This cycle

consistency loss also assists in learning mappings across do-

mains where paired or aligned examples are not available.

Specifically, if we have a function Gsk : X → S and another

mapping Fsk : S → X, then both Gsk and Fsk are reverse of

each other, and hence form a one-to-one correspondence or

bijective mapping.

Lcyc(Gsk, Fsk) = E [‖Fsk(Gsk(x))− x‖1]

+ E [‖Gsk(Fsk(s))− s‖1]
(3)

Similarly, a cycle consistency loss is imposed for the map-

pings Gim : Y → S and Fim : S → Y: Lcyc(Gim, Fim).
These consistent loss functions also behave as a regularizer

to the adversarial training to assure that the learned function

maps a specific input xi to a desired output si.

Classification Loss. On the other hand, adversarial train-

ing and cycle-consistency constraints do not explicitly en-

sure whether the generated features by the mappings Gsk

and Gim are class discriminative, i.e. a requirement for the

zero-shot sketch-based image retrieval task. We conjecture

that this issue can be alleviated by introducing a discrimina-

tive classifier pre-trained on the input data. At this end we

minimize a classification loss over the generated features.

Lcls(Gsk) = −E [logP (c|Gsk(x); θ)] (4)

where c is the category label of x. Similarly, a classification

loss Lcls(Gim) is also imposed on the generator Gim.

3.2. Selection of Side Information

Motivated by attribute selection for zero-shot learn-

ing [18], indicating that a subset of discriminative attributes

are more effective than the whole set of attributes for ZSL,

we incorporate a joint learning framework integrating an

auto-encoder to select side information. Let s ∈ R
k be the

side information with k as the original dimension. The loss

function is:

Laenc(f, g) = ‖s− g(f(s))‖2F + λ‖W1‖2,1 (5)

where f(s) = σ(W1s + b1), g(f(s)) = σ(W2f(s) + b2),
with W1 ∈ R

k×m, W2 ∈ R
m×k and b1, b2 respectively as

the weights and biases for the function f and g. Selecting

side information reduces the dimensionality of embeddings,
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which further improves retrieval time. Therefore, the train-

ing objective of our model:

L(Gsk, Gim, Fsk, Fim, Dse, Dsk, Dim, f, g,x,y, s)

= Ladv(Gsk, Gim, Dse,x,y, s) + Ladv(Fsk, Dsk,x, s) (6)

+ Ladv(Fim, Dim,y, s) + Lcyc(Gsk, Fsk) + Lcyc(Gim, Fim)

+ Lcls(Gsk) + Lcls(Gim) + Laenc(f, g)

For obtaining the initial side information, we combine a

text-based and a hierarchical model, which are complemen-

tary and robust [3]. Below, we provide a description of our

text-based and hierarchical models for side information.

Text-based Model. We use two different text-based side

information. (1) Word2Vec [31] is a two layered neural net-

work that are trained to reconstruct linguistic contexts of

words. During training, it takes a large corpus of text and

creates a vector space of several hundred dimensions, with

each unique word being assigned to a corresponding vector

in that space. The model can be trained with a hierarchical

softmax with either skip-gram or continuous bag-of-words

formulation for target prediction. (2) GloVe [35] considers

global word-word co-occurrence statistics that frequently

appear in a corpus. Intuitively, co-occurrence statistics en-

code important semantic information. The objective is to

learn word vectors such that their dot product equals to the

probability of their co-occurrence.

Hierarchical Model. Semantic similarity between words

can also be approximated by measuring their distance in a

large onthology such as WordNet1 of ≈ 100, 000 words in

English. One can measure similarity using techniques such

as path similarity and Jiang-Conrath [22]. For a set S of

nodes in a dictionary D, similarities between every class c

and all the other nodes in S determine the entries of the

class embedding vector [3]. S considers all the nodes on

the path from each node in D to its highest level ancestor.

The database of WordNet contains most of the classes of the

Sketchy [42] and Tu-Berlin [13] datasets. Few exceptions

are: jack-o-lantern which we replaced with lantern that ap-

pears higher in the hierarchy, similarly human skeleton with

skeleton, and octopus with octopods etc. |S| for Sketchy and

TU-Berlin datasets are respectively 354 and 664.

4. Experiments

Datasets. We experimentally validate our model on

two popular SBIR benchmarks: Sketchy [42] and TU-

Berlin [13], together with the extended images from [27].

The Sketchy Dataset [42] (Extended) is a large collec-

tion of sketch-photo pairs. The dataset consists of images

from 125 different classes, with 100 photos each. Sketch

images of the objects that appear in these 12, 500 images

1https://wordnet.princeton.edu

are collected via crowd sourcing, which resulted in 75, 471
sketches. This dataset also contains a fine grained corre-

spondence (aligned) between particular photos and sketches

as well as various data augmentations for deep learning

based methods. Liu et al. [27] extended the dataset by

adding 60, 502 photos yielding in total 73, 002 images. We

randomly pick 25 classes of sketches and images as the un-

seen test set for the zero-shot SBIR, and the data from re-

maining 100 seen classes are used for training.

The TU-Berlin Dataset [13] (Extended) contains 250 cat-

egories with a total of 20, 000 sketches extended by [27]

with natural images corresponding to the sketch classes

with a total size of 204, 489. 30 classes of sketches and

images are randomly chosen to respectively form the query

set and the retrieval gallery. The remaining 220 classes are

utilized for training. We follow Shen et al. [43] and select

classes with at least 400 images in the test set.

Implementation Details. We implemented the SEM-

PCYC model using PyTorch [34] deep learning toolbox2,

which is trainable on a single TITAN Xp graphics card.

We extract features from sketch and image from the VGG-

16 [44] network model pre-trained on ImageNet [10]

dataset (before the last pooling layer). Since in this work,

we deal with single object retrieval and an object usually

spans only on certain regions of a sketch or image, we apply

an attention mechanism inspired by Song et al. [47] without

the shortcut connection for extracting only the informative

regions from sketch and image. The attended 512-D rep-

resentation is obtained by a pooling operation guided by

the attention model and fully connected (fc) layer. This

entire model is fine tuned on our training set (100 classes

for Sketchy and 220 classes for TU-Berlin). Both the gen-

erators Gsk and Gim are built with a fc layer followed by

a ReLU non-linearity that accept 512-D vector and output

M -D representation, whereas, the generators Fsk and Fim

take M -D features and produce 512-D vector. Accordingly,

all discriminators are designed to take the output of respec-

tive generators and produce a single dimensional output.

The auto-encoder is designed by stacking two non-linear fc

layers respectively as encoder and decoder for obtaining a

compressed and encoded representation of dimension M .

While constructing the hierarchy for acquiring the class

embedding, we only consider the seen classes belong to that

dataset. In this way, the WordNet hierarchy or the knowl-

edge graph for the Sketchy and TU-Berlin datasets respec-

tively contain 354 and 664 nodes. Although our method

does not produce binary hash code as a final representation

for matching sketch and image, for the sake of comparison

with some related works, such as, ZSH [56], ZSIH [43],

GDH [63], that produce hash codes, we have used the iter-

ative quantization (ITQ) [17] algorithm to obtain the binary

2Our code and trained models are available at: https://github.

com/AnjanDutta/sem-pcyc
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Sketchy (Extended) TU-Berlin (Extended)
Method mAP Precision Feature Retrieval mAP Precision Feature Retrieval

@all @100 Dimension Time (s) @all @100 Dimension Time (s)

SBIR

Softmax Baseline 0.114 0.172 4096 3.5× 10−1 0.089 0.143 4096 4.3× 10−1

Siamese CNN [36] 0.132 0.175 64 5.7× 10−3 0.109 0.141 64 5.9× 10−3

SaN [59] 0.115 0.125 512 4.8× 10−2 0.089 0.108 512 5.5× 10−2

GN Triplet [42] 0.204 0.296 1024 9.1× 10−2 0.175 0.253 1024 1.9× 10−1

3D Shape [50] 0.067 0.078 64 7.8× 10−3 0.054 0.067 64 7.2× 10−3

DSH (binary) [27] 0.171 0.231 64 6.1× 10−5 0.129 0.189 64 7.2× 10−5

GDH (binary) [63] 0.187 0.259 64 7.8× 10−5 0.135 0.212 64 9.6× 10−5

ZSL

CMT [45] 0.087 0.102 300 2.8× 10−2 0.062 0.078 300 3.3× 10−2

DeViSE [15] 0.067 0.077 300 3.6× 10−2 0.059 0.071 300 3.2× 10−2

SSE [65] 0.116 0.161 100 1.3× 10−2 0.089 0.121 220 1.7× 10−2

JLSE [67] 0.131 0.185 100 1.5× 10−2 0.109 0.155 220 1.4× 10−2

SAE [24] 0.216 0.293 300 2.9× 10−2 0.167 0.221 300 3.2× 10−2

FRWGAN [14] 0.127 0.169 512 3.2× 10−2 0.110 0.157 512 3.9× 10−2

ZSH (binary) [57] 0.159 0.214 64 5.9× 10−5 0.141 0.177 64 7.6× 10−5

Zero-Shot SBIR

ZSIH (binary) [43] 0.258 0.342 64 6.7× 10−5 0.223 0.294 64 7.7× 10−5

ZS-SBIR [23] 0.196 0.284 1024 9.6× 10−2 0.005 0.001 1024 1.2× 10−1

SEM-PCYC 0.349 0.463 64 1.7× 10−3 0.297 0.426 64 1.9× 10−3

SEM-PCYC (binary) 0.344 0.399 64 9.5× 10−5 0.293 0.392 64 9.3× 10−4

Generalized

Zero-Shot SBIR

ZSIH (binary) [43] 0.219 0.296 64 6.7× 10−5 0.142 0.218 64 7.7× 10−5

SEM-PCYC 0.307 0.364 64 1.7× 10−3 0.192 0.298 64 2.0× 10−3

SEM-PCYC (binary) 0.260 0.317 64 9.4× 10−5 0.174 0.267 64 9.3× 10−4

Table 1. Zero-shot sketch-based image retrieval performance comparison with existing SBIR, ZSL, zero-shot SBIR and generalized zero-

shot SBIR methods. Note: SBIR and ZSL methods are adapted to the Zero-Shot SBIR task, same seen and unseen classes are used for a

fair comparison.

swan duck owl penguin standing bird

Figure 3. Inter-class similarity in TU-Berlin dataset.

codes for sketch and image. We have used final represen-

tation of sketches and images from the train set to learn the

optimized rotation which later used on our final representa-

tion for obtaining the binary codes.

4.1. Comparing with the StateoftheArt

Apart from the two prior Zero-Shot SBIR works closest

to ours, i.e. ZSIH [43] and ZS-SBIR [23], we adopt four-

teen ZSL and SBIR models to the zero-shot SBIR task.

The SBIR methods that we evaluate are SaN [60], 3D

Shape [49], Siamese CNN [36], GN Triplet [42], DSH [27]

and GDH [63]. A softmax baseline is also added, which

is based on computing the 4096-D VGG-16 [44] feature

vector pre-trained on the seen classes for nearest neighbour

search. The ZSL methods that we evaluate are: CMT [45],

DeViSE [15], SSE [66], JLSE [67], ZSH [56], SAE [24]

and FRWGAN [14]. We use the same seen-unseen splits

of categories for all the experiments for a fair comparison.

We compute the mean average precision (mAP@all) and

precision considering top 100 (Precision@100) [48, 43] re-

trievals for the performance evaluation and comparison.

Table 1 shows that most of the SBIR and ZSL methods

perform worse than the zero-shot SBIR methods. Among

them, the ZSL methods usually suffer from the domain

gap that exist between the sketch and image modalities

while SAE [24] reaches the best performance. The ma-

jority SBIR methods although have performed better than

their ZSL counterparts, sustain the incapacity to general-

ize the learned representations to unseen classes. However,

GN Triplet [42], DSH [27], GDH [63] have shown reason-

able potential to generalize information only from object

with common shape. As per the expectation, the special-

ized zero-shot SBIR methods have surpassed most of the

ZSL and SBIR baselines as they possess both the ability of

reducing the domain gap and generalizing the learned infor-

mation for the unseen classes. ZS-SBIR learns to generalize

between sketch and image from the aligned sketch-image

pairs, as a result it performs well on the Sketchy dataset, but

not on the TU-Berlin dataset, as in this case, aligned sketch-

image pairs are not available. Our proposed method has

consistently excelled the state-of-the-art method by 0.091
mAP@all on the Sketchy dataset and 0.074 mAP@all on

the TU-Berlin dataset, which shows the effectiveness of

our proposed SEM-PCYC model which gets benefited from

(1) cycle consistency between sketch, image and semantic

space, (2) compact and selected side information. In gen-

eral, all the methods considered in Table 1 have performed

worse on the TU-Berlin dataset, which might be due to the

large number of classes, where many of them are visually

similar and overlapping. These results are encouraging in

that they show that the cycle consistency helps zero-shot

SBIR task and our model sets the new state-of-the-art in

this domain. The PR-curves of SEM-PCYC and considered

baselines on Sketchy and TU-Berlin are respectively shown

in Figure 5(a)-(b). We also conducted additional experi-
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✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓

Figure 4. Top-10 zero-shot SBIR results obtained by our SEM-

PCYC model on Sketchy (top four rows) and TU-Berlin (next four

rows) are shown here according to the Euclidean distances, where

the green ticks denote correctly retrieved candidates and the red

crosses indicate wrong retrievals. (best viewed in color)

ments on generalized ZS-SBIR setting where search space

contains seen and unseen classes. This task is significantly

more challenging than ZS-SBIR as seen classes create dis-

traction to the test queries. Our results in Table 1 (last two

lines) show that our model significantly outperforms [43],

due to the benefit of our cross-modal adversarial mechanism

and heterogeneous side information.

Qualitative Results. Next, we analyze the retrieval per-

formance of our proposed model qualitatively in Figure 4

(more qualitative results are available in [12]). Some no-

table examples are as follows. Sketch query of tank re-

trieves some examples of motorcycle probably because

both of them have wheels in common. For having vi-

sual and semantic similarity, sketching guitar retrieves

some violins. Querying castle, retrieves images hav-

ing large portion of sky, because the images of its semanti-

cally similar classes, such as, skyscraper, church, are

mostly captured with sky in background. In general, we ob-

serve that the wrongly retrieved candidates mostly have a

closer visual and semantic relevance with the queried ones.

This effect is more prominent in TU-Berlin dataset, which

may be due to the inter-class similarity of sketches between

different classes. As shown in Figure 3, the classes swan,

duck and owl, penguin have substantial visual similar-

Text Embedding Hierarchical Embedding Sketchy TU-Berlin

Glove Word2Vec Path Lin [26] Ji-Cn [22] (Extended) (Extended)

X 0.284 0.228
X 0.330 0.232

X 0.314 0.224
X 0.248 0.169

X 0.308 0.227
X X 0.338 0.276
X X 0.299 0.253
X X 0.285 0.243

X X 0.340 0.297

X X 0.288 0.264
X X 0.349 0.291

Table 2. Zero-shot SBIR mAP@all using different semantic em-

beddings (top) and their combinations (bottom).

ity, and all of them are standing bird which is a sep-

arate class of the same dataset. Therefore, for TU-Berlin

dataset, it is challenging to generalize the unseen classes

from the learned representation of seen classes.

4.2. Effect of SideInformation

In zero-shot learning, side information is as important as

the visual information as it is the only means the model can

discover similarities between classes. As the type of side in-

formation has a high effect in performance of any method,

we analyze the effect of side-information and present zero-

shot SBIR results by considering different side informa-

tion and their combinations. We compare the effect of us-

ing GloVe [35] and Word2Vec [30] as text-based model,

and three similarity measurements, i.e. path, Lin [26] and

Jiang-Conrath [22] for constructing three different side in-

formation that are based on WordNet hierarchy. Table 2

contains the quantitative results on both Sketchy and TU-

Berlin datasets with different side information mentioned

and their combinations, where we set M = 64 (results with

M = 32, 128 can be found in [12]). We have observed that

in majority of cases combining different side information

increases the performance by 1% to 3%.

On Sketchy, the combination of Word2vec and Jiang-

Conrath hierarchical similarity reaches the highest mAP

of 0.349 while on TU Berlin dataset, the combination of

Word2Vec and path similarity leads with 0.297 mAP. We

conclude from these experiments that indeed text-based and

hierarchy-based class embeddings are complementary. Fur-

thermore, Word2Vec captures semantic similarity between

words better than GloVe for the task of zero-shot SBIR.

4.3. Model Ablations

The baselines of our ablation study are built by mod-

ifying some parts of the SEM-PCYC model and analyze

the effect of different losses of our model. First, we train

the model only with adversarial loss, and then alternatively

add cycle consistency and classification loss for the train-

ing. Second, we train the model without the side informa-

tion selection mechanism, for that, we only take the original

text or hierarchical embedding or their combination as side
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Figure 5. (a)-(b) PR curves of SEM-PCYC model and several

SBIR, ZSL and zero-shot SBIR methods respectively on the

Sketchy and TU-Berlin datasets, (c) Plot showing mAP@all wrt

the ratio of removed side information. (best viewed in color)

Description Sketchy TU-Berlin
Only adversarial loss 0.128 0.109
Adversarial + cycle consistency loss 0.147 0.131
Adversarial + classification loss 0.140 0.127
Without selecting side information 0.382 0.299
Without regularizer in eqn. (5) 0.323 0.273
SEM-PCYC (full model) 0.349 0.297

Table 3. Ablation study on our 64-D model mAP@all results of

several baselines are shown above.

information, which can give an idea on the advantage of

selecting side information via the auto-encoder. Next, we

experiment reducing the dimensionality of the class embed-

ding to a percentage of the full dimensionality. Finally, to

demonstrate the effectiveness of the regularizer used in the

auto-encoder for selecting discriminative side information,

we experiment by making λ = 0 in eqn. (5).

The mAP@all values obtained by respective baselines

mentioned above are shown in Table 3. We consider the

best side information setting according to Table 2 depend-

ing on the dataset. The assessed baselines have typically

underperform the full SEM-PCYC model. Only with adver-

sarial losses, the performance of our system drops signifi-

cantly. We suspect that only adversarial training although

maps sketch and image input to a semantic space, there

is no guarantee that sketch-image pairs of same category

are matched. This is because adversarial training only en-

sures the mapping of input modality to target modality that

matches its empirical distribution [68], but does not guar-

antee an individual input and output are paired up. Imposi-

tion of cycle-consistency constraint ensures the one-to-one

correspondence of sketch-image categories. However, the

performance of our system does not improve substantially

while the model is trained both with adversarial and cycle

consistency loss. We speculate that this issue could be due

to the lack of inter-category discriminating power of the

learned embedding functions; for that, we set a classifica-

tion criteria to train discriminating cross-modal embedding

functions. We further observe that only imposing classifica-

tion criteria together with adversarial loss, neither improves

the retrieval results. We conjecture that in this case the

learned embedding could be very discriminative but the two

modalities might be matched in wrong way. Hence, it can

be concluded that all these three losses are complimentary

to each other and absolutely essential for effective zero-shot

SBIR. Next, we analyze the effect of side information and

observe that without the encoded and compact side infor-

mation, we achieve better mAP@all with a compromise on

retrieval time, as the original dimension (354+300 = 654d

for Sketchy and 664 + 300 = 964d for TU-Berlin) of con-

sidered side information is much higher than the encoded

ones (64d). We further investigate by reducing its dimen-

sion as a percentage of the original one (see Figure 5(c)),

and we have observed that at the beginning, reducing a

small part (mostly 5% to 30%) usually leads to a better

performance, which reveals that not all the side informa-

tion are necessary for effective zero-shot SBIR and some of

them are even harmful. In fact, the first removed ones have

low information content, and can be regarded as noise. We

have also perceived that removing more side information

(beyond 20% to 40%) deteriorates the performance of the

system, which is quite justifiable because the compressing

mechanism of auto-encoder progressively removes impor-

tant and predictable side information. However, it can be

observed that with highly compressed side information as

well, our model provides a very good deal with performance

and retrieval time. Without using the regularizer in eqn.

(5), although our system performs reasonably, the mAP@all

value is still lower than the best obtained performance. We

explain this as a benefit of using ℓ21-norm based regularizer

that effectively select representative side information.

5. Conclusion

We proposed the SEM-PCYC model for the zero-shot

SBIR task. Our SEM-PCYC is a semantically aligned

paired cycle consistent generative model whose each branch

either maps a sketch or an image to a common semantic

space via adversarial training with a shared discriminator.

Thanks to cycle consistency on both the branches our model

does not require aligned sketch-image pairs. Moreover, it

acts as a regularizer in the adversarial training. The clas-

sification losses on the generators guarantee the features to

be discriminative. We show that combining heterogeneous

side information through an auto-encoder, which encodes

a compact side information useful for adversarial training,

is effective. Our evaluation on two datasets has shown that

our model consistently outperforms the existing methods in

zero-shot SBIR task.
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