
Temporal Cycle-Consistency Learning

Debidatta Dwibedi 1, Yusuf Aytar 2, Jonathan Tompson 1, Pierre Sermanet 1, and Andrew Zisserman 2

1 Google Brain 2 DeepMind
{debidatta, yusufaytar, tompson, sermanet, zisserman}@google.com

embedding space

time

time

Video 1

Video 2

Temporal 
Alignment

Alignment

Embedding
Videos

Figure 1: We present a self-supervised representation learning technique called temporal cycle consistency (TCC) learning. It is inspired

by the temporal video alignment problem, which refers to the task of finding correspondences across multiple videos despite many factors

of variation. The learned representations are useful for fine-grained temporal understanding in videos. Additionally, we can now align

multiple videos by simply finding nearest-neighbor frames in the embedding space.

Abstract

We introduce a self-supervised representation learning

method based on the task of temporal alignment between

videos. The method trains a network using temporal cycle-

consistency (TCC), a differentiable cycle-consistency loss

that can be used to find correspondences across time in

multiple videos. The resulting per-frame embeddings can

be used to align videos by simply matching frames using

nearest-neighbors in the learned embedding space.

To evaluate the power of the embeddings, we densely

label the Pouring and Penn Action video datasets for ac-

tion phases. We show that (i) the learned embeddings

enable few-shot classification of these action phases, sig-

nificantly reducing the supervised training requirements;

and (ii) TCC is complementary to other methods of self-

supervised learning in videos, such as Shuffle and Learn

and Time-Contrastive Networks. The embeddings are also

used for a number of applications based on alignment

(dense temporal correspondence) between video pairs, in-

cluding transfer of metadata of synchronized modalities

between videos (sounds, temporal semantic labels), syn-

chronized playback of multiple videos, and anomaly de-

tection. Project webpage: https://sites.google.

com/view/temporal-cycle-consistency .

1. Introduction

The world presents us with abundant examples of se-

quential processes. A plant growing from a seedling to a

tree, the daily routine of getting up, going to work and com-

ing back home, or a person pouring themselves a glass of

water – are all examples of events that happen in a particu-

lar order. Videos capturing such processes not only contain

information about the causal nature of these events, but also

provide us with a valuable signal – the possibility of tem-

poral correspondences lurking across multiple instances of

the same process. For example, during pouring, one could

be reaching for a teapot, a bottle of wine, or a glass of wa-

ter to pour from. Key moments such as the first touch to

the container or the container being lifted from the ground

are common to all pouring sequences. These correspon-

dences, which exist in spite of many varying factors like vi-

sual changes in viewpoint, scale, container style, the speed

of the event, etc., could serve as the link between raw video

sequences and high-level temporal abstractions (e.g. phases

of actions). In this work we present evidence that suggests

the very act of looking for correspondences in sequential

data enables the learning of rich and useful representations,

particularly suited for fine-grained temporal understanding

of videos.

Temporal reasoning in videos, understanding multiple

stages of a process and causal relations between them, is

a relatively less studied problem compared to recognizing

action categories [10, 42]. Learning representations that

can differentiate between states of objects as an action pro-

ceeds is critical for perceiving and acting in the world. It

would be desirable for a robot tasked with learning to pour

drinks to understand each intermediate state of the world as

it proceeds with performing the task. Although videos are

a rich source of sequential data essential to understanding

such state changes, their true potential remains largely un-

11801



tapped. One hindrance in the fine-grained temporal under-

standing of videos can be an excessive dependence on pure

supervised learning methods that require per-frame anno-

tations. It is not only difficult to get every frame labeled

in a video because of the manual effort involved, but also

it is not entirely clear what are the exhaustive set of labels

that need to be collected for fine-grained understanding of

videos. Alternatively, we explore self-supervised learning

of correspondences between videos across time. We show

that the emerging features have strong temporal reasoning

capacity, which is demonstrated through tasks such as ac-

tion phase classification and tracking the progress of an ac-

tion.

When frame-by-frame alignment (i.e. supervision) is

available, learning correspondences reduces to learning a

common embedding space from pairs of aligned frames

(e.g. CCA [3, 4] and ranking loss [35]). However, for most

of the real world sequences such frame-by-frame alignment

does not exist naturally. One option would be to artifi-

cially obtain aligned sequences by recording the same event

through multiple cameras [30, 35, 37]. Such data collection

methods might find it difficult to capture all the variations

present naturally in videos in the wild. On the other hand,

our self-supervised objective does not need explicit corre-

spondences to align different sequences. It can align sig-

nificant variations within an action category (e.g. pouring

liquids, or baseball pitch). Interestingly, the embeddings

that emerge from learning the alignment prove to be useful

for fine-grained temporal understanding of videos. More

specifically, we learn an embedding space that maximizes

one-to-one mappings (i.e. cycle-consistent points) across

pairs of video sequences within an action category. In or-

der to do that, we introduce two differentiable versions of

cycle consistency computation which can be optimized by

conventional gradient-based optimization methods. Further

details of the method will be explained in section 3.

The main contribution of this paper is a new self-

supervised training method, referred to as temporal cycle

consistency (TCC) learning, that learns representations by

aligning video sequences of the same action. We compare

TCC representations against features from existing self-

supervised video representation methods [27, 35] and su-

pervised learning, for the tasks of action phase classifica-

tion and continuous progress tracking of an action. Our ap-

proach provides significant performance boosts when there

is a lack of labeled data. We also collect per-frame annota-

tions of Penn Action [52] and Pouring [35] datasets that we

will release publicly to facilitate evaluation of fine-grained

video understanding tasks.

2. Related Work

Cycle consistency. Validating good matches by cycling

between two or more samples is a commonly used tech-

nique in computer vision. It has been applied successfully

for tasks like co-segmentation [43, 44], structure from mo-

tion [49, 51], and image matching [54, 55, 56]. For in-

stance, FlowWeb [54] optimizes globally-consistent dense

correspondences using the cycle consistent flow fields be-

tween all pairs of images in a collection, whereas Zhou

et al. [56] approaches a similar task by formulating it as

a low-rank matrix recovery problem and solves it through

fast alternating minimization. These methods learn robust

dense correspondences on top of fixed feature representa-

tions (e.g. SIFT, deep features, etc.) by enforcing cy-

cle consistency and/or spatial constraints between the im-

ages. Our method differs from these approaches in that

TCC is a self-supervised representation learning method

which learns embedding spaces that are optimized to give

good correspondences. Furthermore we address a temporal

correspondence problem rather than a spatial one. Zhou et

al. [55] learn to align multiple images using the supervision

from 3D guided cycle-consistency by leveraging the initial

correspondences that are available between multiple render-

ings of a 3D model, whereas we don’t assume any given

correspondences. Another way of using cyclic relations is

to directly learn bi-directional transformation functions be-

tween multiple spaces such as CycleGANs [57] for learn-

ing image transformations, and CyCADA [21] for domain

adaptation. Unlike these approaches we don’t have multi-

ple domains, and we can’t learn transformation functions

between all pairs of sequences. Instead we learn a joint em-

bedding space in which the Euclidean distance defines the

mapping across the frames of multiple sequences. Simi-

lar to us, Aytar et al. [7] applies cycle-consistency between

temporal sequences, however they use it as a validation tool

for hyper-parameter optimization of learned representations

for the end goal of imitation learning. Unlike our approach,

their cycle-consistency measure is non-differentiable and

hence can’t be directly used for representation learning.

Video alignment. When we have synchronization informa-

tion (e.g. multiple cameras recording the same event) then

learning a mapping between multiple video sequences can

be accomplished by using existing methods such as Canon-

ical Correlation Analysis (CCA) [3, 4], ranking [35] or

match-classification [6] objectives. For instance TCN [35]

and circulant temporal encoding [30] align multiple views

of the same event, whereas Sigurdsson et al.[37] learns to

align first and third person videos. Although we have a sim-

ilar objective, these methods are not suitable for our task as

we cannot assume any given correspondences between dif-

ferent videos.

Action localization and parsing. As action recognition

is quite popular in the computer vision community, many

studies [17, 38, 46, 50, 53] explore efficient deep architec-

tures for action recognition and localization in videos. Past

work has also explored parsing of fine-grained actions in

videos [24, 25, 29] while some others [13, 33, 34, 36] dis-

cover sub-activities without explicit supervision of temporal

boundaries. [20] learns a supervised regression model with

1802



cycle consistency 
error

nearest
neighbors

cycle
consistent  

not cycle
consistent  

embedding space

...

...

video 1

video 2

Figure 2: Cycle-consistent representation learning. We show

two example video sequences encoded in an example embedding

space. If we use nearest neighbors for matching, one point (shown

in black) is cycling back to itself while another one (shown in red)

is not. Our target is to learn an embedding space where maximum

number of points can cycle back to themselves. We achieve it by

minimizing the cycle consistency error (shown in red dotted line)

for each point in every pair of sequences.

voting to predict the completion of an action, and [2] dis-

covers key events in an unsuperivsed manner using a weak

association between videos and text instructions. How-

ever all these methods heavily rely on existing deep image

[19, 39] or spatio-temporal [45] features, whereas we learn

our representation from scratch using raw video sequences.

Soft nearest neighbours. The differentiable or soft formu-

lation for nearest-neighbors is a commonly known method

[18]. This formulation has recently found application in

metric learning for few-shot learning [28, 31, 40]. We also

make use of soft nearest neighbor formulation as a compo-

nent in our differentiable cycle-consistency computation.

Self-supervised representations. There has been signif-

icant progress in learning from images and videos with-

out requiring class or temporal segmentation labels. In-

stead of labels, self-supervised learning methods use sig-

nals such as temporal order [16, 27], consistency across

viewpoints and/or temporal neighbors [35], classifying ar-

bitrary temporal segments [22], temporal distance classifi-

cation within or across modalities [7], spatial permutation

of patches [5, 14], visual similarity [32] or a combination

of such signals [15]. While most of these approaches op-

timize each sample independently, TCC jointly optimizes

over two sequences at a time, potentially capturing more

variations in the embedding space. Additionally, we show

that TCC yields best results when combined with some of

the unsupervised losses above.

3. Cycle Consistent Representation Learning

The core contribution of this work is a self-supervised

approach to learn an embedding space where two similar

video sequences can be aligned temporally. More specifi-

cally, we intend to maximize the number of points that can

be mapped one-to-one between two sequences by using the

minimum distance in the learned embedding space. We

can achieve such an objective by maximizing the number

of cycle-consistent frames between two sequences (see Fig-

ure 2). However, cycle-consistency computation is typically

not a differentiable procedure. In order to facilitate learning

such an embedding space using back-propagation, we in-

troduce two differentiable versions of the cycle-consistency

loss, which we describe in detail below.

Given any frame si in a sequence S = {s1, s2, ..., sN},

the embedding is computed as ui = φ(si; θ), where φ is

the neural network encoder parameterized by θ. For the fol-

lowing sections, assume we are given two video sequences

S and T , with lengths N and M , respectively. Their em-

beddings are computed as U = {u1, u2, ..., uN} and V =
{v1, v2, ..., vM} such that ui = φ(si; θ) and vi = φ(ti; θ).

3.1. Cycle­consistency

In order to check if a point ui ∈ U is cycle consistent, we

first determine its nearest neighbor, vj = argminv∈V ||ui−
v||. We then repeat the process to find the nearest neighbor

of vj in U , i.e. uk = argminu∈U ||vj − u||. The point ui

is cycle-consistent if and only if i = k, in other words if

the point ui cycles back to itself. Figure 2 provides positive

and negative examples of cycle consistent points in an em-

bedding space. We can learn a good embedding space by

maximizing the number of cycle-consistent points for any

pair of sequences. However that would require a differen-

tiable version of cycle-consistency measure, two of which

we introduce below.

3.2. Cycle­back Classification

We first compute the soft nearest neighbor ṽ of ui in V ,

then figure out the nearest neighbor of ṽ back in U . We

consider each frame in the first sequence U to be a separate

class and our task of checking for cycle-consistency reduces

to classification of the nearest neighbor correctly. The logits

are calculated using the distances between ṽ and any uk ∈
U , and the ground truth label y are all zeros except for the

ith index which is set to 1.

For the selected point ui, we use the softmax function to

define its soft nearest neighbor ṽ as:

ṽ =

M∑

j

αjvj , where αj =
e−||ui−vj ||

2

∑M

k e−||ui−vk||2
(1)

and α is the the similarity distribution which signifies the

proximity between ui and each vj ∈ V . And then we solve

the N class (i.e. number of frames in U ) classification prob-

lem where the logits are xk = −||ṽ−uk||
2 and the predicted

labels are ŷ = softmax(x). Finally we optimize the cross-

1803



distance

*encoder

...

...

...

video embedding soft nearest neighbor cycling back

...

...

Figure 3: Temporal cycle consistency. The embedding sequences U and V are obtained by encoding video sequences S and T with

the encoder network φ, respectively. For the selected point ui in U , soft nearest neighbor computation and cycling back to U again is

demonstrated visually. Finally the normalized distance between the index i and cycling back distribution N(µ, σ2) (which is fitted to β) is

minimized.

entropy loss as follows:

Lcbc = −
N∑

j

yj log(ŷj) (2)

3.3. Cycle­back Regression

Although cycle-back classification defines a differen-

tiable cycle-consistency loss function, it has no notion of

how close or far in time the point to which we cycled back

is. We want to penalize the model less if we are able to cycle

back to closer neighbors as opposed to the other frames that

are farther away in time. In order to incorporate temporal

proximity in our loss, we introduce cycle-back regression.

A visual description of the entire process is shown in Fig-

ure 3. Similar to the previous method first we compute the

soft nearest neighbor ṽ of ui in V . Then we compute the

similarity vector β that defines the proximity between ṽ and

each uk ∈ U as:

βk =
e−||ṽ−uk||

2

∑N

j e−||ṽ−uj ||2
(3)

Note that β is a discrete distribution of similarities over time

and we expect it to show a peaky behavior around the ith

index in time. Therefore, we impose a Gaussian prior on

β by minimizing the normalized squared distance
|i−µ|2

σ2 as

our objective. We enforce β to be more peaky around i by

applying additional variance regularization. We define our

final objective as:

Lcbr =
|i− µ|2

σ2
+ λ log(σ) (4)

where µ =
∑N

k βk ∗ k and σ2 =
∑N

k βk ∗ (k − µ)2, and

λ is the regularization weight. Note that we minimize the

log of variance as using just the variance is more prone to

numerical instabilities. All these formulations are differen-

tiable and can conveniently be optimized with conventional

back-propagation.

Operations Output Size Parameters

Temporal Stacking k×14×14×c Stack k context frames

3D Convolutions k×14×14×512 [3×3×3,512] × 2

Spatio-temporal Pooling 512 Global 3D Max-pooling

Fully-connected layers 512 [512] × 2

Linear projection 128 128

Table 1: Architecture of the embedding network.

3.4. Implementation details

Training Procedure. Our self-supervised representation is

learned by minimizing the cycle-consistency loss for all the

pair of sequences in the training set. Given a sequence pair,

their frames are embedded using the encoder network and

we optimize cycle consistency losses for randomly selected

frames within each sequence until convergence. We used

Tensorflow [1] for all our experiments.

Encoding Network. All the frames in a given video se-

quence are resized to 224 × 224. When using ImageNet

pretrained features, we use ResNet-50 [19] architecture to

extract features from the output of Conv4c layer. The size of

the extracted convolutional features are 14×14×1024. Be-

cause of the size of the datasets, when training from scratch

we use a smaller model along the lines of VGG-M [11].

This network takes input at the same resolution as ResNet-

50 but is only 7 layers deep. The convolutional features pro-

duced by this base network are of the size 14 × 14 × 512.

These features are provided as input to our embedder net-

work (presented in Table 1). We stack the features of any

given frame and its k context frames along the dimension

of time. This is followed by 3D convolutions for aggre-

gating temporal information. We reduce the dimensionality

by using 3D max-pooling followed by two fully connected

layers. Finally, we use a linear projection to get a 128-

dimensional embedding for each frame. More details of the

architecture are presented in the supplementary material.

4. Datasets and Evaluation

We validate the usefulness of our representation learn-

ing technique on two datasets: (i) Pouring [35]; and ( ii)

1804



Following
Through

ThrowingTaking
StrideStart Knee Fully Up Ball ReleaseArm Stretched End

Winding
Up

... ... ... ... ... ... ......

Hand 
Receding

Pouring
Liquid

Lifting
Bottle

Start
Hand Touches 

Bottle
Pouring 

Complete
Liquid Exits 

Bottle End
Hand

Reaching
Bottle Back 

on Table

... ... ... ... ... ... ...

Placing
Bottle

......

Figure 4: Example labels for the actions ‘Baseball Pitch’ (top row) and ‘Pouring’ (bottom row). The key events are shown in boxes below

the frame (e.g. ‘Hand touches bottle’), and each frame in between two key events has a phase label (e.g. ‘Lifting bottle’).

Penn Action [52]. These datasets both contain videos of hu-

mans performing actions, and provide us with collections

of videos where dense alignment can be performed. While

Pouring focuses more on the objects being interacted with,

Penn Action focuses on humans doing sports or exercise.

Annotations. For evaluation purposes, we add two types of

labels to the video frames of these datasets: key events and

phases. Densely labeling each frame in a video is a difficult

and time-consuming task. Labelling only key events both

reduces the number of frames that need to be annotated,

and also reduces the ambiguity of the task (and thus the

disagreement between annotators). For example, annotators

agree more about the frame when the golf club hits the ball

(a key event) than when the golf club is at a certain angle.

The phase is the period between two key events, and all

frames in the period have the same phase label. It is similar

to tasks proposed in [9, 12, 23]. Examples of key events

and phases are shown in Figure 4, and Table 2 gives the

complete list for all the actions we consider.

We use all the real videos from the Pouring dataset, and

all but two action categories in Penn Action. We do not use

Strumming guitar and Jumping rope because it is difficult

to define unambiguous key events for these. We use the

train/val splits of the original datasets [35, 52]. We will

publicly release these new annotations.

4.1. Evaluation

We use three evaluation measures computed on the vali-

dation set. These metrics evaluate the model on fine-grained

temporal understanding of a given action. Note, the net-

works are first trained on the training set and then frozen.

SVM classifiers and linear regressors are trained on the fea-

tures from the networks, with no additional fine-tuning of

the networks. For all measures a higher score implies a bet-

ter model.

1. Phase classification accuracy: is the per frame phase

classification accuracy. This is implemented by training a

SVM classifier on the phase labels for each frame of the

training data.

2. Phase progression: measures how well the progress

of a process or action is captured by the embeddings. We

first define an approximate measure of progress through a

phase as the difference in time-stamps between any given

frame and each key event. This is normalized by the num-

ber of frames present in that video. Similar definitions can

be found in recent literature [8, 20, 26]. We use a linear

regressor on the features to predict the phase progression

values. It is computed as the the average R-squared mea-

sure (coefficient of determination) [47], given by:

R2 = 1−

∑n

i=1(yi − ŷi)
2

∑n

i=1(yi − ȳ)2

where yi is the ground truth event progress value, ȳ is the

mean of all yi and ŷi is the prediction made by the linear

regression model. The maximum value of this measure is 1.

3. Kendall’s Tau [48]: is a statistical measure that can

determine how well-aligned two sequences are in time. Un-

like the above two measures it does not require additional

labels for evaluation. Kendall’s Tau is calculated over ev-

ery pair of frames in a pair of videos by sampling a pair of

frames (ui, uj) in the first video (which has n frames) and

retrieving the corresponding nearest frames in the second

video, (vp, vq). This quadruplet of frame indices (i, j, p, q)
is said to be concordant if i < j and p < q or i > j and

p > q. Otherwise it is said to be discordant. Kendall’s Tau

is defined over all pairs of frames in the first video as:

τ =
(no. of concordant pairs − no. of discordant pairs)

n(n−1)
2

We refer the reader to [48] to check out the complete def-

inition. The reported metric is the average Kendall’s Tau

over all pairs of videos in the validation set. It is a measure

of how well the learned representations generalize to align-

ing unseen sequences if we used nearest neighbour match-

ing for aligning a pair of videos. A value of 1 implies the

videos are perfectly aligned while a value of -1 implies the

videos are aligned in the reverse order. One drawback of

Kendall’s tau is that it assumes there are no repetitive frames

in a video. This might not be the case if an action is being

done slowly or if there is periodic motion. For the datasets

we consider, this drawback is not a problem.

1805



Action Number of phases List of Key Events Train set size Val set size

Baseball Pitch 4 Knee fully up, Arm fully stretched out, Ball release 103 63

Baseball Swing 3 Bat swung back fully, Bat hits ball 113 57

Bench-press 2 Bar fully down 69 71

Bowling 3 Ball swung fully back, Ball release 134 85

Clean and jerk 6 Bar at hip, Fully squatting, Standing, Begin Thrusting, Beginning Balance 40 42

Golf swing 3 Stick swung fully back, Stick hits ball 87 77

Jumping jacks 4 Hands at shoulder (going up), Hands above head, Hands at shoulders (going down) 56 56

Pullups 2 Chin above bar 98 101

Pushups 2 Head at floor 102 105

Situps 2 Abs fully crunched 50 50

Squats 4 Hips at knees (going down), Hips at floor, Hips at knee (going up) 114 116

Tennis forehand 3 Racket swung fully back, Racket touches ball 79 74

Tennis serve 4 Ball released from hand, Racket swung fully back, Ball touches racket 115 69

Pouring 5 Hand touches bottle, Liquid starts exiting, Pouring complete, Bottle back on table 70 14

Table 2: List of all key events in each dataset. Note that each action has a Start event and End event in addition to the key events above.

5. Experiments

5.1. Baselines

We compare our representations with existing self-

supervised video representation learning methods. For

completeness, we briefly describe the baselines below but

recommend referring to the original papers for more details.

Shuffle and Learn (SaL) [27]. We randomly sample

triplets of frames in the manner suggested by [27]. We train

a small classifier to predict if the frames are in order or shuf-

fled. The labels for training this classifier are derived from

the indices of the triplet we sampled. This loss encourages

the representations to encode information about the order in

which an action should be performed.

Time-Constrastive Networks (TCN) [35]. We sample n

frames from the sequence and use these as anchors (as de-

fined in the metric learning literature). For each anchor, we

sample positives within a fixed time window. This gives

us n-pairs of anchors and positives. We use the n-pairs

loss [41] to learn our embedding space. For any particular

pair, the n-pairs loss considers all the other pairs as nega-

tives. This loss encourages representations to be disentan-

gled in time while still adhering to metric constraints.

Combined Losses. In addition to these baselines, we can

combine our cycle consistency loss with both SaL and

TCN to get two more training methods: TCC+SaL and

TCC+TCN. We learn the embedding by computing both

losses and adding them in a weighted manner to get the to-

tal loss, based on which the gradients are calculated. The

weights are selected by performing a search over 3 values

0.25, 0.5, 0.75. All baselines share the same video encoder

architecture, as described in section 3.4.

5.2. Ablation of Different Cycle Consistency Losses

We ran an experiment on the Pouring dataset to see how

the different losses compare against each other. We also re-

port metrics on the Mean Squared Error (MSE) version of

the cycle-back regression loss (Equation 4) which is formu-

lated by only minimizing |i − µ|2, ignoring the variance of

predictions altogether. We present the results in Table 3 and

observe that the variance aware cycle-back regression loss

outperforms both of the other losses in all metrics. We name

this version of cycle-consistency as the final temporal cycle

consistency (TCC) method, and use this version for the rest

of the experiments.

Phase Phase Kendall’s

Loss Classification(%) Progression Tau

Mean Squared Error 86.16 0.6532 0.6093

Cycle-back classification 88.06 0.6636 0.6707

Cycle-back regression 91.82 0.8030 0.8516

Table 3: Ablation of different cycle consistency losses.

5.3. Action Phase Classification

Self-supervised Learning from Scratch. We perform ex-

periments to compare different self-supervised methods for

learning visual representations from scratch. This is a chal-

lenging setting as we learn the entire encoder from scratch

without labels. We use a smaller encoder model (i.e. VGG-

M [11]) as the training samples are limited. We report the

results on the Pouring and Penn Action datasets in Table 4.

On both datasets, TCC features outperform the features

learned by SaL and TCN. This might be attributed to the

fact that TCC learns features across multiple videos during

training itself. SaL and TCN losses operate on frames from

a single video only but TCC considers frames from multiple

videos while calculating the cycle-consistency loss. We can

also compare these results with the supervised learning set-

ting (first row in each section), in which we train the encoder

using the labels of the phase classification task. For both

datasets, TCC can be used for learning features from scratch

and brings about significant performance boosts over plain

supervised learning when there is limited labeled data.

Self-supervised Fine-tuning. Features from networks

trained for the task of image classification on the Ima-

geNet dataset have been used for many other vision tasks.

They are also useful because initializing from weights of

1806



Datasets % of Labels → 0.1 0.5 1.0

Penn

Action

Supervised Learning 50.71 72.86 79.98

SaL [27] 66.15 71.10 72.53

TCN [35] 69.65 71.41 72.15

TCC (ours) 74.68 76.39 77.30

Pouring

Supervised Learning 62.01 77.67 88.41

SaL [27] 74.50 80.96 83.19

TCN [35] 76.03 83.27 84.57

TCC (ours) 86.82 89.43 90.21

Table 4: Phase classification results when training VGG-M from

scratch.

Datasets % of Labels → 0.1 0.5 1.0

Penn

Action

Supervised Learning 67.10 82.78 86.05

Random Features 44.18 46.19 46.81

ImageNet Features 44.96 50.91 52.86

SaL [27] 74.87 78.26 79.96

TCN [35] 81.99 83.67 84.04

TCC (ours) 81.26 83.35 84.45

TCC + SAL (ours) 81.93 83.46 84.29

TCC + TCN (ours) 84.27 84.79 85.22

Pouring

Supervised Learning 75.43 86.14 91.55

Random Features 42.73 45.94 46.08

ImageNet Features 43.85 46.06 51.13

SaL [27] 85.68 87.84 88.02

TCN [35] 89.19 90.39 90.35

TCC (ours) 89.23 91.43 91.82

TCC + SaL (ours) 89.21 90.69 90.75

TCC + TCN (ours) 89.17 91.23 91.51

Table 5: Phase classification results when fine-tuning ImageNet

pre-trained ResNet-50.

pre-trained networks leads to faster convergence. We train

all the representation learning methods mentioned in Sec-

tion 5.1 and report the results on the Pouring and Penn

Action datasets in Table 5. Here the encoder model is a

ResNet-50 [19] pre-trained on ImageNet dataset. We ob-

serve that existing self-supervised approaches like SaL and

TCN learn features useful for fine-grained video tasks. TCC

features achieve competitive performance with the other

methods on the Penn Action dataset while outperforming

them on the Pouring dataset. Interestingly, the best per-

formance is achieved by combining the cycle-consistency

loss with TCN (row 8 in each section). The boost in per-

formance when combining losses might be because train-

ing with multiples losses reduces over-fitting to cues using

which the model can minimize a particular loss. We can

also look at the first row of their respective sections to com-

pare with supervised learning features obtained by training

on the downstream task itself. We observe that the self-

supervised fine-tuning gives significant performance boosts

in the low-labeled data regime (columns 1 and 2).

1 2 3 5 10 43 86
Number of labeled videos

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

SAL

TCN

TCC

TCC + TCN

Supervised Learning

(a) Golf Swing

1 2 3 5 10 57 115
Number of labeled videos

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

SAL

TCN

TCC

TCC + TCN

Supervised Learning

(b) Tennis Serve

Figure 5: Few shot action phase classification. TCC features

provide significant performance boosts when there is a dearth of

labeled videos.

Self-supervised Few Shot Learning. We also test the use-

fulness of our learned representations in the few-shot sce-

nario: we have many training videos but per-frame labels

are only available for a few of them. In this experiment,

we use the same set-up as the fine-tuning experiment de-

scribed above. The embeddings are learned using either a

self-supervised loss or vanilla supervised learning. To learn

the self-supervised features, we use the entire training set of

videos. We compare these features against the supervised

learning baseline where we train the model on the videos

for which labels are available. Note that one labeled video

means hundreds of labeled frames. In particular, we want

to see how the performance on the phase classification task

is affected by increasing the number of labeled videos. We

present the results in Figure 5. We observe significant per-

formance boost using self-supervised methods as opposed

to just using supervised learning on the labeled videos. We

present results from Golf Swing and Tennis Serve classes

above. With only one labeled video, TCC and TCC+TCN

achieve the performance that supervised learning achieves

with about 50 densely labeled videos. This suggests that

there is a lot of untapped signal present in the raw videos

which can be harvested using self-supervision.

Dataset → Penn Action Pouring

Tasks → Progress τ Progress τ

SL from Scratch 0.5332 0.4997 0.5529 0.5282

SL Fine-tuning 0.6267 0.5582 0.6986 0.6195

SaL [27]

S
cr

a
tc

h 0.4107 0.4940 0.6652 0.6528

TCN [35] 0.4319 0.4998 0.6141 0.6647

TCC (ours) 0.5383 0.6024 0.7750 0.7504

SaL [27]

F
in

et
u

n
in

g 0.5943 0.6336 0.7451 0.7331

TCN [35] 0.6762 0.7328 0.8057 0.8669

TCC (ours) 0.6726 0.7353 0.8030 0.8516

TCC + SaL (ours) 0.6839 0.7286 0.8204 0.8241

TCC + TCN (ours) 0.6793 0.7672 0.8307 0.8779

Table 6: Phase Progression and Kendall’s Tau results. SL: Super-

vised Learning.

1807



Glass half full

Leg fully up before throwing

Query Retrieved Nearest Neighbors

Leg fully up after throwing

Hand places container back after pouring

Figure 6: Nearest neighbors in the embedding space can be used

for fine-grained retrieval.

Typical Activity

Anomalous Activity

Figure 7: Example of anomaly detection in a video. Distance

from typical action trajectories spikes up during anomalous activ-

ity.

5.4. Phase Progression and Kendall’s Tau

We evaluate the encodings for the remaining tasks de-

scribed in Section 4.1. These tasks measure the effective-

ness of representations at a more fine-grained level than

phase classification. We report the results of these exper-

iments in Table 6. We observe that when training from

scratch TCC features perform better on both phase progres-

sion and Kendall’s Tau for both the datasets. Additionally,

we note that Kendall’s Tau (which measures alignment be-

tween sequences using nearest neighbors matching) is sig-

nificantly higher when we learn features using the combined

losses. TCC + TCN outperforms both supervised learning

and self-supervised learning methods significantly for both

the datasets for fine-grained tasks.

6. Applications

Cross-modal transfer in Videos. We are able to align a

dataset of related videos without supervision. The align-

ment across videos enables transfer of annotations or other

modalities from one video to another. For example, we

can use this technique to transfer text annotations to an en-

tire dataset of related videos by only labeling one video.

One can also transfer other modalities associated with time

like sound. We can hallucinate the sound of pouring liq-

uids from one video to another purely on the basis of vi-

sual representations. We copy over the sound from the re-

trieved nearest neighbors and stitch the sounds together by

simply concatenating the retrieved sounds. No other post-

processing step is used. The results are in the supplemen-

tary material.

Fine-grained retrieval in Videos. We can use the nearest

neighbours for fine-grained retrieval in a set of videos. In

Figure 6, we show that we can retrieve frames when the

glass is half full (Row 1) or when the hand has just placed

the container back after pouring (Row 2). Note that in all

retrieved examples, the liquid has already been transferred

to the target container. For the Baseball Pitch class, the

learned representations can even differentiate between the

frames when the leg was up before the ball was pitched

(Row 3) and after the ball was pitched (Row 4).

Anomaly detection. Since we have well-behaved nearest

neighbors in the TCC embedding space, we can use the dis-

tance from an ideal trajectory in this space to detect anoma-

lous activities in videos. If a video’s trajectory in the em-

bedding space deviates too much from the ideal trajectory,

we can mark those frames as anomalous. We present an ex-

ample of a video of a person attempting to bench-press in

Figure 7. In the beginning the distance of the nearest neigh-

bor is quite low. But as the video progresses, we observe a

sudden spike in this distance (around the 20th frame) where

the person’s activity is very different from the ideal bench-

press trajectory.

Synchronous Playback. Using the learned alignments, we

can transfer the pace of a video to other videos of the same

action. We include examples of different videos playing

synchronously in the supplementary material.

7. Conclusion

In this paper, we present a self-supervised learning ap-

proach that is able to learn features useful for temporally

fine-grained tasks. In multiple experiments, we find self-

supervised features lead to significant performance boosts

when there is a lack of labeled data. With only one la-

beled video, TCC achieves similar performance to super-

vised learning models trained with about 50 videos. Addi-

tionally, TCC is more than a proxy task for representation

learning. It serves as a general-purpose temporal alignment

method that works without labels and benefits any task (like

annotation transfer) which relies on the alignment itself.
Acknowledgements: We would like to thank Anelia An-

gelova, Relja Arandjelović, Sergio Guadarrama, Shefali Umrania,

and Vincent Vanhoucke for their feedback on the manuscript. We

are also grateful to Sourish Chaudhuri for his help with the data

collection and Alexandre Passos, Allen Lavoie, Bryan Seybold,

and Priya Gupta for their help with the infrastructure.

1808



References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementa-

tion ({OSDI} 16), pages 265–283, 2016. 4
[2] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal,

Ivan Laptev, Josef Sivic, and Simon Lacoste-Julien. Unsu-

pervised learning from narrated instruction videos. In Com-

puter Vision and Pattern Recognition (CVPR), 2016. 3
[3] Theodore Wilbur Anderson. An introduction to multivariate

statistical analysis, volume 2. Wiley New York, 1958. 2
[4] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen

Livescu. Deep canonical correlation analysis. In Interna-

tional Conference on Machine Learning, pages 1247–1255,

2013. 2
[5] Rodrigo Santa Cruz Basura Fernando Anoop and

Cherian Stephen Gould. Deeppermnet: Visual permu-

tation learning. learning, 33:25. 3
[6] Relja Arandjelovic and Andrew Zisserman. Look, listen and

learn. In 2017 IEEE International Conference on Computer

Vision (ICCV), pages 609–617. IEEE, 2017. 2
[7] Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine,

Ziyu Wang, and Nando de Freitas. Playing hard ex-

ploration games by watching youtube. arXiv preprint

arXiv:1805.11592, 2018. 2, 3
[8] Federico Becattini, Tiberio Uricchio, Lorenzo Seidenari,

Alberto Del Bimbo, and Lamberto Ballan. Am i done?

predicting action progress in videos. arXiv preprint

arXiv:1705.01781, 2017. 5
[9] Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev,

Jean Ponce, Cordelia Schmid, and Josef Sivic. Weakly super-

vised action labeling in videos under ordering constraints. In

European Conference on Computer Vision, pages 628–643.

Springer, 2014. 5
[10] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE

Conference on, pages 4724–4733. IEEE, 2017. 1
[11] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-

drew Zisserman. Return of the devil in the details:

Delving deep into convolutional nets. arXiv preprint

arXiv:1405.3531, 2014. 4, 6
[12] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,

Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide

Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.

Scaling egocentric vision: The epic-kitchens dataset. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 720–736, 2018. 5
[13] Luca Del Pero, Susanna Ricco, Rahul Sukthankar, and Vit-

torio Ferrari. Articulated motion discovery using pairs of

trajectories. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2151–2160,

2015. 2
[14] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 1422–1430, 2015. 3
[15] Carl Doersch and Andrew Zisserman. Multi-task self-

supervised visual learning. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2051–2060,

2017. 3
[16] Basura Fernando, Hakan Bilen, Efstratios Gavves, and

Stephen Gould. Self-supervised video representation learn-

ing with odd-one-out networks. In Computer Vision and Pat-

tern Recognition (CVPR), 2017 IEEE Conference on, pages

5729–5738. IEEE, 2017. 3
[17] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,

and Bryan Russell. Actionvlad: Learning spatio-temporal

aggregation for action classification. In CVPR, volume 2,

page 3, 2017. 2
[18] Jacob Goldberger, Geoffrey E Hinton, Sam T Roweis, and

Ruslan R Salakhutdinov. Neighbourhood components anal-

ysis. In Advances in Neural Information Processing Systems,

pages 513–520, 2005. 3
[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3, 4, 7
[20] Farnoosh Heidarivincheh, Majid Mirmehdi, and Dima

Damen. Action completion: A temporal model for moment

detection. arXiv preprint arXiv:1805.06749, 2018. 2, 5
[21] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei A Efros, and Trevor Dar-

rell. Cycada: Cycle-consistent adversarial domain adapta-

tion. arXiv preprint arXiv:1711.03213, 2017. 2
[22] Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature

extraction by time-contrastive learning and nonlinear ica. In

Advances in Neural Information Processing Systems, pages

3765–3773, 2016. 3
[23] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language

of actions: Recovering the syntax and semantics of goal-

directed human activities. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

780–787, 2014. 5
[24] Tian Lan, Yuke Zhu, Amir Roshan Zamir, and Silvio

Savarese. Action recognition by hierarchical mid-level ac-

tion elements. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4552–4560, 2015. 2
[25] Colin Lea, Austin Reiter, René Vidal, and Gregory D Hager.

Segmental spatiotemporal cnns for fine-grained action seg-

mentation. In European Conference on Computer Vision,

pages 36–52. Springer, 2016. 2
[26] Shugao Ma, Leonid Sigal, and Stan Sclaroff. Learning activ-

ity progression in lstms for activity detection and early detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1942–1950, 2016. 5
[27] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuf-

fle and learn: unsupervised learning using temporal order

verification. In European Conference on Computer Vision,

pages 527–544. Springer, 2016. 2, 3, 6, 7
[28] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Le-

ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-

ric learning using proxies. In Computer Vision (ICCV), 2017

IEEE International Conference on, pages 360–368. IEEE,

2017. 3
[29] Hamed Pirsiavash and Deva Ramanan. Parsing videos of

actions with segmental grammars. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 612–619, 2014. 2

1809



[30] Jérôme Revaud, Matthijs Douze, Cordelia Schmid, and

Hervé Jégou. Event retrieval in large video collections with

circulant temporal encoding. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2459–2466, 2013. 2
[31] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelović, Akihiko

Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood consen-

sus networks. In Advances in Neural Information Processing

Systems, pages 1658–1669, 2018. 3
[32] Artsiom Sanakoyeu, Miguel A Bautista, and Björn Ommer.

Deep unsupervised learning of visual similarities. Pattern

Recognition, 78:331–343, 2018. 3
[33] Fadime Sener and Angela Yao. Unsupervised learning

and segmentation of complex activities from video. arXiv

preprint arXiv:1803.09490, 2018. 2
[34] Ozan Sener, Amir R Zamir, Silvio Savarese, and Ashutosh

Saxena. Unsupervised semantic parsing of video collec-

tions. In Proceedings of the IEEE International Conference

on Computer Vision, pages 4480–4488, 2015. 2
[35] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine

Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-

contrastive networks: Self-supervised learning from video.

Proceedings of International Conference in Robotics and Au-

tomation (ICRA). 2, 3, 4, 5, 6, 7
[36] Eli Shechtman and Michal Irani. Matching local self-

similarities across images and videos. In 2007 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1–8. IEEE, 2007. 2
[37] Gunnar Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali

Farhadi, and Karteek Alahari. Actor and observer: Joint

modeling of first and third-person videos. In CVPR-IEEE

Conference on Computer Vision & Pattern Recognition,

2018. 2
[38] Gunnar A Sigurdsson, Santosh Kumar Divvala, Ali Farhadi,

and Abhinav Gupta. Asynchronous temporal fields for action

recognition. In CVPR, volume 5, page 7, 2017. 2
[39] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 3
[40] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-

cal networks for few-shot learning. In Advances in Neural

Information Processing Systems, pages 4077–4087, 2017. 3
[41] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In Advances in Neural Informa-

tion Processing Systems, pages 1857–1865, 2016. 6
[42] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. arXiv preprint arXiv:1212.0402, 2012. 1
[43] Fan Wang, Qixing Huang, and Leonidas J Guibas. Image co-

segmentation via consistent functional maps. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 849–856, 2013. 2
[44] Fan Wang, Qixing Huang, Maks Ovsjanikov, and Leonidas J

Guibas. Unsupervised multi-class joint image segmentation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3142–3149, 2014. 2
[45] Heng Wang and Cordelia Schmid. Action recognition with

improved trajectories. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 3551–3558,

2013. 3
[46] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In European Conference on Computer Vision, pages

20–36. Springer, 2016. 2
[47] Wikipedia contributors. Coefficient of determination —

Wikipedia, the free encyclopedia, 2018. 5
[48] Wikipedia contributors. Kendall rank correlation coefficient

— Wikipedia, the free encyclopedia, 2018. 5
[49] Kyle Wilson and Noah Snavely. Network principles for sfm:

Disambiguating repeated structures with local context. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 513–520, 2013. 2
[50] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo An-

driluka, Greg Mori, and Li Fei-Fei. Every moment counts:

Dense detailed labeling of actions in complex videos. In-

ternational Journal of Computer Vision, 126(2-4):375–389,

2018. 2
[51] Christopher Zach, Manfred Klopschitz, and Marc Pollefeys.

Disambiguating visual relations using loop constraints. In

Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 1426–1433. IEEE, 2010. 2
[52] Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpanis.

From actemes to action: A strongly-supervised representa-

tion for detailed action understanding. In Proceedings of the

IEEE International Conference on Computer Vision, pages

2248–2255, 2013. 2, 5
[53] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xi-

aoou Tang, and Dahua Lin. Temporal action detection with

structured segment networks. ICCV, Oct, 2, 2017. 2
[54] Tinghui Zhou, Yong Jae Lee, Stella X Yu, and Alyosha A

Efros. Flowweb: Joint image set alignment by weaving con-

sistent, pixel-wise correspondences. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1191–1200, 2015. 2
[55] Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing

Huang, and Alexei A Efros. Learning dense correspondence

via 3d-guided cycle consistency. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 117–126, 2016. 2
[56] Xiaowei Zhou, Menglong Zhu, and Kostas Daniilidis. Multi-

image matching via fast alternating minimization. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 4032–4040, 2015. 2
[57] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using

cycle-consistent adversarial networks. arXiv preprint

arXiv:1703.10593, 2017. 2

1810


