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Abstract

Generative Adversarial Networks have a surprising abil-

ity to generate sharp and realistic images, but they are

known to suffer from the so-called mode collapse problem.

In this paper, we propose a new GAN variant called Mix-

ture Density GAN that overcomes this problem by encour-

aging the Discriminator to form clusters in its embedding

space, which in turn leads the Generator to exploit these

and discover different modes in the data. This is achieved

by positioning Gaussian density functions in the corners of

a simplex, using the resulting Gaussian mixture as a like-

lihood function over discriminator embeddings, and for-

mulating an objective function for GAN training that is

based on these likelihoods. We show how formation of

these clusters changes the probability landscape of the dis-

criminator and improves the mode discovery of the GAN.

We also show that the optimum of our training objective

is attained if and only if the generated and the real dis-

tribution match exactly. We support our theoretical re-

sults with empirical evaluations on three mode discovery

benchmark datasets (Stacked-MNIST, Ring of Gaussians

and Grid of Gaussians), and four image datasets (CIFAR-

10, CelebA, MNIST, and Fashion-MNIST). Furthermore, we

demonstrate (1) the ability to avoid mode collapse and dis-

cover all the modes and (2) superior quality of the gener-

ated images (as measured by the Fréchet Inception Distance

(FID)), achieving the lowest FID compared to all baselines.

1. Introduction

Generative Adversarial Networks (GANs) [11] learn an

implicit estimate of the Probability Density Function (PDF)

underlying a set of training data, and can learn to generate

realistic new samples. One of the known issues in GANs is

the so-called mode collapse [1, 10, 22], where the generator

misses many modes when trained on a multi-modal dataset,

and achieves a low diversity in generating samples.

In this paper, we propose Mixture Density GAN (MD-

GAN), which is capable of generating high-quality sam-

ples, and in addition copes with the mode collapse prob-

lem and enables the GAN to generate samples with a high

variety. The central idea of MD-GAN is to enable the dis-

criminator to create several clusters in its output embedding

space for real images, and therefore provide better means

for distinguishing not only real and fake, but also between

different kinds of real images.

The discriminator in MD-GAN forms a number of clus-

ters1 over embeddings of real images which represent clus-

ters in the real data. To fool the discriminator, the generator

then has to generate images that the discriminator has to

embed close to the center of these clusters to increase the

likelihood of the generated images using the mixture den-

sity function. As there are multiple clusters, the generator

can discover various modes by generating images that end

up in various clusters in the discriminator embedding space.

MD-GAN’s Discriminator uses a d-dimensional embed-

ding space and is provided with an objective function that

pushes it towards forming clusters in this space that are ar-

ranged in the form of a Simplex2: each cluster center is lo-

cated in one of the vertices of this simplex.

In our experiments, we use seven benchmark datasets to

demonstrate the ability of MD-GAN to generate samples

with good quality and high variety, and to avoid mode col-

lapse. We show that MD-GAN outperforms the state of the

art, discovering the most number of modes in three bench-

mark datasets designed for evaluating mode collapse. Com-

paring our results to state-of-the-art methods in terms of the

Fréchet Inception Distance (FID) [14] using only the basic

DCGAN [28] architecture, we will demonstrate that MD-

GAN also achieves state-of-the-art image quality.

1The number of clusters is a parameter that can be set.
2A simplex is a generalization of the notion of a tetrahedron with d

dimensions and d+1 vertices [25]. The cluster centers are thus equidistant.
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2. Related Work

GANs exhibit a surprising ability to generate sharp and

realistic images – in contrast to the blurry images gener-

ated via other techniques such as VAEs [15] –, but they

are known to be difficult to train. Since the advent of the

first GAN (‘vanilla’) [11], many variations have been pro-

posed to make training easier by optimizing an alternative

objective function. The Energy-Based GAN (EBGAN) [35]

and its improved variant Boundary-Equilibrium GAN (BE-

GAN) [3] use an auto-encoder as discriminator and recon-

struction loss as an energy function that assigns low ener-

gies to the regions near the data manifold and higher en-

ergies to others. The Wasserstein GAN (WGAN) [2] and

Wasserstein GAN with Gradient Penalty (WGAN-GP) [12]

minimize the Wasserstein distance between the activations

of real and fake images in a Lipschitz-constraint discrim-

inator. The McGAN [26] minimizes moment distances as

proposed in [33, 34]. SpectralNormGAN [24] controls the

Lipschitz constant of the discriminator using a novel weight

normalization technique and achieves training stability. In-

foGAN [5] disentangles the latent space of the generator by

maximising the mutual information between a subset of the

noise and the generated image, and stabilizes the training.

DeliGAN [13] increases the intra-class diversity in low-data

regimes by using a more expressive noise distribution drawn

from a Gaussian Mixture.

Some authors have investigated solutions to the mode

collapse problem. A Bayesian formulation is used [27]

to optimize a GAN using stochastic gradient Hamiltonian

Monte Carlo, which makes for more diverse generated sam-

ples. In [7] multiple discriminators are used to avoid mode

collapse while [9] laverages multiple generators to improve

the mode discovery. VEEGAN [29], uses a discriminator

that auto-encodes Gaussian noise and succeeds in discov-

ering the modes in the data, though it does not assess the

quality of generated images. Unrolled GAN [23] ”unrolls”

several gradient steps ahead when computing the gradients

for the generator to tell the generator how the discriminator

will behave in the next updates.

Our work is different from [7, 9] since it uses a sin-

gle discriminator and generator, in contrast to the multi-

discriminator and multi-agent GANs which uses an ensem-

ble of discriminators and generators. MD-GAN differs

from [27], which requires time-consuming MC sampling,

and from [5] that minimises mutual information. MD-GAN

uses equal updates in discriminator and generator, hence

different from [30, 23, 24], which require several additional

updates to compute the gradients for a single update of gen-

erator/discriminator. MD-GAN uses a simple uniform noise

and a vanilla generator, hence differs from [13]. Hence,

MD-GAN is computationally more efficient and memory-

friendly. Also, MD-GAN differs from VEEGAN [29] as

it does not require an additional inference model for auto-

encoding: MG-GAN does not auto-encode. VEEGAN’s

objective is built upon a Gaussian distribution used in both

the discriminator and the generator, which has to match.

This limits VEEGAN since choosing the distribution of the

noise in the generator can indeed negatively affect the qual-

ity and diversity of a GAN as discussed in [31]. In contrast,

MD-GAN allows the noise distribution in the generator to

be selected independently from the embedding distribution

in the discriminator.

3. Background

3.1. Generative Adversarial Networks

A GAN usually consists of two neural networks compet-

ing with each other: (1) A generator network G that decodes

noise vectors into images, and (2) a discriminator network

D that encodes images into a notion of probability of an im-

age being real or fake. A real image is one from a dataset

of training images; an image generated by the generator is

considered a ‘fake’.

The generator tries to fool the discriminator by learning

to generate images that in the discriminator produce high

probabilities of being real and that thus cannot be distin-

guished from real images by the discriminator. For this

game to go on, the discriminator is trained to produce high

probabilities for images coming from the real image dataset,

and low probabilities for images coming from the genera-

tor. As training continues, the generator learns to generate

images that produce high probabilities in the discriminator,

which usually look also realistic to humans and are visually

similar to samples from the training dataset.

3.2. The Vanilla GAN Objectives

The loss of discriminator D and generator G in the two-

player minimax game of the Vanilla GAN was introduced

in [11] as

min
G

max
D

L(G,D) =min
G

max
D

(

Ex∼pdata

[

logD(x)
]

+ Ez∼pz

[

log(1−D(G(z)))
])

(1)

where for a given input image x, the discriminator D
outputs an estimated probability of the image coming from

the dataset of real images. pdata represents the distribu-

tion of real images, and pz the distribution of noise. z is

an observation from a random distribution pz; generator G
creates a fake image using this z. These two objectives

and their differences are discussed in detail in [10, 8]. In

the present paper, the GAN proposed in [11] will be called

vanilla GAN.

3.3. Mode Collapse Problem

As explained above, mode collapse happens when the

generator generates only samples from a number of modes
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in the data. To understand the reasons for mode collapse, we

first have to keep in mind that the objective of the GAN is

a minimax objective, and two networks play against each

other, where the generator tries to fool the discriminator

by generating samples that are similar to the real samples,

while the discriminator tries to distinguish the fake samples

from the real ones. However, the fake generated samples

do not need to represent all the data modes; the discrimi-

nator can be fooled even if the generator generates samples

from only parts of the data space. The generator receives its

training signals directly from the discriminator, hence it is

important to know how the discriminator interacts with the

data space. As we discussed in Section 3.1, the discrimina-

tor can be basically seen as a binary classifier that tries to

separate the real samples (with label 1) from fake samples

(label 0). Consequently, the discriminator has to assign high

probabilities to the areas of the data space where real exam-

ples are located, and low probabilities to the rest. These

probabilities can be also seen as the training signal sent to

the generator.

In Figure 1 we visualize the probability landscape of the

discriminator where we trained the GAN on data sampled

from a 2D grid of 25 Gaussians as real data. As can be seen

in Figure 1a, the vanilla GAN misses many of the clusters

and can only discover a small number of modes. Looking

at the probability landscape3 of the vanilla discriminator, it

can be seen that the discriminator produces very high prob-

abilities in the areas of the missing modes. This shows that

the generator already lost the game in those areas and can

no longer fool the discriminator in those areas.

We will tackle this issue by empowering the discrimina-

tor to better cover the data space and provide a more uni-

form probability landscape. In the following sections, we

show that by creating several clusters in the discriminator

embedding space and using these for the separation of real

from fake, MD-GAN can create a more uniform probability

landscape (Figure 1d) and provide better training signals to

the generator to recover all the modes (Figure 1c).

4. Mixture Density Generative Adversarial

Networks

4.1. Mixture Density GAN: The Intuition

As explained in the introduction, the basic idea in Mix-

ture Density GAN is to encourage the discriminator to form

a number of clusters over the embeddings of real images.

As also mentioned, these clusters will be positioned in an

equi-distant way, their center vectors forming a simplex.

Each cluster is represented by a Gaussian kernel. The whole

3The probability landscape is computed by feeding a mesh of data

points from the 2D space and computing the output probability for each

point. The probability is then shown in the position of that point, via a

color code.

(a) Generated samples

from vanilla GAN.

(b) Probability landscape

of the vanilla discrimina-

tor.

(c) Generated samples

from MD-GAN.

(d) Probability landscape

of the MD-GAN dis-

criminator.

(e) Real data.

Figure 1: Comparison of probability landscape and gener-

ated data between vanilla and MD-GAN.

Figure 2: Block diagram of Mixture Density GAN. This

figure should be viewed in color.

collection thus makes up a Mixture of Gaussians, which

we will call a Simplex Gaussian Mixture Model (SGMM).

Each of the clusters draw embeddings of fake images to-

wards their center. This is achieved by using the SGMM as

a likelihood function. Each Gaussian kernel spreads its den-

sity over the embedding space: the closer an embedding to

the high probability areas (e.g, center of a cluster), the more

density it gets and, therefore, the more likelihood reward it

receives.

By defining a likelihood function via the parameters of

a SGMM, in each update we train the discriminator to en-
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code real images to the centers of the clusters. The resulting

SGMM creates a mixture of clusters that draws the real em-

beddings towards the cluster centers (see Figure 2). Like-

wise, the generator will be rewarded if it generates samples

that end up in any of these clusters. Thus, if the fake embed-

dings are well spread around the cluster space – which they

are likely to be at the beginning of training, when they are

essentially just random projections –, it is likely that most

of the clusters will ‘catch’ some fake embeddings. There-

fore, the generator will tend to learn to generate samples

with more variety to cover all of the clusters, which ide-

ally results in discovering the modes present in the data. On

the other hand, it is reasonable to expect the discriminator

to create such clusters based on relevant similarities in the

data, since it is trained as a classifier and therefore needs to

learn a meaningful distance in its embedding space.

To demonstrate this, we trained MD-GAN on a 2D

dataset of a grid of 25 Gaussians (Figure 1e) and visual-

ized some aspects of the resulting model in Figure 1 and

Figure 3. Figure 1 shows an example where MD-GAN

can discover more modes in the data, compared to vanilla

GAN. In particular, comparing Figure 1d and Figure 1b

shows the significant differences in the respective probabil-

ity landscapes. In Figure 3, the first row (a-c) shows the

samples generated in various epochs. As can be seen, the

data spreads nicely through data space and results in dis-

covering all the modes. The second row (d-e) shows the

percentages of real and fake embeddings assigned to each

Gaussian component in different epochs. Here, the x axis

represents the epochs and y the different components. Each

color represents a different Gaussian component; the width

of each color shows the percentage of embeddings assigned

to that component in the given epoch. As can be seen, the

embeddings of both real and fake are spread among all the

components, and the clusters we were aiming to form are

already created in the embedding space of MD-GAN dis-

criminator. The third row of Figure 3 shows a 2D PCA

projection of the embeddings from the 9D space of the dis-

criminator. Embeddings from the different Gaussian com-

ponents are shown in different color. As we expected, these

clusters reflect similarities/distances in input data space: as

the discriminator further differentiates the data into more

specific clusters (Fig. 3h), we see that data points from the

same Gaussian component (color) in the input data tend to

be embedded in coherent clusters in the embedding space

of the discriminator. In the next sections, we explain the

technical and theoretical details of MD-GAN.

4.2. Mixture Density GAN: The Model

As in the vanilla GAN, MD-GAN consists of a genera-

tor G and a discriminator D. MD-GAN uses a mixture of

Gaussians in its objective functions whose mean vectors are

placed in the vertices of a d-dimensional simplex, where d

(a) Ep 5 (b) Ep 100 (c) Final ep

(d) Cluster assignment for

real embeddings.

(e) Cluster assignment for

fake embeddings.

(f) Ep 5 (g) Ep 100 (h) Final ep

Figure 3: a-c) Samples generated by Mixture Density

GAN’s generator in different epochs. d-e) Assignment per-

centages of embeddings to Gaussian components for real

and fake data. Each color represents a Gaussian cluster; the

width of the color in each column corresponds to the pro-

portion of embeddings that were assigned to that cluster af-

ter a whole training epoch. f-h) 2D PCA-projected embed-

dings of MD-GAN’s discriminator for real data in different

epochs. Embeddings of data points coming from the same

input Gaussian have the same color.

is a parameter.

Discriminator: The discriminator D in MD-GAN is a

neural network with d-dimensional output. For an input im-

age x, the discriminator creates an embedding e which is

simply the activation of the last layer of the network for in-

put x. The SGMM in MD-GAN is a Gaussian mixture with

the following properties:

1. The individual components are d-dimensional multi-

variate Gaussians (where d is the output/embedding

dimensionality of the discriminator network).

2. The model comprises d + 1 Gaussian components,

whose mean vectors are exactly the coordinates of the

vertices of a simplex.

3. The covariance matrices are diagonal and have equal

values on the main diagonal, in all the components.

Thus, all components are spherical Gaussians.

For an embedding e produced by the discriminator D,

we define the following likelihood function:
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lk(e) =

C
∑

i=1

1

d+ 1
· Φ

(

e;µi,Σi

)

(2)

where Φ is the Gaussian PDF, µi is the mean vector, and Σi

is the covariance matrix for Gaussian component i, and C
is the number of Gaussian components in the mixture. Note

that each mixture weight equals 1

d+1
.

When a discrimination between real and fake images

is needed, the discriminator first encodes the input image

x into the embedding e. Then, a likelihood lk(e) is

calculated for this embedding. lk(e) will be interpreted as

the probability of e being an embedding of a real image,

given the current model.

Generator: The generator G in MD-GAN is a regular

neural network decoder, decoding a random noise z from a

random distribution pz into an image.

4.3. The Mixture Density GAN Objectives

Denoting the encoding (output of the encoder, also re-

ferred to as the embedding) of an image x by discriminator

D as D(x), we propose MD-GAN’s objectives as follows:

min
G

max
D

L(G,D) =

min
G

max
D

(

Ex∼pdata

[

log(lk(D(x)))
]

+ Ez∼pz

[

log(λ− lk(D(G(z))))
])

(3)

where the likelihood lk(e) for the given image embedding

e = D(x) is as defined in Eq.(2).

We set λ to be the maximum value of the likelihood func-

tion lk (in Eq.(2)) in order to have only positive values in

the logarithm in Eq.(3) (see also Experimental Setup Sec-

tion). As discussed in [4], a Gaussian mixture can have

more high-probability peaks than its components 4. Hence,

we compute the maximum value of the likelihood function

using gradient descent. This is achieved by minimizing

− log(lk(D(x))) where D(x) is a feed-forward neural net-

work with only one dense layer and trained on a single and

fixed data point. The likelihood value of the data point then

converges to the necessary maximum [4].

5. Theoretical Discussion

Recall that our goal is to allow multiple data clusters in

the discriminator’s embedding space while preserving the

discriminative power of the generative adversarial model

proposed in [11]. Let pgen represent the distribution of gen-

erated images, then the following holds:

4http://www.cs.toronto.edu/˜miguel/research/

GMmodes.html

Proposition 1 (Goodfellow et al. 2014) For G
fixed and L(G,D) being the discriminator loss

as described in Eq.(1), the optimum discrimina-

tor5D∗
G := argmaxD L(G,D) is given by

D∗

G(x) =
pdata(x)

pdata(x) + pgen(x)

Let λ be the maximum of the likelihood function. We then

define a new discriminator function D̃ by putting D̃(x) :=
lk(D(x))/λ, which normalizes the likelihood function and

yields output values in the unit interval. By applying Propo-

sition 1 we obtain that

lk(D∗

G(x)) = λ ·
pdata(x)

pdata(x) + pgen(x)
(4)

for an optimum D∗
G := argmaxD L(G,D) of the MD-

GAN objective function in Eq.(3) with fixed G. Eq.(4) char-

acterizes the multiple solutions of the discriminator objec-

tive. In the case of λ = 1 and lk being the identity func-

tion, the discriminator solution of [11] is obtained, where

the value of D∗
G(x) is one if and only if pgen(x) = 0. In

contrast, in our case, pgen(x) = 0 allows D∗
G(x) to be such

that the Gaussian likelihood is maximized. Thus, Eq.(4)

directly implements our idea of splitting up the optimal so-

lutions to create more meaningful clusters in the embedding

space.

As an example, let us consider the one-dimensional case

with the likelihood function defined by

lk(e) :=
1

2
Φ(e;−1,

1

4
) +

1

2
Φ(e; 1,

1

4
)

Then, for a point x0 with pgen(x0) = 0, Eq.(4) reduces to

lk(D∗
G(x0)) = λ. This implies that the optimal discrimina-

tor D∗
G fulfills either D∗

G(x0) ≃ 1 or D∗
G(x0) ≃ −1, which,

for suitable covariance of the likelihood function, are near

the means of the component Gaussian densities. For x0

with pgen(x0) 6= 0 four different global optimal solutions

for D(x0) exist.

The following Theorem 1 follows from [11, Theorem 1]

and shows that the optimum of our approach is achieved

if and only if the distribution of the real images and the

distribution of the generated images match exactly.

Theorem 1 Under the assumption of an optimal discrimi-

nator D∗
G as characterized by Eq.(4), the global optimum of

the training criterion minG L(G,D∗
G) in Eq.(3) is achieved

if and only if pdata = pgen.

Proof Under the assumption of an optimal discriminator

D∗
G, characterized by Eq.(4), our objective minG L(G,D∗

G)
can be reformulated as

5We keep the notation consistent with [11, Proposition 1]
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min
G

L(G,D∗

G)

= min
G

Ex∼pdata

[

log

(

λ ·
pdata(x)

pdata(x) + pgen(x)

)]

+ Ex∼pgen

[

log

(

λ− λ ·
pdata(x)

pdata(x) + pgen(x)

)]

= 2 log(λ)

+ min
G

Ex∼pdata

[

log

(

pdata(x)

pdata(x) + pgen(x)

)]

+ Ex∼pgen

[

log

(

pgen(x)

pdata(x) + pgen(x)

)]

.

The optimality of our approach then follows from Theo-

rem 1 in [11]. �

6. Empirical Results

6.1. Mode collapse evaluation

We use three different datasets and seven baselines

to compare with MD-GAN on all the aforementioned

datasets: Vanilla GAN [11], Adversarially Learned Infer-

ence (ALI) [6], Unrolled GAN [23], VEEGAN [29], Deli-

GAN [13], InfoGAN [5] and SpectralNormGAN [24].

Stacked-MNIST: This dataset augments the MNIST

into a 1000 classes dataset. Gray-scale 28 × 28 images

from MNIST are randomly selected and filled into 3 chan-

nels of an RGB image. Since MNIST consists of 10 classes,

Stacked MNIST has 10× 10× 10 = 1000 classes. To eval-

uate Stack-MNIST experiments, we use the two measures

that were also used in [29, 23]. First, the number of classes

that a GAN can generate samples for: a CNN is trained on

1000 classes of Stacked MNIST and then is used to predict

the classes of generated samples. The maximum number of

classes that GAN can generate based on this classifier after

25000 generated samples is reported. As a second measure,

the KL divergence between the label distribution of these

25000 samples and the real label distribution of Stacked

MNIST (uniform) is reported.

2D Grid of Gaussians: 25 Gaussian components with

a fixed σ of 0.05 and mean vectors placed in a 5 × 5 grid

(Figure 1e) are used to sample training data from. For evalu-

ation, as proposed in [19, 29], we sample the generator for

2500 times and then report the number of Gaussian com-

ponents discovered. A Gaussian component is considered

“discovered” if a sample is generated within an L2 distance

of 3σ from the component’s mean. In addition to the num-

ber of discovered modes, we report the percentage of these

‘high quality’ samples with L2 ≤ 3σ.

2D Ring of Gaussians: 8 Gaussian components with

fixed σ = 0.05 and means placed in a ring are used to sam-

ple training data from. The evaluation is analogous to the

2D grid of Gaussians.

6.2. Image quality evaluation

We use four standard datasets to compare MD-GAN to:

Vanilla GAN [11], Wasserstein GAN (WGAN) [2], Wasser-

stein with Gradient Penalty (WGAN-GP) [12], DRA-

GAN [16], and BEGAN [3]. For these experiments, the

Fréchet Inception Distance (FID) [14] is used to evaluate

the quality of the generated images. The FID results are

computed using the provided code and trained inception

model from the github repository6 of the main author of the

FID paper.

Since we use results from [21] as our baselines on the

4 real image datasets, we also follow their FID computa-

tion procedure, which includes 10k sampling of real and

10k sampling of generated images.

MNIST [18] is a widely-used 28×28 image benchmark

dataset consisting of 60k images of hand-written digits in

10 classes.

Fashion-MNIST [32] comprises 28× 28 gray-scale im-

ages of 70,000 fashion products from 10 categories, with

7,000 images per category.

CIFAR-10 [17] consists of 60,000 32× 32 RGB images

in 10 classes, with 6,000 images per class.

CelebA [20] is a large-scale dataset with more than

200K images of celebrity faces, each with 40 attribute an-

notations. As done in [21], we use a 64 × 64 cropped and

centered version of CelebA.

6.3. Experimental Setup

6.3.1 Network architectures

To evaluate the merits of different GAN objectives, it is

important to keep the architecture the same. A standard

strategy in this context is to use the basic DCGAN archi-

tectures [28]. These architectures have a reasonable perfor-

mance, but are limited in terms of parameters and often used

for evaluating new objectives in GANs. Hence, to keep our

work comparable to the baselines, for the architectures in

our experiments on MNIST, Fashion-MNIST, CelebA and

CIFAR10, we use the same architectures as the other base-

lines used in [21].

To provide comparable results with our baselines for the

experiments on Stacked MNIST, we use three DCGAN ar-

chitectures: 1) the architecture used in [29] that has more

parameters (shown as B in Table 3), 2) the architecture used

in [23] with half the parameters in the discriminator (shown

as S 1

2

) and finally 3) the architecture used in [23] with a

quarter of parameters in the discriminator (shown as S 1

4

).

6https://github.com/bioinf-jku/TTUR
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Again, it is important to note that limiting the number of

parameters in a GAN makes mode discovery more difficult

and demonstrates the ability of the objective in discovering

the modes. The architectures for 2D Ring and Grid of Gaus-

sians are the same as in [29, 23]. The last layer in the dis-

criminator of MD-GAN has the dimensionality of the cho-

sen simplex. All architectures used in our experiments are

detailed in the appendix.

6.3.2 Hyper-parameters and reproducibility

The vertices of our simplex have a distance of one from one

another. The variances in the diagonals of the covariance

matrices in all experiments with real images are set to 0.25,

and a 9D simplex (with 10 Gaussian components) is used.

The results of a grid search over the number of components

are provided in the appendix.

We use the noise distributions and dimensionality, batch

sizes and optimization methods reported in [21] for MNIST,

F-MNIST, CIFAR-10 and CelebA. The noise distribution

and dimensionality, as well as the architecture and optimiza-

tions for the 2D datasets and Stacked MNIST are the same

as in [29, 23]. The learning rates in mode-discovery exper-

iments for the MD-GAN as well as the implemented base-

lines are tuned for each method separately. These details

are provided in the appendix. To ensure reproducibility, the

source code of our method is available online.7

6.4. Results

6.4.1 Analysis of mode collapse behavior

The results of our 2D mode collapse experiments are pro-

vided in Tables 1 and 2. As can be seen, MD-GAN discov-

ers all the modes and at the same time, manages to generate

significantly more high-quality data points compared to all

the baselines.

Looking at the results on Stacked MNIST in Table 3,

we see that again, MD-GAN outperforms all the baselines

using architectures with the same number of parameters.

Also MD-GAN achieves the lowest KL divergence of the

predicted labels, which shows that not only did MD-GAN

discover the most modes, but it also discovered them uni-

formly. These results are in line with the observations pre-

sented earlier in Figure 1d, which showed a more uniform

probability landscape in the discriminator that results in a

more uniform mode discovery.

6.4.2 Real image data and quality of generated images

The quantitative results of our experiments with the four

real image data sets are summarized in Table 4, where we

compare the FIDs achieved by MD-GAN with the results of

7https://github.com/eghbalz/mdgan

Table 1: Results of mode collapse experiments on 2D-Grid

of 25 Gaussians. †: results taken from [29]. ‡: results taken

from [29]. ∐: our implementation. All results are averages

over 5 runs.

method \measure modes % hq

(25) (≤ 3× std)

Vanilla [11]† 3.3 0.5

ALI [6]† 15.8 1.6

Unrolled GAN [23]‡ 23.6 16

VEEGAN [29]† 24.6 40

DeliGAN [13]∐ 21±2 74.92±2.74

InfoGAN [5]∐ 17.2 ±4.95 75.12 ±30.64

SpecNorm [24]∐ 23.8 ±1.59 90.96 ±4.04

MD-GAN 25 99.36±2.28

Table 2: Results of mode collapse experiments on 2D-Ring

of 8 Gaussians. †: results taken from [29]. ‡: results taken

from [29]. ∐: our implementation. All results are averages

over 5 runs.

method \ measure modes % hq

(8) (≤ 3× std)

Vanilla [11]† 1 99.3

ALI [6]† 2.8 0.13

Unrolled GAN [23]‡ 7.6 35.6

VEEGAN [29]† 8 52.9

DeliGAN [13]∐ 6.4 ±1.85 98.28±0.4

InfoGAN [5]∐ 3 ±1.54 98.88 ±1.51

SpecNorm [24]∐ 6.8 ±1.16 86.64 ±9.76

MD-GAN 8 89.03±3.69

other GAN variants reported in [21]. As can be seen, MD-

GAN achieved the lowest FID among all the baselines in all

datasets. Samples of the generated images are provided in

Figure 4.

6.5. Discussion

As can be seen in the mode collapse experiments above,

MD-GAN manages to discover all the modes in the data

and significantly outperforms all the baselines. From the

results on real images, it can also be observed that MD-

GAN achieved the lowest FID in all datasets.

We showed in Figure 1 how the probability landscape

differs in MD-GAN and provides better training signals

for discovering the modes. Figure 3d and 3e showed how

the clusters in MD-GAN’s discriminator draw the embed-

dings of real and fake towards them and create a more

uniform distribution among components. Additionally, we

reported results on several mode discovery datasets and

demonstrated that using the mixture density function and
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Table 3: Results of mode collapse experiments on Stacked

MNIST. All results are averages over 5 runs.

†: results taken from [29]. ‡: results taken from [29].

∐: our implementation. B: Big DCGAN architecture, S 1

2

:

Small DCGAN architecture with half disc. parameters. S 1

4

:

Small DCGAN architecture with quarter disc. parameters.

method \ measure arch. modes KL

(1000) (labels)

Vanilla [11]† B 99 3.4

ALI [6] † B 16 5.4

VEEGAN [29] † B 150 2.95

Unrl GAN [23] † B 48.7 4.32

MD-GAN B 1000 0.046±0.001
Unrl GAN [23] ‡ S 1

2

817.4 ±37.91 1.43 ±0.12

Deli [13] ∐ S 1

2

125.60 ±144.65 3.77 ±1.97

InfoGAN [5] ∐ S 1

2

796.40 ±76.51 0.90±0.11

SpecNorm [24] ∐ S 1

2

678.80±270.98 1.45 ±.81

MD-GAN S 1

2

921.0±3.0 0.80±0.06

Unrl GAN [23] ‡ S 1

4

327.2 ±74.67 4.66 ±0.46

Deli [13] ∐ S 1

4

158.6 ±84.21 3.22 ±0.96

InfoGAN [5] ∐ S 1

4

237.20 ±284.38 2.87 ±0.94

SpecNorm [24] ∐ S 1

4

354.60 ±248.0 2.44 ±1.10

MD-GAN S 1

4

696.0±10.0 1.32±0.015

Table 4: FIDs on different datasets from different methods.

†: Results taken from [21] which are best FIDs obtained in a

large-scale hyper-parameter search for each data set. Lower

FID values represent higher quality for generated images.

method \ db MNT FMNT CFR Clb

Real imagesdagger 1.2 2.6 5.1 2.2

Vanilla [11]† 6.7 26.6 58.6 58.0

Wasserstein [2]† 6.8 18.0 55.9 42.9

Wasserstein GP t[12]† 8.9 20.6 52.9 26.8

DRAGAN [16]† 7.7 26.0 68.5 41.4

BEGAN [3]† 12.3 33.2 71.4 38.1

MD-GAN 6.29 11.79 36.80 24.51

the clusters formed, MD-GAN outperformed several base-

lines.

To show that this mode discovery property does not

negatively effect the quality of the generated images, us-

ing standard architectures and four benchmark datasets, we

showed that MD-GAN achieved the lowest FID among all

the baselines, hence is capable of generating high quality

images.

(a) MNIST. (b) FMNIST.

(c) CIFAR-10. (d) CelebA.

(e) SMNIST.

Figure 4: Randomly chosen samples from MD-GAN.

7. Conclusion

We have proposed the Mixture Density GAN, which suc-

ceeds in alleviating the mode collapse problem and gener-

ating high-quality images by allowing the Discriminator to

form separable clusters in its embedding space, which in

turn leads the Generator to generate data with more variety.

We analysed the optimum discriminator and showed that

it is achieved when the generated and the real distribution

match exactly. We demonstrated the ability of MD-GAN to

deal with mode collapse and generate realistic images us-

ing seven benchmark datasets. We demonstrated that MD-

GAN achieved the best results of all compared baselines on

all datasets, in terms of FID and the number of discovered

modes with high-quality generated data.
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