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Abstract

Transfer learning is widely used in deep neural network

models when there are few labeled examples available. The

common approach is to take a pre-trained network in a sim-

ilar task and finetune the model parameters. This is usu-

ally done blindly without a pre-selection from a set of pre-

trained models, or by finetuning a set of models trained

on different tasks and selecting the best performing one

by cross-validation. We address this problem by propos-

ing an approach to assess the relationship between visual

tasks and their task-specific models. Our method uses Rep-

resentation Similarity Analysis (RSA), which is commonly

used to find a correlation between neuronal responses from

brain data and models. With RSA we obtain a similar-

ity score among tasks by computing correlations between

models trained on different tasks. Our method is efficient

as it requires only pre-trained models, and a few images

with no further training. We demonstrate the effectiveness

and efficiency of our method for generating task taxonomy

on Taskonomy dataset. We next evaluate the relationship

of RSA with the transfer learning performance on Taskon-

omy tasks and a new task: Pascal VOC semantic segmen-

tation. Our results reveal that models trained on tasks with

higher similarity score show higher transfer learning per-

formance. Surprisingly, the best transfer learning result for

Pascal VOC semantic segmentation is not obtained from the

pre-trained model on semantic segmentation, probably due

to the domain differences, and our method successfully se-

lects the high performing models.

1. Introduction

For an artificial agent to perform multiple tasks and learn

in a life-long manner, it should be able to re-utilize infor-

mation acquired in previously learned tasks and transfer it

to learn new tasks from a few examples. A solution to the

aforementioned setting is to use transfer learning. Transfer

learning allows to leverage representations learned from one

a)

b)

Figure 1. Aims of this paper: a) Deploy a strategy for model

selection in transfer learning by b) Finding relationship between

visual tasks.

task to facilitate learning of other tasks, even when labeled

data is expensive or difficult to obtain. [30, 3, 23, 10].

With the recent success of deep neural networks (DNN),

these have become the ipso facto models for almost all vi-

sual tasks [20, 32, 14, 35, 13, 34]. The deployment of

DNN has become possible mostly due to a large amount

of available labeled data, as well as advances in comput-

ing resources [20, 32, 14]. The need for data is a limita-

tion that researchers have overcome by introducing transfer

learning techniques. Transfer learning in DNN commonly

consists of taking a pre-trained model in a similar task or
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domain, and finetune the parameters to the new task. For

instance, [30, 10] used a pre-trained model on ImageNet

and finetuned it for object detection on Pascal VOC.

With a large number of pre-trained models (Figure 1a)

available, trained on a variety of vision tasks, it is not trivial

how to select a pre-trained representation suitable for trans-

fer learning. To devise a model selection strategy, it is cru-

cial to understand the underlying structure and relationship

between tasks (Figure 1b). If the relationship between dif-

ferent tasks is known, the model selection can be performed

by evaluating similarity rankings of different tasks with a

new task, using available pre-trained models.

In a recent work, [34] modeled the relationship between

tasks with a fully computational approach. They also in-

troduce a dataset called Taskonomy, which contains labels

of different visual tasks, ranging from object classification

to edge occlusions detection. In this paper, we use the term

Taskonomy for both the approach and the dataset from [34].

Taskonomy approach successfully computes the rela-

tionship between tasks. Yet, the relationship between a

new task with an existing set of tasks is calculated with the

transfer learning performance, which is tedious and com-

putationally expensive. The performance on the new task

is referred to transfer learning performance. To obtain the

relationship of all previous tasks with the new task, Taskon-

omy approach also needs to compute the transfer learning

performance on all the previous tasks using a model trained

on the new task as a source. This defeats the purpose of not

training a model from scratch for the new task, and all the

procedure is computationally demanding as it is repeated

for all the existing set of specific-task models. In this work,

we address the above limitations by providing an alternative

method to find the relationship between tasks.

We propose a novel approach to obtain task relationships

using representation similarity analysis (RSA). In compu-

tational neuroscience, RSA is widely used as a tool to

compare brain responses with computational and behav-

ioral models. Motivated by the success of RSA in neuro-

science [18, 4, 16, 1, 5, 25, 11], we investigate the applica-

tion of RSA in obtaining task similarities (Figure 1b) and in

transfer learning (Figure 1a). Our approach relies on the as-

sumption that the representations of the models that perform

a related task will be more similar as compared to tasks that

are not related, which we validate in our analysis.

In our approach, we compute the similarity scores us-

ing pre-trained task-specific models and a few examples.

Thus, our RSA method only requires the representations of

a few randomly selected images for all the tasks to compute

the similarity, and we do not need to obtain transfer learn-

ing performance by finetuning on previous tasks’ models.

Further, we show in our results on Taskonomy dataset that

task ranking similarity is independent of model size. Us-

ing small models trained with few samples for the existing

tasks show similar results as the high performing models

trained with all images. This allows to save computational

time and memory, as well as it is more scalable to new tasks

compared to Taskonomy approach.

We first validate the transfer learning applicability of our

method on Taskonomy dataset. We find that for 16 out

17 Taskonomy tasks, the best model selected using RSA

is in top-5 according to transfer learning performance. We

also report results on Pascal VOC semantic segmentation

task by analyzing the relationship of RSA similarity scores

and the transfer learning performance. Our results show a

strong relationship between RSA similarity score and trans-

fer learning performance. We note that semantic segmen-

tation model from Taskonomy dataset showed a lower sim-

ilarity score than most of the 3D and semantic tasks, and

a similar trend was observed in transfer learning perfor-

mance. Our results suggest that in domain-shift, a model

trained on the same task may not be the best option for

transfer learning, and using our similarity score one can find

a better model to achieve better performance. Using our

RSA similarity scores method, we can select models with

better transfer learning performance.

2. Related Works

Here, we discuss the works that are most closely related

to the aim of this paper, namely transfer learning in DNNs

and Taskonomy. Then, we briefly introduce the computa-

tional neuroscience literature that motivated our work.

2.1. Transfer Learning

The usual transfer learning approach in deep neural net-

works (DNNs) is to take a model pre-trained on a large

dataset with annotations as an initialization of a part of

the model. Then, some or all of the parameters are fine-

tuned with backpropagation for a new task. The finetun-

ing is performed because for most of the tasks there are in-

sufficient annotations to train a DNN from scratch, which

would lead to overfitting. Most of the works in the litera-

ture generally initialize the model parameters from a model

pre-trained on Imagenet [6] dataset for image classifica-

tion [20, 32, 14, 31, 22]. For example, [30] use Imagenet

initialized models for object detection on Pascal VOC, [23]

use Imagenet initialized models for semantic segmentation.

It has been noted in multiple works [24, 33, 28], that

the initialization plays a significant role in performance in

transfer learning. Hence, a strategy is required to select

models for initialization. Our proposed similarity-based

ranking approach offers a solution to this problem, and as

we discuss in the rest of the paper, tackles the limitations

from Taskonomy [34], which is one of the first attempts to

tackle the model selection for transfer learning in DNN.
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2.2. Taskonomy

Our work is most closely related to Taskonomy [34],

where the aim is to find the underlying task structure

by computing the transfer performance among tasks. To

achieve this goal, they create a dataset of indoor scene im-

ages with annotations available for 26 vision tasks. The

task set, which they refer as task dictionary, covers com-

mon 2D, 3D, and semantics computer vision tasks. Then,

task-specific independent models are trained in a fully su-

pervised manner for each task in the task dictionary. They

obtain a task similarity score by comparing the transfer

learning performance from each of the task-specific models

and computing an affinity matrix using a function of trans-

fer learning performance. In this paper, instead of trans-

fer learning performance, we rely on the similarity of the

feature maps of the pre-trained models. Thus, we avoid

additional training on pre-trained models to obtain transfer

learning performance, saving computational time and mem-

ory, and still obtaining a meaningful relation with transfer

learning performance as we will see in the results section.

2.3. Similarity of computational models and brain
responses

In computational neuroscience, representation similarity

analysis (RSA) is widely used to compare a computational

or behavioral model with the brain responses. In [18], RSA

is used to compute similarities between brain responses in

different regions of visual cortex with categorical models

and computational vision models. In [16], the authors use

several unsupervised and supervised vision models to show

that supervised models explain IT cortical area better than

unsupervised models, and [25] uses RSA to correlate the

dynamics of the visual system with deep neural networks.

We note that as the approach can be used to assess the sim-

ilarity between a computational model and brain data, the

approach can also be utilized to assess similarities between

two computational models. RSA has been rarely used in the

pure computational domain. Only in [26] the RSA was in-

troduced as a loss function for knowledge distillation [15],

and in [27], the consistency of RSA correlations with dif-

ferent random initialization seeds within the same model

trained on CIFAR-10 [19] dataset is explored. However,

RSA is still unexplored in comparing DNNs for assessing

similarity among them. Our work introduces, for the first

time, the use of RSA as a similarity measure to find the

relationship between tasks, and we believe it opens a new

research line for the deep learning and computer vision.

We use RSA similarity measure for two applications

namely task taxonomy and transfer learning. Our approach

is not limited to only these two applications and can be

further applied in other computer vision problems. For in-

stance, in multi-task learning [17, 13, 7, 21, 8] RSA could

be used for deciding different branching out locations for

Figure 2. Representation Similarity Analysis (RSA): a) Repre-

sentation dissimilarity matrices (RDMs) are generated by comput-

ing the pairwise dissimilarity (1 - Pearson’s correlation) of each

image pair in a subset of selected images. b) Similarity score:

Spearman’s correlation (rs) (denoted with •) of the low triangu-

lar RDMs of the two models is used as the similarity score. Here

DNN1 and DNN2 refer to the models trained on task 1 and 2 re-

spectively.

different tasks, depending on their similarity with the repre-

sentations at different depth of the shared root.

3. Representation Similarity Analysis (RSA)

Representation Similarity Analysis (RSA) [18], illus-

trated in Figure 2, is a widely used data-analytical frame-

work in the field of computational neuroscience to quanti-

tatively relate the brain activity measurement with compu-

tational and behavioral models. In RSA, a computational

model and brain activity measurements are related by com-

paring representation-activity dissimilarity matrices. The

dissimilarity matrices are obtained by comparing the pair-

wise dissimilarity of activity/representation associated with

each pair of conditions.

In this work, we introduce RSA as a tool to quantify the

relationship between DNNs and its application in transfer

learning for model selection. We explain the steps to obtain

the dissimilarity matrix for a computational model such as

DNN in the following paragraph.
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Representation Dissimilarity Matrix (RDM) We first

select a subset of images as conditions for dissimilarity

computation. For a given DNN, we then obtain the rep-

resentation of each image by performing a forward pass

through the model. For each pair of conditions (images),

we compute a dissimilarity score 1−ρ, where ρ is the Pear-

son’s correlation coefficient. The RDM for this subset of

conditions is then populated by the dissimilarity scores for

each pair of conditions, see Figure 2a.

In our method, the RDMs computed for DNNs are used

for obtaining the similarity between two computer vision

tasks. Note that by using RDMs, the representation for

different tasks can be of different length. The similarity

is computed with the Spearman’s correlation (rs) between

the upper or lower triangular part of the RDMs of the two

DNNs. This is: rs = 1 −
6
∑

d
2

i

n(n2
−1) , where di is the differ-

ence between the ranks of ith elements of the lower triangu-

lar part of the two RDMs in Figure 2b, and n are the number

of elements in the lower triangular part of the RDM.

The Spearman’s correlation provides a quantitative mea-

sure of similarity between the task the DNNs were opti-

mized for (Figure 2b). We explore the application of this

similarity score in obtaining the relationship between com-

puter vision tasks [34], and in transfer learning.

4. RSA for Task Taxonomy and

Transfer Learning

In this section, we introduce our RSA approach for get-

ting a task taxonomy of computer vision tasks, as well as

its application in transfer learning. We show the effec-

tiveness of RSA for obtaining task similarity by answering

three questions: 1) we investigate if we can group tasks into

meaningful clusters based on task type using RSA on pre-

trained task-specific models; 2) we analyze if the perfor-

mance is important for computing task similarity or we can

use a smaller subset of data with smaller suboptimal mod-

els; and 3) we investigate if the similarity we obtain using

RSA is related to transfer learning.

4.1. Is task similarity related to task type?

We validate our hypothesis that tasks similar according

to RSA are grouped into clusters according to task type,

for instance, 2D, 3D, semantic. To do so, we randomly se-

lect 500 images from the Taskonomy dataset, and select 201

tasks from the task dictionary. Then, we compute the RDMs

of the pre-trained models for each of the 20 tasks using the

task-specific representations of the 500 sampled images, as

described in section 3. The task-specific representations are

obtained by doing a forward pass on the pre-trained task-

specific DNN models. With the resulting RDMs per task,

we compute a pairwise correlation of RDMs of each task

1we exclude Jigsaw task as it is unrelated to all other tasks

with the 19 other tasks to get a 20 × 20 task similarity ma-

trix (Figure 3a). We perform a hierarchical clustering from

the similarity matrix, to visualize if the clustering groups the

tasks according to the task type or some other criteria. We

report the results in the experiments section and compare it

with the clustering obtained with the Taskonomy approach.

We note that RSA is symmetric, as compared to the

transfer performance based metric in Taskonomy [34]. Yet,

symmetry does not affect task similarity rankings, as the po-

sitions of the tasks in the rankings are computed by relative

comparison, and therefore, independent of symmetry.

4.2. Does ranking using RSA depends on dataset
and model size?

We analyze whether RSA based task similarity depends

on the model size and amount of training data. Intuitively,

it should be independent of model and dataset size, because

our method is based on relative similarities. To investi-

gate this, we select a subset of Taskonomy tasks (details

in supp. material section S1) and trained smaller models,

one per task, with fewer parameters than the models pro-

vided by Taskonomy, and on a small subset of Taskonomy

data. First, we evaluate if we obtain a similar task clus-

tering using the small models on the selected tasks. Then,

for each small model, we compute the similarity score

with the pre-trained Taskonomy models on all 20 tasks.

The same analysis is repeated with pre-trained Taskonomy

model trained on the same task, and we compare the relative

similarity based rankings of the small and Taskonomy high-

performing models. If the relative rankings of both small

and Taskonomy model are similar, then the result suggests

that for a completely new task one can train a small model

and compute similarity scores to rank them.

4.3. Is RSA related to transfer performance?

We investigate if RSA based task similarity can be

applied to transfer learning problem. We first compute

the correlation between each column of Taskonomy affin-

ity matrix with RSA matrix after removing the diagonal.

As the Taskonomy affinity matrix is populated by raw

losses/evaluations, it is indicative of transfer learning per-

formance [34]. We next select a task and dataset differ-

ent from Taskonomy and obtained the similarity scores of a

model trained on the new task with Taskonomy pre-trained

models. The pre-trained models were ranked according to

the similarity score. We then use the pre-trained models for

initializing the model and add the last task dependent layers

on top of the initialized model to train on the new task. The

ranking based on the transfer performance is compared with

the ranking based on RSA to evaluate the relation between

transfer performance and RSA. As we will see in the results,

RSA can be used to select the high performing models for

transfer learning.
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Figure 3. Our approach: a) RSA of task-specific pre-trained DNN models (from Taskonomy) to compute a task similarity matrix, b) RSA

of small model (SDNN) trained on small datasets and comparison with Taskonomy pre-trained models. c) RSA of small model (SDNNPV)

trained on new task (Pascal VOC semantic segmentation) with Taskonomy pretrained models.

5. Experimental set-up

We first provide the details of datasets used for the exper-

iments, followed by the details of the models’ architecture.

5.1. Datasets

Taskonomy dataset It includes over 4 million indoor im-

ages from 500 buildings with annotations available for 26

image tasks. 21 of these tasks are single image tasks, and

5 tasks are multi-image tasks. For this work, we select 20

single image task for obtaining task similarities1.

We randomly selected 500 images from the Taskonomy

training dataset as 500 different conditions to perform RSA.

These images are used as input to generate representations

of different task-specific models to compute the RDMs.

To analyze the dependency of RSA on dataset and model

size used for training, we select one building (Hanson) from

Taskonomy dataset, which contains 12138 images. We di-

vide them into 10048 training and 2090 validation images.

Pascal VOC semantic segmentation To evaluate the ap-

plication of RSA in transfer learning, we select the Pas-

cal VOC [9, 12] dataset for semantic segmentation task. It

has pixelwise annotations for 10, 582 training images,1, 449

validation and 1, 456 test images. We argue that this task is

different from the Taskonomy semantic segmentation as the

images are from a different domain.

5.2. Models

Below, we provide details of the network architectures

of pre-trained Taskonomy models, small models trained for

Taskonomy tasks, and models used for Pascal VOC.

Taskonomy models The Taskonomy models 2 consist of

an encoder and decoder. The encoder for all the tasks is a

Resnet-50 [14] model followed by convolution layer that

compresses the channel dimension of the encoder output

from 2048 to 8. The decoder is task-specific and varies ac-

cording to the task. For classification tasks and tasks where

the output is low dimensional the decoder consists of 2-3

fully connected (FC) layers. For all the other tasks, the

decoder consists of 15 layers (except colorization with 12

layers) consisting of convolution and deconvolution layers.

We select the final compressed output of the encoder as

the representation for RSA as in [34]. In Taskonomy ap-

proach, the compressed output of the encoder was used as

an input to transfer function to evaluate the transfer learn-

ing performance. Selecting the compressed output of the

encoder ensures that the architecture for all the task is the

same, and the differences in representation can only arise

due to the task that the model was optimized for, as images

are also the same for all tasks.

We also explore the representation of earlier layers of the

encoder and the task labels as the representation for comput-

ing RSA based similarity score. We perform this analysis

to investigate how task specificity varies across the depth in

the network and if the task’s labels are enough to understand

the relationship between tasks.

Small models The smaller version of the models follows

a similar style to Taskonomy and consists of an encoder

and decoder. The encoder consists of 4 convolution layer

each with a stride of 2 to generate a final feature map with

the dimensions same as that of Taskonomy encoder. For

2publicly available at https://github.com/StanfordVL/taskonomy
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