
Model-blind Video Denoising Via Frame-to-frame Training

Thibaud Ehret Axel Davy Jean-Michel Morel

Gabriele Facciolo Pablo Arias

CMLA, ENS Cachan, CNRS

Université Paris-Saclay, 94235 Cachan, France

thibaud.ehret@ens-cachan.fr

Figure 1: From the same starting point and only using the video, our fine-tuned network is able to denoise different noises

without any artifact. The top images are the noisy and the bottom ones the denoised. From left to right: Gaussian noise,

Poisson type noise, salt and pepper type noise and JPEG compressed Gaussian noise.

Abstract

Modeling the processing chain that has produced a video

is a difficult reverse engineering task, even when the cam-

era is available. This makes model based video process-

ing a still more complex task. In this paper we propose a

fully blind video denoising method, with two versions off-

line and on-line. This is achieved by fine-tuning a pre-

trained AWGN denoising network to the video with a novel

frame-to-frame training strategy. Our denoiser can be used

without knowledge of the origin of the video or burst and

the post-processing steps applied from the camera sensor.

The on-line process only requires a couple of frames be-

fore achieving visually pleasing results for a wide range of

perturbations. It nonetheless reaches state-of-the-art per-

formance for standard Gaussian noise, and can be used off-

line with still better performance.

1. Introduction

Denoising is a fundamental image and video processing

problem. While the performance of denoising methods and

imaging sensors has steadily improved over decades of re-

search, new challenges have also appeared. High-end cam-

eras still acquire noisy images in low lighting conditions.

High-speed video cameras use short exposure times, reduc-

ing the SNR of the captured frames. Cheaper, lower quality

sensors are used extensively, for example in mobile phones

or surveillance cameras, and require denoising even with a

good scene illumination.

A plethora of approaches have been proposed for image

and video denoising: PDE and variational methods [36, 7],

bilateral filters [41], domain transform methods [31, 33],

non-local patch-based methods [3]. In the last decade, most

research focused on modeling image patches [51, 45, 15] or

groups of similar patches [13, 27, 22, 17, 5]. Recently the

111369

focus has shifted towards neural networks.

The first neural network with results competitive with

patch-based methods was introduced in [5], and consisted of

a fully connected network trained to denoise image patches.

More recently, [48] proposed DnCNN a deep CNN with

17 to 20 convolutional layers with 3 × 3 filters and re-

ported a significant improvement over the state-of-the-art.

The authors also trained a blind denoising network that

can denoise an image with an unknown noise level σ ∈
[0, 55], and a multi-task network that can handle blindly

three types of noise. A lighter version of DnCNN was pro-

posed in [49], which allows a spatially variant noise vari-

ance by adding the noise variance map σ2(x) as an addi-

tional input. The architectures of DnCNN and FFDnet keep

the image size throughout the network. Other networks

have been proposed [30, 38, 8] that use pooling and up-

convolutional layers in a U-shaped architecture [35]. Other

works proposed neural networks with an architecture ob-

tained by unrolling optimization algorithms such as those

used for MAP inference with MRFs probabilistic models

[2, 39, 10, 43]. For textures formed by repetitive patterns,

non-local patch-based methods still perform better than “lo-

cal” CNNs. To remedy this, some attempts have been made

to include the non-local patch similarity in a CNN frame-

work [34, 10, 24, 44, 11].

The most widely adopted assumption in the literature is

that of additive white Gaussian noise (AWGN). This is justi-

fied by the fact that the noise generated by the photon count

process at the imaging sensor can be modeled as Poisson

noise, which in turn can be approximated by AWGN after a

variance stabilizing transform (VST) [1, 29, 28]. However,

in many practical applications the data available is not the

raw data straight from the sensor. The camera output is the

result of a processing pipeline, which can include quanti-

zation, demosaicking, gamma correction, compression, etc.

The noise at the end of the pipeline is spatially correlated

and signal dependent, and it is difficult to model. Further-

more the details of the processes undergone by an image or

video are usually unknown. To make things even more dif-

ficult, a large amount of images and videos are generated by

mobile phone applications which apply their own process-

ing of the data (for example compression, filters, or effects

selected by the user). The specifics of this processing are

unknown, and might change with different releases.

The literature addressing this case is much more limited.

The works [23, 16] address denoising noisy compressed

images. RF3D [26] handles correlated noise in infrared

videos. Data-driven approaches provide an interesting alter-

native when modeling is not challenging. CNNs have been

applied successfully to denoise images with non-Gaussian

noise [48, 8, 18]. In applications in which the noise type

is unknown, one could use model-blind networks such as

DnCNN-3 [48] trained to denoise several types of noise, or

the blind denoiser of [18]. These however have two im-

portant limitations. First, the performance of such model-

blind denoising networks very often drops with respect to

model-specific networks [48]. Second, training the network

requires a dataset of images corrupted with each type of

noise that we wish to remove (or the ability to generate it

synthetically [18]). Generating ground truth data for real

photographs is not straightforward [32, 8]. Furthermore, in

many occasions we do not have access to the camera, and a

single image or a video is all that we have.

In this work we show that, for certain kinds of noise,

in the context of video denoising one video is enough: a

network can be trained from a single noisy video by consid-

ering the video itself as a dataset. Our approach is inspired

by two works: the one-shot object segmentation method [6]

and the noise-to-noise training proposed in the context of

denoising by [25].

The aim of one-shot learning is to train a classifier net-

work to classify a new class with only a very limited amount

of labeled examples. Recently Caelles et al. [6] suggested

a one-shot framework for object segmentation in video,

where an object is manually segmented on the first frame

and the objective is to segment it in the rest of the frames.

Their main contribution is the use of a pre-trained classifica-

tion network, which is fine-tuned to a manual segmentation

of the first frame. This fine-tuned network is then able to

segment the object in the rest of the frames. This general-

izes the one-shot principle from classification to other types

of problems. Borrowing the concept from [6], our work can

be interpreted as a one-shot blind video denoising method:

a network can denoise an unseen noise type by fine-tuning

it to a single video. In our case, however, we do not require

“labels” (i.e. the ground truth images without noise). In-

stead, we benefit from the noise-to-noise training proposed

by [25]: a denoising network can be trained by penalizing

the loss between the predicted output given a noisy and a

second noisy version of the same image, with an indepen-

dent realization of the noise. We benefit from the temporal

redundancy of videos and use the noise-to-noise training be-

tween adjacent frames to fine-tune a pre-trained denoising

network. That is, the network is trained by minimizing the

error between the predicted frame and the past (or future)

frame. The noise used to pre-train the network can be very

different from the type of noise in the video.

We present the different tools, namely one of the state-

of-the-art denoising network DnCNN [48] and a training

principle for denoising called noise2noise [25], necessary

to derive our refined model in Section 2. We present our

truly blind denoising principle in Section 3. We compare

the quality of our blind denoiser to the state of the art in

Section 4. Finally we conclude and open new perspectives

for this type of denoising in Section 5.

11370

2. Preliminaries

The proposed model-blind denoiser builds upon DnCNN

and the noise-to-noise training. In this section we provide a

brief review of these works, plus some other related work.

2.1. DnCNN

DnCNN [48] was the first neural network to report a

significant improvement over patch-based methods such as

BM3D [13] and WNNM [17]. It has a simple architecture

inspired by the VGG network [40], consisting of 17 con-

volutional layers. The first layer consists of 64 3 × 3 fol-

lowed by ReLU activations and outputs 64 feature maps.

The next 15 layers also compute 64 3× 3 convolutions, fol-

lowed by batch normalization [19] and ReLU. The output

layer is simply a 3× 3 convolutional layer.

To improve training, in addition to the batch normaliza-

tion layers, DnCNN uses residual learning, which means

that network is trained to predict the noise in the input im-

age instead of the clean image. The intuition behind this is

that if the mapping from the noisy input f to the clean tar-

get u is close to the identity function, then it is easier for the

network to learn the residual mapping, f 7→ f − u.

DnCNN provides state-of-the-art image denoising for

Gaussian noise with a rather simple architecture. For this

reason we will use it for all our experiments.

2.2. Noisetonoise training

The usual approach for training a neural network for de-

noising (or other image restoration problems) is to synthe-

size a degraded image fi from a clean one ui according to

a noise model. Training is then achieved by minimizing

the empirical risk which penalizes the loss between the net-

work prediction Fθ(fi) and the clean target ui. This method

cannot be applied for many practical cases where the noise

model is not known. In these settings, noise cannot be syn-

thetically added to a clean image. One can generate noisy

data by acquiring it (for example by taking pictures with a

camera), but the corresponding clean targets are unknown,

or are hard to acquire [9, 32].

Lehtinen et al. [25] recently pointed out that for certain

types of noise it is possible to train a denoising network

from pairs of noisy images (fi, gi) corresponding to the

same clean underlying data and independent noise realiza-

tions, thus eliminating the need for clean data. This allows

learning networks for noise that cannot be easily modeled

(an appropriate choice of the loss is still necessary though

so that the network converges to a good denoising).

Assume that the pairs (f, u) are distributed according to

p(f, u) = p(u|f)p(f). For a dataset of infinite size, the

empirical risk of an estimator F converges to the Bayesian

risk, i.e. the expected loss: R(F) = Ef,u{ℓ(F(u), f)}.

The optimal estimator F ∗ depends on the choice of the loss.

From Bayesian estimation theory [20] we know that:1

ℓ = L2 ⇒ F∗(f) = E{u|f} (1)

ℓ = L1 ⇒ F∗(f) = median{u|f} (2)

ℓ = L0 ⇒ F∗(f) ≈ mode{u|f} (3)

Here E{u|f} denotes by the expectation of the posterior

distribution p(u|f) given the noisy observation f . During

training, the network learns to approximate the mapping

f 7→ F ∗(f).
The key observation leading to noise-to-noise training

is that the same optimal estimators apply when the loss is

computed between F(f) and g, a second noisy version of

u. In this case we obtain the mean, median and mode of

the posterior p(g|f). Then, for example if the noise is such

that E{g|f} = E{u|f}, then the network can be trained by

minimizing the MSE loss between F (f) and a second noisy

observation g. If the median (resp. the mode) is preserved

by the noise, then the L1 loss (resp. the L0) loss can be

used.

3. Model-blind video denoising

In this section we show how one can use a pre-trained de-

noising network learned for an arbitrary noise and fine-tune

it to other target noise types using a single video sequence,

attaining the same performance as a network trained specif-

ically for the target noise for classic noise. This fine tuning

can be done off-line (using the whole video as a dataset) or

on-line, i.e. frame-by-frame, depending on the application

and the computational resources at hand.

As we will show in Section 4, starting from a pre-trained

network is key for the success of the proposed training, as

we do not have a large dataset available as in [25], but only

a single video sequence. The use of a pre-trained network is

in part motivated by works on transfer learning such as Za-

mir et al. [47]. Denoising different noise models are related

tasks. Our intuition is that a part of the network focuses

on the noise type while the rest encodes features of natural

images.

Our approach is inspired by the one-shot video ob-

ject segmentation approach of [6], where a classification

network is fine-tuned using the manually segmented first

frame, and then applied to the other frames. As opposed to

the segmentation problem, we do not assume that we have

a ground truth (clean frames). Instead, we adapt the noise-

to-noise training to a single video.

We need pairs of independent noisy observations of the

same underlying clean image. For that we take advantage

of the temporal redundancy in videos: we consider consec-

utive frames as observations of the same underlying clean

1The median and mode are taken element-wise. For a continuous ran-

dom variable the L0-loss is defined as a limit. See [20] and [25].

11371

signal transformed by the motion in the scene. To account

for the motion we need to estimate it and warp one frame

to the other. We estimate the motion using an optical flow.

We use the TV-L1 optical flow [46] with an implementation

available in [37]. This method is reasonably fast and is quite

robust to noise when the flow is computed at a coarser scale.

Let us denote by vt the optical flow from frame ft to

frame ft−1. The warped ft−1 is then fw
t−1(x) = ft−1(x +

vt(x)) (we use bilinear interpolation). Similarly, we define

the warped clean frame uw
t−1. We assume

(i) that the warped clean frame uw
t−1 matches ut, i.e.

ut(x) ≈ uw
t−1(x), and

(ii) that the noise of consecutive frames is independent.

Occluded pixels in the backward flow from t to t− 1 do

not have a correspondence in frame t− 1. Nevertheless, the

optical flow assigns them a value. We use a simple occlu-

sion detector to eliminate these false correspondences from

our loss. A simple way to detect occlusions is to determine

regions where the divergence of the optical flow is large [4].

We therefore define a binary occlusion mask as

κt(x) =

{

0 if |div vt(x)| > τ

1 if |div vt(x)| ≤ τ.
(4)

Pixels with an optical flow that points out of the image do-

main are considered occluded. In practice, we compute a

more conservative occlusion mask by dilating the result of

Eq. (4).

We then compute the loss masking out occluded pixels.

For example, for the L1 loss we have:

ℓ1(f, g, κ) =
∑

x

κ(x) |f(x)− g(x)| . (5)

Similarly one can define masked versions of other losses.

In the noise-to-noise setting, the choice of the loss depends

on the properties of the noise [25]. The noise types that

can be handled by each loss in noise-to-noise have a precise

characterization (the mean/median/mode of the noisy pos-

terior p(g|f) have to be equal to those of the clean poste-

rior p(u|f)). Verifying this requires some knowledge about

noise distribution. In the absence of such knowledge, since

the method is reasonably fast, an alternative would be to test

different losses and see which one gives the best result.

In principle our method is able to deal with the same

noise types as noise-to-noise. In practice we have some

limitation imposed by the registration as it degrades for se-

vere noise. For this reason we do not show examples with

non-median preserving noise requiring the L0 loss. For all

our experiments we use the masked L1 loss since it has

better training properties than the L2 [50]. Most relevant

noise types often encountered in practice (poisson, jpeg-

compressed, low-freq. noise) can be handled by the L1 loss

and the registration.

We now have pairs of images (ft, f
w
t1
) and the corre-

sponding occlusion masks κt and we apply the noise-to-

noise principle to fine-tune the network on this dataset. In

order to increase the number of training samples the sym-

metric warping can also be done, i.e. warping ft+1 to ft
using the forward optical flow from ft to ft+1. This allows

to double the amount of data used for the fine-tuning. We

consider two settings: off-line and on-line training.

Off-line fine-tuning. We denote the network as a

parametrized function Fθ, where θ is the parameter vector.

In the off-line setting we fine-tune the network parameters

θ by doing a fixed number N of steps of the minimization

of the masked loss over all frames in the video:

θft =
N,θ0

argmin
θ

T
∑

t=1

ℓ1(Fθ(ft), f
w
t−1, κt) (6)

where by
N,θ0

argmin
θ

E(θ) we denote an operator which does

N optimization steps of function E starting from θ0 and

following a given optimization algorithm (for instance gra-

dient descent, Adam [21], etc.). The initial condition for the

optimization is the parameter vector of the pre-trained net-

work. The fine-tuned network is then applied to the rest of

the video.

On-line fine-tuning In the on-line setting we train the

network in a frame-by-frame fashion. As a consequence we

denoise each frame with a different parameter vector θft
t . At

frame t we compute θft
t by doing N optimization steps cor-

responding to the minimization of the loss between frames

t and t− 1:

θft
t =

N,θft
t−1

argmin
θ

ℓ1(Fθ(ft), f
w
t−1, κt). (7)

The initial condition for this iteration is given by the fine-

tuned parameter vector at the previous frame θft
t . The first

frame is denoised using the pre-trained network. The fine-

tuning starts for the second frame. A reasonable concern is

that the network overfits the given realization of the noise

and the frame at each step. This is indeed the case if we

use a large number of optimization iterations N at a single

frame. A similar behavior is reported in [42], which trains

a network to minimize the loss on a single data point. We

prevent this from happening by using a small number of

iterations (e.g. N = 20). We have observed that the pa-

rameters fine-tuned at t can be applied to denoise any other

frame without any significant drop in performance.

11372

The on-line fine-tuning addresses the problem of life-

long learning [47] by continuously adapting the network to

changes in the distribution of noise and signal. This is par-

ticularly useful when the statistics of the noise depend on

time-varying parameters (such as imaging sensors affected

by temperature).

4. Experiments

In this section we demonstrate the flexibility of the pro-

posed fine-tuning blind denoising approach with several

experimental results. For all these experiments the start-

ing point for the fine-tuning process is a DnCNN network

trained for an additive white Gaussian noise of standard

variation σ = 25. In all cases we use the same hyper-

parameters for the fine tuning: a learning rate of 5.10−5 and

N = 20 iterations of the Adam optimizer. For the off-line

case we use the entire video. The videos used in this section

come from Derf’s database2. They’ve been converted to

grayscale by averaging the three color channels and down-

scaled by a factor two in each direction to ensure that they

contain little to no noise. The code and data to reproduce the

results presented in this section are available on https:

//github.com/tehret/blind-denoising.

To the best of our knowledge there is not any other blind

video denoising method in the literature. We will compare

with state-of-the-art methods on different types of noise.

Most methods have been crafted (or trained) for a specific

noise model and often a specific noise level. We will also

compare with an image denoising method proposed by Le-

brun et al. [23] which assumes a Gaussian noise model

with variance depending on the intensity and the local fre-

quency of the image. This model was proposed for de-

noising of compressed noisy images. We cannot compare

with some more recent blind denoising methods, such as

[9], because there is no code available. We will compare

with DnCNN [48] and VBM3D [12]. VBM3D is a video

denoising algorithm. All the other methods are image de-

noising applied frame-by-frame (perspectives for videos are

mentioned in Section 5).

The goal of the first experiment is to compare against

reference networks trained for these noises the regular way.

The per-frame PSNRs are presented in Figure 2. We applied

the proposed learning process to a sequence contaminated

with AWGN with standard deviation σ = 25, which is pre-

cisely the type of noise the network was trained on and veri-

fied that it does not deteriorate the pre-training. The off-line

fine-tuning performs on par with the pre-trained network.

The PSNR of the on-line process has a higher variance, with

some significant drops for some frames. For σ = 50, we can

see that both fine-tuned networks perform better than the

pre-trained network for σ = 25. In fact their performance

2https://media.xiph.org/video/derf/

 24

 26

 28

 30

 32

 34

 36

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

DnCNN 25
Online fine-tuned
Batch fine-tuned

Noise clinic

 18

 20

 22

 24

 26

 28

 30

 32

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

DnCNN 25
Online fine-tuned
Batch fine-tuned

DnCNN 50
Noise clinic

Figure 2: The fine-tuning process is done on a sequence cor-

rupted by an additive Gaussian noise of standard deviation

σ = 25 (top) or σ = 50 (bottom). The fine-tuned networks

(offline and online) achieve comparable performance than

the reference networks.

is as good as the DnCNN network trained specifically for

σ = 50 (actually the off-line trained performs even slightly

better than the reference network). Our process also outper-

forms the “noise clinic” of [23].

We have also tested the proposed fine-tuning on four

other types of noise: multiplicative Gaussian, correlated,

salt and pepper and compressed Gaussian. We present the

corresponding per-frame PSNRs in Figure 3. The multi-

plicative Gaussian noise is given by

ft(x) = ut(x) + rt(x)ut(x), (8)

where rt(x) is white Gaussian noise with standard deviation

of 75/255 (the images are within the range [0,1]). The re-

sulting variance σ2
t (x) depends on the pixel intensity ut(x).

The correlated noise is obtained by convolving AWGN with

a disk kernel. The resulting standard deviation is σ = 25.

The salt and pepper uniform noise is like the one used [25],

obtained by replacing with probability 0.25 the value of a

pixel with a value sampled uniformly in [0, 1]. Finally, the

compressed Gaussian noise, results from compressing an

image corrupted by an AWGN of σ = 25 with JPEG. The

last one is particularly interesting because it is a realistic

use case for which the noise model is quite hard to estimate

[16]. While in this case the noise can be generated syn-

thetically for training a network over a dataset, this is not

possible with other compression tools (for example for pro-

prietary technologies). We can see the effectiveness of the

11373

Method walk crowd football station Average

DnCNN 25 17.02 11.24 15.09 13.86 14.30

DnCNN 50 31.02 25.83 31.67 30.09 29.65

Online fine-tuned 30.84 25.58 31.33 29.90 29.59

Batch fine-tuned 31.22 25.83 31.54 30.39 29.75

Noise Clinic 23.85 22.13 24.57 24.39 23.74

VBM3D 31.57 27.02 31.97 31.33 30.47

Table 1: PSNR values for 4 sequences with AGWN of stan-

dard deviation σ = 50.

Method walk crowd football station Average

DnCNN 25 32.62 27.31 32.48 31.48 30.97

Online fine-tuned 32.86 27.20 32.79 30.88 30.94

Batch fine-tuned 33.28 27.19 32.91 31.58 31.24

Noise Clinic 27.62 25.17 27.20 26.89 26.72

VBM3D 34.16 28.95 33.83 33.53 32.62

Table 2: PSNR values on JPEG compressed AWGN noise

with σ = 25 and compression factor 10.

fine-tuning for all examples. The off-line training is more

stable (smaller variance) and gives slightly better results, al-

though the difference is small.

A visual comparison with other methods is shown in Fig-

ure 4 for JPEG compressed noise and in Figure 5 for AWGN

with σ = 50. Visual examples on real data are presented

in the supplementary material. The result of the fine-tuned

network has no visible artifacts and is visually pleasing

even though the network has never seen this type of noise

before the fine-tuning. A limitation of the method is the

oversmoothing of texture. Indeed DnCNN has a tendency

of oversmoothing textures. Using a network designed for

video denoising should help recover more texture and im-

prove temporal consistency [14]. Another cause is the opti-

cal flow. Since it is computed on downscaled noisy frames

it is imprecise around edges. This leads to false correspon-

dences between frames and introduces some blur. Improved

registration should lead to sharper results.

In Tables 1 and 2 we show the PSNR of the results ob-

tained on 4 sequences for AWGN of σ = 50 and JPEG

compressed AWGN of σ = 25 and compression factor 10.

For the case of AWGN the fine-tuned networks attain the

performance of the DnCNN trained for that specific noise.

For JPEG compressed Gaussian noise, the batch fine-tuned

network is on average 0.3dB above the pre-trained network.

Figure 6 shows the impact of different parameters of the

method. The main parameters of the proposed training are

the learning rate and the number of per-frame iterations.

Fewer iterations require more frames for convergence. In

turn the result has smaller variance. A similar analysis can

be done for the learning rate. We also show the importance

of using a pre-trained network compared to a random ini-

tialization. There is a 2dB gap in favor of the pre-trained

network. The other important parameter is the number of

frames used for fine-tuning. The fine-tuning is stopped at

a frame t0 and θft
t0

is used to process the remaining frame.

We can see that the more frames used for the fine-tuning the

better the performance.

Finally Figure 7 shows examples of lifelong learning.

The first example shows a slowly evolving noise (starting

with a Gaussian noise with standard deviation σ = 25 that

linearly increases up to σ = 50). The fine-tuned network

performs better than the two reference networks for respec-

tively σ = 25 and σ = 50. The second example shows

a sudden change (starting with a Gaussian noise with stan-

dard deviation σ = 50 and changes to Salt and pepper noise

at frame 200). In that case the fine-tuned network adapts

quickly to the new noise model.

The running time depends on the network. We used

DnCNN but other networks can be used instead and trained

with the proposed method. Each fine-tuning iteration runs a

back-propagation step which takes 0.33s on a NVIDIA Ti-

tan XP for DnCNN for a 960×540 frame. Fifty frames with

20 iterations per frame take 5 mins. For comparison, train-

ing DnCNN from scratch over a dataset requires around 6h
(and a dataset). By using a lighter network and reducing

the per-frame-iterations it might be possible to achieve real

time frame rates. Moreover, the fine-tuning can be done

on a fixed number of frames at the beginning or run in the

background each number of frames for cases when the com-

putational efficiency is important.

5. Discussion and perspectives

Denoising methods based on deep learning often re-

quire large datasets to achieve state-of-the-art performance.

Lehtinen et al. [25] pointed out that in many cases the clean

ground truth images are not necessary, thus simplifying the

acquisition of the training datasets. With the framework

presented in this paper we take a step further and show that

a single video is often enough, removing the need for a

dataset of images. By applying a simple frame-to-frame

training on a generic pre-trained network (for example a

DnCNN network trained for additive Gaussian noise with

fixed standard deviation), we successfully denoise a wide

range of different noise models even though the network

has never seen the video nor the noise model before its fine-

tuning. This opens the possibility to easily process data

from any unknown origin.

We think that the current fine tuning process can still be

11374

 24

 26

 28

 30

 32

 34

 36

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

DnCNN 25
Online fine-tuned
Batch fine-tuned

Noise clinic

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

DnCNN 25
Online fine-tuned
Batch fine-tuned

Noise clinic

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

DnCNN 25
Online fine-tuned
Batch fine-tuned

Noise clinic

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

DnCNN 25
Online fine-tuned
Batch fine-tuned

Noise clinic

Figure 3: Different types of noise. From top-left to bottom right: multiplicative Gaussian noise, correlated Gaussian noise,

salt and pepper noise, Gaussian noise after JPEG compression. The fine-tuned network (both online and batch) always

performs better than the original network.

Figure 4: Example of denoising of an image corrupted by a JPEG compressed Gaussian noise. The fine-tuned network

doesn’t produce any visible artifacts, contrary to the original DnCNN used for the fine-tuning process. From left to right, top

to bottom: Noisy, fine-tuned, VBM3D, ground truth, DnCNN trained for a Gaussian noise, noise clinic.

improved. First, given that the application is video denois-

ing, it is expected that better results will be achieved by a

video denoising network (the DnCNN network processes

each frame independent of the others). Using the temporal

information could improve the denoising quality, just like

video denoising methods improve over frame-by-frame im-

age denoising methods, but also might stabilize the variance

of the result for the on-line fine-tuning.

Acknowledgment

The authors gratefully acknowledge the support of

NVIDIA Corporation with the donation of the Titan Xp

11375

Figure 5: Example of denoising of an image corrupted by a Gaussian noise of standard deviation σ = 50. The fine-tuned

network doesn’t produce any visible artifact, the results are comparable to a DnCNN trained for this particular type of noise.

From left to right, top to bottom: Noisy, fine-tuned, DnCNN trained for a Gaussian noise with σ = 50, VBM3D, ground

truth, noise clinic, DnCNN trained for a Gaussian noise with σ = 25.

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

Random init., lr 5e-3, 20 iter.
Random init., lr 5e-5, 20 iter.
Random init., lr 5e-6, 20 iter.

pre-trained, lr 5e-5, 5 iter.
pre-trained, lr 5e-5, 50 iter.
pre-trained, lr 5e-5, 20 iter.

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

All
10
25
50

100

Figure 6: Impact of parameters. Top: Impact of the learn-

ing rate and the number of iterations. It also shows the gap

between using a pre-trained network and random initializa-

tion. Bottom: Impact of the number of frames used for fine-

tuning.

GPU used for this research. Work partly financed by

IDEX Paris-Saclay IDI 2016, ANR-11-IDEX-0003-02, Of-

fice of Naval research grant N00014-17-1-2552, DGA

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

Online fine-tuning
DnCNN 25
DnCNN 50

 20

 22

 24

 26

 28

 30

 32

 0 50 100 150 200 250 300 350

P
S

N
R

 (
d

B
)

Frame

Online fine-tuning
DnCNN 50

Figure 7: Lifelong learning. Top: Slow change. Bottom:

sudden change. The fine-tuned network adapts without dif-

ficulty to slow changes and sudden changes. See text for

more details

Astrid project «filmer la Terre» no ANR-17-ASTR-0013-

01, MENRT.

11376

References

[1] F. J. Anscombe. The transformation of poisson, binomial and

negative-binomial data. Biometrika, 35(3/4):246–254, 1948.

2

[2] A. Barbu. Training an active random field for real-

time image denoising. Transactions on Image Processing,

18(11):2451–2462, 2009. 2

[3] A. Buades, B. Coll, and J.-M. Morel. A non-local algo-

rithm for image denoising. In CVPR, volume 2, pages 60–65.

IEEE, 2005. 1

[4] A. Buades, J.-L. Lisani, and M. Miladinović. Patch-based

video denoising with optical flow estimation. Transactions

on Image Processing, 25(6):2573–2586, 2016. 4

[5] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-

noising: Can plain neural networks compete with bm3d? In

CVPR, pages 2392–2399. IEEE, 2012. 1, 2

[6] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé,

D. Cremers, and L. Van Gool. One-shot video object seg-

mentation. In CVPR, pages 221–230. IEEE, 2017. 2, 3

[7] A. Chambolle and P.-L. Lions. Image recovery via total vari-

ation minimization and related problems. Numerische Math-

ematik, 76(2):167–188, 1997. 1

[8] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in

the dark. In CVPR, pages 3291–3300. IEEE, 2018. 2

[9] J. Chen, J. Chen, H. Chao, and M. Yang. Image blind denois-

ing with generative adversarial network based noise model-

ing. In CVPR, pages 3155–3164. IEEE, 2018. 3, 5

[10] Y. Chen and T. Pock. Trainable Nonlinear Reaction Diffu-

sion: A Flexible Framework for Fast and Effective Image

Restoration. Transactions on Pattern Analysis and Machine

Intelligence, 39(6):1256–1272, 6 2017. 2

[11] C. Cruz, A. Foi, V. Katkovnik, and K. Egiazarian.

Nonlocality-reinforced convolutional neural networks for

image denoising. Signal Processing Letters, 25(8):1216–

1220, 2018. 2

[12] K. Dabov, A. Foi, and K. Egiazarian. Video denoising by

sparse 3d transform-domain collaborative filtering. In Euro-

pean Signal Processing Conference, pages 145–149. IEEE,

2007. 5

[13] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image

denoising with block-matching and 3d filtering. In Image

Processing: Algorithms and Systems, Neural Networks, and

Machine Learning, volume 6064, page 606414. International

Society for Optics and Photonics, 2006. 1, 3

[14] A. Davy, T. Ehret, G. Facciolo, J. Morel, and P. Arias. Non-

local video denoising by CNN. CoRR, abs/1811.12758,

2018. 6

[15] M. Elad and M. Aharon. Image denoising via sparse and

redundant representations over learned dictionaries. Trans-

actions on Image processing, 15(12):3736–3745, 2006. 1

[16] M. González, J. Preciozzi, P. Musé, and A. Almansa. Joint

denoising and decompression using cnn regularization. In

CVPR Workshops, pages 2598–2601. IEEE, 2018. 2, 5

[17] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear

norm minimization with application to image denoising. In

CVPR, pages 2862–2869. IEEE, 2014. 1, 3

[18] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang. Toward

convolutional blind denoising of real photographs. CVPR,

2019. 2

[19] S. Ioffe and C. Szegedy. Batch normalization: accelerating

deep network training by reducing internal covariate shift. In

ICML, pages 448–456. PMLR, 2015. 3

[20] S. Kay. Fundamentals of statistical processing, volume i:

Estimation theory: Estimation theory v. 1, 1993. 3

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 4

[22] M. Lebrun, A. Buades, and J.-M. Morel. A Nonlocal

Bayesian Image Denoising Algorithm. SIAM Journal on

Imaging Sciences, 6(3):1665–1688, 2013. 1

[23] M. Lebrun, M. Colom, and J.-M. Morel. The noise clinic: a

blind image denoising algorithm. Image Processing On Line,

5:1–54, 2015. 2, 5

[24] S. Lefkimmiatis. Non-local color image denoising with con-

volutional neural networks. In CVPR, pages 5882–5891.

IEEE, 2017. 2

[25] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Kar-

ras, M. Aittala, and T. Aila. Noise2noise: Learning image

restoration without clean data. In ICML, pages 2971–2980.

PMLR, 2018. 2, 3, 4, 5, 6

[26] M. Maggioni, E. Sánchez-Monge, and A. Foi. Joint re-

moval of random and fixed-pattern noise through spatiotem-

poral video filtering. Transactions on Image Processing,

23(10):4282–4296, 2014. 2

[27] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.

Non-local sparse models for image restoration. In CVPR,

pages 2272–2279. IEEE, 2009. 1

[28] M. Makitalo and A. Foi. A closed-form approximation

of the exact unbiased inverse of the anscombe variance-

stabilizing transformation. Transactions on Image Process-

ing, 20(9):2697–2698, 2011. 2

[29] M. Makitalo and A. Foi. Optimal inversion of the anscombe

transformation in low-count poisson image denoising. Trans-

actions on Image Processing, 20(1):99–109, 2011. 2

[30] X. Mao, C. Shen, and Y.-B. Yang. Image restoration us-

ing very deep convolutional encoder-decoder networks with

symmetric skip connections. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages 2802–

2810. Curran Associates, Inc., 2016. 2

[31] P. Moulin and J. Liu. Analysis of multiresolution image de-

noising schemes using generalized Gaussian and complexity

priors. Transactions on Information Theory, 45(3):909–919,

1999. 1

[32] T. Plotz and S. Roth. Benchmarking Denoising Algorithms

with Real Photographs. In CVPR, pages 1586–1595. IEEE,

2017. 2, 3

[33] J. Portilla, V. Strela, M. Wainwright, and E. Simon-

celli. Image denoising using scale mixtures of gaussians

in the wavelet domain. Transactions on Image Processing,

12(11):1338–1351, 2003. 1

[34] P. Qiao, Y. Dou, W. Feng, R. Li, and Y. Chen. Learning non-

local image diffusion for image denoising. In International

Conference on Multimedia, pages 1847–1855. ACM, 2017.

2

11377

[35] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-

lutional networks for biomedical image segmentation. In

International Conference on Medical image computing and

computer-assisted intervention, pages 234–241. Springer,

2015. 2

[36] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-

tion based noise removal algorithms. Physica D: nonlinear

phenomena, 60(1-4):259–268, 1992. 1

[37] J. Sánchez Pérez, E. Meinhardt-Llopis, and G. Facciolo.

Tv-l1 optical flow estimation. Image Processing On Line,

2013:137–150, 2013. 4

[38] V. Santhanam, V. I. Morariu, and L. S. Davis. Generalized

deep image to image regression. In CVPR, pages 5609–5619.

IEEE, 2017. 2

[39] U. Schmidt and S. Roth. Shrinkage fields for effective image

restoration. In CVPR, pages 2774–2781. IEEE, 2014. 2

[40] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3

[41] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In ICCV, pages 839–846. IEEE, 1998. 1

[42] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior.

In CVPR, pages 9446–9454. IEEE, 2018. 4

[43] R. Vemulapalli, O. Tuzel, and M. Liu. Deep gaussian con-

ditional random field network: A model-based deep network

for discriminative denoising. In CVPR, pages 4801–4809.

IEEE, 2016. 2

[44] D. Yang and J. Sun. Bm3d-net: A convolutional neural net-

work for transform-domain collaborative filtering. Signal

Processing Letters, 25(1):55–59, 2018. 2

[45] G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems

with piecewise linear estimators: From gaussian mixture

models to structured sparsity. Transactions on Image Pro-

cessing, 21(5), 2012. 1

[46] C. Zach, T. Pock, and H. Bischof. A duality based approach

for realtime tv-l 1 optical flow. In Joint Pattern Recognition

Symposium. Springer, 2007. 4

[47] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and

S. Savarese. Taskonomy: Disentangling task transfer learn-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3712–3722, 2018. 3,

5

[48] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Be-

yond a Gaussian Denoiser: Residual Learning of Deep CNN

for Image Denoising. Transactions on Image Processing,

26(7):3142–3155, 7 2017. 2, 3, 5

[49] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and

flexible solution for cnn-based image denoising. Transac-

tions on Image Processing, 27(9):4608–4622, 2018. 2

[50] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss Functions

for Image Restoration With Neural Networks. Transactions

on Computational Imaging, 3:47–57, 3 2017. 4

[51] D. Zoran and Y. Weiss. From learning models of natural

image patches to whole image restoration. In ICCV, pages

479–486. IEEE, 2011. 1

11378

