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Abstract

Dense 3D face correspondence is a fundamental and

challenging issue in the literature of 3D face analysis. Cor-

respondence between two 3D faces can be viewed as a non-

rigid registration problem that one deforms into the other,

which is commonly guided by a few facial landmarks in

many existing works. However, the current works seldom

consider the problem of incoherent deformation caused by

landmarks. In this paper, we explicitly formulate the defor-

mation as locally rigid motions guided by some seed points,

and the formulated deformation satisfies coherent local mo-

tions everywhere on a face. The seed points are initialized

by a few landmarks, and are then augmented to boost shape

matching between the template and the target face step by

step, to finally achieve dense correspondence. In each step,

we employ a hierarchical scheme for local shape registra-

tion, together with a Gaussian reweighting strategy for ac-

curate matching of local features around the seed points. In

our experiments, we evaluate the proposed method exten-

sively on several datasets, including two publicly available

ones: FRGC v2.0 and BU-3DFE. The experimental results

demonstrate that our method can achieve accurate feature

correspondence, coherent local shape motion, and compact

data representation. These merits actually settle some im-

portant issues for practical applications, such as expres-

sions, noise, and partial data.

1. Introduction

Dense correspondence seeks canonical representations

of data such that both global and local structures of them
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can be compared. It can be viewed as a non-rigid registra-

tion problem [55], which is fundamental in the field of 3D

face analysis. While landmark correspondence [29, 32] on-

ly matches sparse and anatomically meaningful key-points

for different faces, dense correspondence matches all points

that are sufficient for detailed descriptions of the whole fa-

cial regions. Accurate point-to-point correspondence con-

tributes to many applications of 3D faces [18, 41, 5, 42, 66,

56, 39, 60, 28, 24, 13, 14, 33].

However, dense 3D face correspondence remains a chal-

lenging task, particularly for data with large expressions.

It can be argued that this problem is implicit both mathe-

matically and physically. In the mathematical view, unlike

the rigid case, the non-rigid registration problem belongs

to a much larger class that has no explicit formulation, and

large expressions add another layer of complexity for the

registration considering large deformations. In the physical

view, while locating landmarks on 3D faces can be guid-

ed by the common knowledge of the anatomical structures,

correspondence of points on smooth regions (such as the

check and forehead) has no solid definition. This also raises

difficulties in assessing the correspondence results.

The state-of-the-art literature [2, 35, 46, 28, 37, 63,

62, 65] commonly uses triangle mesh data and template-

warping strategies to establish dense correspondence be-

tween different faces. The mesh connection relationship

(topology) is intrinsically fixed during the correspondence

process, which is beneficial for accurate point-to-point cor-

respondence. We adopt the template-warping strategy in

this work. First an arbitrary but noiseless face is chosen

as the template. After the correspondences of all faces are

completed, we use the average face of all neutral faces as

the template.

A single-template strategy cannot guarantee good result-

s for large expression variations. To address this problem,

some existing works [37, 36, 51] treat the chin as articulate

shape and use blendshapes to model open-mouth motions,
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while others [27, 45, 58, 16, 7, 26] use statistical face mod-

els to regularize the correspondence process. These meth-

ods incorporate some prior knowledge of face and show im-

pressive results capable of modeling expressions. However,

this is a chicken-and-egg problem, since the prior knowl-

edge is usually learned from some accurately corresponded

face samples.

This study aims at building dense point-to-point corre-

spondence of 3D faces without a prior model. We pro-

pose an explicit deformation model to minimize the weight-

ed least-square error for the rigid alignment of some seed

points. The seed points are initialized by a few facial land-

marks, and are then augmented gradually to boost local

shape matching to build overall correspondence. Extensive

experiments on several datasets demonstrate that the pro-

posed method can achieve accurate and reliable results.

The main contributions of this work are: 1) we propose

an explicit formulation of the deformation process, and it

guarantees not only exact seed point matching but also co-

herent motions of neighboring points; 2) we construct a

global-to-local hierarchical registration strategy for accu-

rate localization of seed points.

2. Related work

There are numerous rigid/non-rigid registration meth-

ods for 3D shapes in the literature. For a comprehensive

overview one can refer to [55, 57, 40]. In this section, we

only cover the most related works and mainly focus on 3D

faces.

2.1. 2D vs. 3D methods

Most previous methods [42, 28, 2, 27, 37, 51, 45, 7] work

directly on the 3D space of facial shapes, since full infor-

mation of the raw data is kept on this original domain. As

alternatives, some other methods [30, 59, 11, 31, 53, 38]

find reasonable mappings from the 3D space to canonical

2D domains. In the seminal work of 3D Morphable Mod-

el (3DMM) [5, 6], Blanz and Vetter propose to map the 3D

face to the 2D cylindrical coordinate, encode both shape and

texture features, and use a regularized optic-flow based al-

gorithm for dense correspondence. Despite the efficiency of

the 2D methods by reducing the dimensionality, one poten-

tial pitfall is that some original 3D shape features are lost.

Therefore, we deal with the dense correspondence problem

on 3D in this work.

2.2. Modeling shape motions

Correspondence of two faces can be viewed as a defor-

mation process that one moves to the other either locally

or globally. Patel and Smith [46] use a thin-plate spline

(TPS) warp to build correspondence with the help of some

manual annotations. [43, 42, 45] simply regularize the off-

set of each individual point by enforcing local smoothness

constraint. [44, 64] incorporate functional maps into the

correspondence process, and guarantee smooth local mo-

tion by the low frequency basis of the eigenfunctions of

Laplace-Beltrami operators. To sum up, it is universally ac-

knowledged that the registration process should satisfy co-

herent local motion. Amberg et al. [2] propose an optimal

step non-rigid iterative closest points (NICP) algorithm and

model the shape motion as locally affine transformation.

The NICP is commonly treated as a benchmark method and

has many effective variants [45, 16, 42, 17, 35]. Most re-

cently, it has been used to build some well-known statistical

facial models, such as the Basel face model (BFM) [47, 25]

and the large scale facial model (LSFM) [8, 9].

2.3. Effect of landmarks

Dense correspondence of 3D faces should prioritize

landmark correspondence, since landmarks are the most

prominent feature points. Landmarks control the holistic

facial shape and help to deal with expressions. In the corre-

spondence process, many existing methods [5, 2, 45, 16, 26,

46, 1] use some sparsely corresponded landmarks to guide

the overall deformation process to achieve dense correspon-

dence. These landmarks are detected either manually or au-

tomatically. Recently, Fan et al. [22] define high-entropy

points to replace the landmarks, and these points can be

considered as denser landmarks. A problem induced by

landmarks is that coherent local motion cannot be strictly

guaranteed, especially when there is a large gap between

the landmark distributions of two faces. A typical case is in

registrations of data with extreme expressions considering

large deformations, where landmark and closest-point cor-

respondence may contradict with each other. This leads to

incoherent shape motions around the landmarks during the

deformation process. We propose an elegant formulation

for shape motions to solve this problem.

3. Rigid-motion estimation between corre-

sponded point sets using weighted least-

square method

Registration of two point sets generally involves a rigid-

motion estimation process. Given two corresponded point

sets P = {p1, p2, ..., pn} and Q = {q1, q2, ..., qn} in R
3,

the rigid-motion estimation is represented as a constrained

minimization problem with respect to optimal rotation R

and translation T:

{R,T} = argmin
R∈SO(3),T∈R3

n
∑

i=1

wi ‖(Rpi +T)− qi‖
2
2, (1)

where SO(3) denotes the space of Givens matrices in R
3×3

and wi(i = 1, 2, ..., n) is the weight for each point pair.

The solution procedures are outlined as follows.
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1. Compute the weighted centroids of both point sets:

p̄ =

∑n

i=1 wipi
∑n

i=1 wi

, q̄ =

∑n

i=1 wiqi
∑n

i=1 wi

. (2)

2. Compute the centered vectors:

xi = pi − p̄, yi = qi − q̄ (i = 1, 2, ..., n). (3)

3. Compute the R
3×3 covariance matrix S = XWYT ,

where X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn), and

W = diag(w1, w2, ..., wn).
4. Compute the singular value decomposition S = UΣVT .

5. Compute the optimal rotation R and translation T:

R = V





1
1

det(VUT )



UT , T = q̄ −Rp̄. (4)

The rigid-motion estimation process of the well-known

iterative closest points (ICP) [4, 15] algorithm for rigid ob-

ject registration can be considered as a special case in which

wi = 1(i = 1, 2, ..., n). Contrary to that of rigid registra-

tion, a non-uniform weighting strategy provides better flex-

ibility for non-rigid registration of 3D faces.

4. Proposed method

Dense point-to-point correspondence can be viewed as a

non-rigid registration problem and has to be domain specif-

ic. When it applies to 3D human face, the common knowl-

edge of one’s anatomical structures should be considered.

The widely acknowledged facial landmarks, of which the

number varies from a few tens to a hundred, are fiducial

points for the anatomically meaningful structures. There-

fore, the landmarks provide clues for correspondence of the

most prominent facial features, particularly for the sense

organs. However, we cannot accurately locate the vessel-

s, muscles, and bones on most areas of the skin surface data

that are not adjacent to the eyes, mouth, and nose regions.

Furthermore, issues on expressions, noise, and partial data

should be settled for practical applications. In this section,

we introduce an automatic, adaptive, and accurate method

for dense correspondence of 3D faces.

4.1. Template deformation using seed points

In a template deformation perspective [5, 2, 45, 16, 26,

46, 1, 22], each specific landmark should dominate over

other points in a local region around it. Correspondences of

all the landmarks control the holistic deformation and local

dominance of each specific landmark controls the regional

deformation. The landmark-guided deformation brings up

such a fundamental question: given sparse correspondences

of some seed points, how, at least one step further, to extend

them to achieve dense correspondences of all points?

The following conditions define the basic requisites of a

desirable deformation for dense correspondence.

i. The registration error should be in a decreasing trend.

ii. The corresponded seed points should be matched exactly.

iii. The neighboring points should have coherent motions.

Condition i guarantees that the deformation behaves in

a convergent manner, and condition ii and iii guarantee

stable feature correspondence while preserving local struc-

tures of the 3D face. In fact, many state-of-the-art method-

s [1, 43, 2, 34] for non-rigid registration are designed del-

icately towards these goals. For example, in the NICP [2],

these conditions are modeled as three energy terms for dis-

tance, landmarks, and stiffness, respectively. These terms

are then fed into a common optimization objective func-

tion. However, the general frameworks using control (seed)

points fail to satisfy condition ii and iii simultaneously, but

rather perform as a trade-off between them. The reason lies

in the inconsistent preliminary correspondences of control

points and others. To be specific, different laws for the cor-

respondences of landmarks and their surroundings hardly

lead to coherent local motions even with large efforts for

regularization. Instead, we propose a unified law to meet

these conditions.

Suppose P and Q are two dense point sets representing

the template and the target face, respectively. We model

the deformation to be composed of individual elements for

locally rigid motions, as

pi ← Ripi +Ti (i ∈ P ), (5)

where {Ri,Ti}(i ∈ P ) are the optimal rotation and trans-

lation for each point. They are estimated by a weighted rigid

alignment of the corresponded seed point sets P̃ ⊂ P and

Q̃ ⊂ Q, as

{Ri,Ti} =

argmin
Ri∈SO(3),Ti∈R3

∑

pj∈P̃ ,qj∈Q̃

1

d2ij
‖Ripj +Ti − qj‖

2
2,

(6)

where dij = ‖pi − pj‖(i ∈ P, j ∈ P̃ ) is the distance be-

tween each specified point and each seed point.

Although modeling non-rigid registration as locally rigid

motions is not a new idea, we explicitly formulate the corre-

spondence process as deformation guided by sparsely cor-

responded seed points. We also model the influences of the

seed points to be inversely proportional to the squared dis-

tances to the specified point, which ensures local deforma-

tions guided by the correspondence of each seed point. The

merits of this model are elaborated as follows.

• It can be perfectly customized to fit the three conditions

above. Firstly, we will boost this deformation model for

incremental shape matching (in Sec. 4.3) to meet condi-

tion i. Secondly, the weight 1
d2

ij

approaches infinity when
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Fig. 1. Comparative results between the proposed deformation and

the affine one for the alignment of 3D faces using a few corre-

sponded landmarks (red dots). The bottom and the top row are

two different examples with and without expressions, respective-

ly. Pay attention to the areas with green circles.

pi is a specific seed point (i = j). According to the solu-

tion procedures in Sec. 3 for Eq. 6, the resulted deforma-

tion {Ri,Ti} will first align the seed point pi to qi, and

then estimate a compatible rotation Ri centred on pi(qi).
Thus condition ii holds exactly. Finally, two neighbor-

ing points pi and pk will result in similar deformations

{Ri,Ti} and {Rk,Tk} according to Eq. 6, which satis-

fies condition iii.

• It can be considered as an interpolation algorithm based

on the correspondence of all the seed points. Compared

to some existing methods for dense correspondence, the

extrapolation is more robust by imposing rigidness of

face structures, which renders its applicability for da-

ta with missing parts. Moreover, since the face is a

piecewise smooth surface, adaptive augmentation of seed

points with large registration errors can recover the over-

all correspondence in a few iterations. This avoids the

need for traversing through all the points, leading to not

only robustness to noise but also efficient optimization.

• It is consistent with an intuitive, plausible, but indefinite

idea for 3D face dense correspondence: the correspon-

dence of landmarks should be solid and exact, and be

prioritized, while the relative locations to the landmarks

should be considered for points on the smooth regions.

We depict in Fig. 1 some results of preliminary tem-

plate deformations via Eq. 5 and 6 using a few initialized

seed points (landmarks), compared with those by a com-

mon affine alignment [23, 2, 51]. It shows that our model

is both more stable for extrapolation and more flexible for

large deformation.

4.2. Augmentation and correspondence of seed
points

Seed points are defined as the corresponded control

points for the deformation in Sec. 4.1. In this section, we

propose two algorithms for adaptive augmentation and ac-

curate correspondence of the seed points, respectively.

Seed point augmentation. We initialize the seed points by

some landmarks on the template as shown in Fig. 1. The

seed points are then augmented by some newly selected

ones step by step, in order to match the corresponded fa-

cial surfaces as much as possible. Given a template mesh

S = (V0, E0) and a target mesh T = (V1, E1), where Vi
and Ei(i = 0, 1) denote the vertices and edges of the mesh-

es, respectively, Algorithm 1 gives the details of adaptive

seed point selection in each step. It can be summarized

briefly as: select points with the largest registration errors

but away from each other with a certain distance threshold

ρ. The purpose is to enable fast convergence while avoiding

redundant local registrations.

Algorithm 1 Seed points selection.

Input:

The template mesh S = (V0, E0);
The target mesh T = (V1, E1);

Output:

Selected point set Vc;

1: Compute the distance di(i ∈ V0) between each point vi(i ∈ V0) and

T ;

2: InitializeQ = (di, vi)(i ∈ V0) and Vc = ∅;
3: repeat

4: Find di0 = max di(i ∈ Q), and include the corresponding vi0 in

Vc;

5: Remove {(di, vi)|‖vi − vi0‖ ≤ ρ} fromQ;

6: untilQ = ∅
7: return Vc.

Seed point correspondence. Inspired by some of the ideas

on local registrations in [12, 22], we employ reweighted

ICP [50] for accurate correspondence of seed points. The

points on the template surface are weighted differently as

Gaussians of their distances to the corresponding seed point

v0:

wi = e
−‖vi−v0‖

2

2σ2 (i ∈ P ), (7)

where wi is the weight for each point vi on the template

P , and σ is the standard deviation of the Gaussian func-

tion. We use five Gaussians with decreasing deviations to

register the template to the target, as shown in Fig. 2 (a).

Large σ flattens the weights and fits globally, while small

σ accounts more for localized shape features. The registra-

tion process is proceeded with a cascade manner towards

smaller σ. Fig. 2 (b) shows the evolution of closest-point1

correspondence for a seed point by registrations with dif-

ferent σ(σ = {+∞, 40, 30, 20, 10}mm), where accurate

correspondence of this seed point is finally achieved.

4.3. Boosting local shape matching

We propose to boost the local shape matching between

the template and the target face by incremental deforma-

tion (in Sec. 4.1) based on the corresponded seed points

1Note that the seed point correspondence is not necessarily on the target

surface but depends on the registration result.
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Fig. 2. Different Gaussian functions (a) and the global-to-local registration process (b) for the correspondence of a seed point (white/red

dot at the nose tip). The top and the bottom row in (b) show the weighted template and the results on the target, respectively.

(in Sec. 4.2), to finally achieve dense correspondence. The

main algorithm is summarized in Algorithm 2, where there

is a hyper-parameter nIter denoting the iteration times.

Ideal stopping criterion should be set according to the regis-

tration error, but we fix nIter = 20 considering noisy data

and computational efficiency in this work. Fig. 3 shows a

typical example where the template face is deformed into

the target face gradually. We also show together the regis-

tration errors, selected seed points, and profile views for the

deformation process. This process actually bears a hierar-

chy structure: it first fits the global shape and then proceeds

to boost local shape matching. Note that it is an analogy

to the process of wearing a sheet mask on one’s face: the

unmatched parts of the surface are smoothed gradually.

Algorithm 2 Boosting local shape matching.

Input:

The template mesh S = (V0, E0) and some manually selected land-

marks Vs ⊂ V0;

The target mesh T = (V1, E1);
Output:

Deformed template mesh S;

1: Establish correspondences Ṽs on T for all landmarks Vs on S using

the reweighed ICP in Sec. 4.2;

2: Deform S by Eq. 5 and 6 based on the correspondences Ṽs ⇔ Vs;

3: for i ∈ {2, 3, ..., nIter} do

4: Select seed points Vc by Algorithm 1 and increase the seed points

by Vs ← (Vs ∪ Vc);
5: Establish correspondences Ṽc on T for the augmented seed points

Vc on S using the reweighed ICP in Sec. 4.2, and let Ṽs ← (Ṽs ∪
Ṽc);

6: Deform S by Eq. 5 and 6 based on the correspondences Ṽs ⇔ Vs;

7: end for

8: return S.

Implementation details.

• Considering the face scale varies from individual to indi-

vidual, we normalize the template face by a scaling factor

based on a few corresponded landmarks (seed points) be-

tween two faces before it is fed into the correspondence

process in Step 3 of Algorithm 2 . The optimization pro-

cess is given by

{s,R,T} =

argmin
s∈R1,R∈SO(3),T∈R3

∑

pi∈Vs,qi∈Ṽs

‖(sRpi +T)− qi‖
2
2,

(8)

which can be solved efficiently by alternative estimations

of the rigid motion {R,T} and the scaling factor s.

• Considering missing parts of the raw target data, we en-

force an additional principle into the seed point selection

Algorithm 1: first exclude the candidate points on the

template face whose closest points lie on the boundary of

the target mesh.

• Fig. 4 shows two different templates used for database

with no expressions and with expressions, respectively.

Except for the template differences, we also use geodesic

distance instead of Euclidean distance for dij in Eq. 6 and

‖.‖ in Eq. 7, to handle eyes and mouth separations. The

geodesic distances for all point pairs are computed using

a fast heat-flow based method [19].

• The seed point correspondence process is accelerated by

some pre-organized data structures [3, 10], as well as

trimming and downsampling of data. The template mesh

is first downsampled by a factor positively correlated to

the Gaussian deviation σ. And then we eliminate the part-

s on the template mesh whose weights are smaller than

e−2 as shown in Fig. 2 (b) (the top row). Moreover, we

skip fitting by Gaussian weights with large σ in the latter

iterations of the boosting Algorithm 2, since the global

structures of faces are already well aligned.

5. Experiments

Datasets. We use three datasets, including two publicly

available ones for the evaluation of the proposed method.

1) One is the FRGC v2.0 [48] database from University

of Notre Dame. It includes a total number of 4, 007 3D s-

cans of 466 subjects collected during Fall 2003 and Spring
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Fig. 3. An example for the dense correspondence process by the proposed method: the template face is deformed into the target face in 20

iterations. The arrows denote that the selected seed points are associated with large regional registration errors.

Fig. 4. Two different templates for database with expressions (b)

and without expressions (a). The initialized landmarks are marked

as dots, where the green dots need manual correspondences for the

BU-3DFE dataset.

2004. The point clouds in it have relatively high resolutions

for the frontal view compared with the profile views, and

most of the scans are in neutral expressions. Many existing

works include this database, enabling comparison across the

literature quantitatively. 2) Another database is the BU-

3DFE [61], which is made publicly available in 2006. It

includes a total number of 2, 500 3D scans of 100 subjects

with various expressions (neutral, happiness, surprise, fear,

sadness, disgust, and angry) on 4 different levels. It is al-

so a benchmark database for 3D facial expression research.

The resolutions of the raw data are around 10, 000 vertices

per face. 3) In addition, we collect a new database includ-

ing hundreds of high-resolution 3D faces with a modern

structured light device. The collection system merges scans

from 4 different directions, and the resolutions are around

300, 000 vertices per face together with pixel-wise textures.

The subjects in this database are mostly in neutral expres-

sions under a well-controlled environment.

Parameter setting. We have tested different parameters

and finally set nIter = 20, σ = {+∞, 40, 30, 20, 10}mm,

and ρ = 25mm in all of our experiments. The setting of σ
is trivial if we follow the global-to-local scheme. And larg-

er ρ results in fewer selected seed points but more iterations

nIter, according to which we have made a trade-off.

Computational time. On a machine with Core-i5-6600k

CPU (3.5GHZ, single thread), a MATLAB implementation

of the proposed algorithm takes about 100 seconds for a

template mesh with 19, 334 vertices. Note that almost all

the operations in this algorithm are per-vertex optimizations

that are independent to each other. Therefore, a more effi-

cient version of parallel implementation can be developed.

Assessing the result of 3D face dense correspondence is

not an easy task since there is no universal rules for the

ground-truth in the literature. In this section, we evaluate

the proposed method in three perspectives: feature corre-

spondence, structural correspondence, and correspondence

on some practical issues.

5.1. Feature correspondence

We define “feature” here as the most significant feature

on the face that human can distinguish, particularly for the

eyes, nose, and mouth regions. Two experiments are con-

ducted for the evaluation of it.

1) Texture transfer. Some current works [42, 64] paste the

textures of some corresponded faces on a template face to

assess the results qualitatively. Following them we transfer

the textures between different faces. Fig. 5 shows a well

matching of features for three corresponded samples in our
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Fig. 5. Texture transfer results by combinations of different facial

shapes and textures.

Fig. 6. Some examples for landmark detection on FRGC v2.0. Our

results and the manually labeled ones are marked as red and green

dots, respectively. And the red circle shows a better result than

the manual annotation, while the green circles indicate inaccurate

detections.

database.

2) Landmark correspondence. We compare our method

with some existing works for the detection of landmarks on

FRGC v2.0. The ground-truth results are the manual an-

notations provided by Creusot et al. [20]. First we manual-

ly label some landmarks on a template, and then we apply

the correspondence algorithm in Sec. 4.2. Considering in-

accurate manual labeling on the template, we further apply

the algorithm to the neighboring points around a specified

landmark and replace it by the one with the minimum error.

Fig. 6 shows some examples and Table 1 presents the com-

parative results. Checking the visual results in Fig. 6 care-

fully, we observe that our method is competitive with the

manual annotation owing to the weighted rigid registration

of local features. Our method also achieves state-of-the-art

performance compared to the most recent works.

5.2. Structural correspondence

The meaning of structural correspondence is two-fold:

1) in a narrow sense we think that the local mesh struc-

tures are altered with similar patterns across different faces,

Fig. 7. Comparisons for the detailed mesh structures between the

corresponded results by our method and that by the NICP. The 2-

ring neighbors of a corresponded point are marked with colored

dots for better viewing.

Fig. 8. Compactness of the fitted PCA model by our method com-

pared with that by the NICP and the BFM (also by the NICP).

which is consistent with a universal idea of “coherent local

motion”; 2) in a broad sense we think that all facial data as

a group should gain certain benefits from the reconstruct-

ed canonical representations, and we also view it by the

minimum-description length (MDL) principle [49] as used

by Davies et al. [21] for statistical shape modeling.

In Sec. 4.1, we have discussed a fundamental problem

for shape deformation and our formulation provides an ele-

gant answer to it. To view the effect of our formulation, we

show a corresponded example in Fig. 7 together with the

one reconstructed by NICP [2]. Checking the mesh struc-

tures in details, we observe that our result shows similar

patterns between the template and the target mesh almost

everywhere. In contrast, the NICP cannot guarantee such a

coherent result.

We further apply PCA to 200 corresponded samples in

our database after Procrustes alignment, following the same

routine of 3DMM [5]. Compactness of data is evaluated

using the MDL principle: the less, the better. We also im-

plement the NICP for these facial samples for comparison.

Fig. 8 depicts the percentage of energy preserved by vary-

ing the number of principal components, together with that

from a publicly available BFM model [47]. It manifests

that our method leads to much more compact PCA bases,

as the number of principal components to explain 99% en-

ergy decreases from 59(63) to 43. Note that compactness

is a crucial property of data for dimensional reduction.
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Table 1. Comparative results of the mean and standard deviation (mean/SD) of landmark localization error (mm) for 4007 images on the

FRGC v2.0 dataset. The best and the second results are shown in red and blue, respectively. Symbols for landmarks: Ex/En-outer/inner

eye corner, N-nose bridge saddle, Prn-nose tip, Sn-nasal base, Ac-nose corner, Ch-mouth corner, Ls/Li-upper/lower lip midpoint.

Landmarks Ex En N Prn Sn Ac Ch Ls Li

Segundo et al. [52] - 3.5/2.3 - 2.7/1.4 - 5.3/1.9 - - -

Creusot et al. [20] 5.9/3.1 4.3/2.2 4.2/2.1 3.4/2.0 3.7/3.1 4.8/3.6 5.6/3.5 4.2/3.2 5.5/3.3

Sukno et al. [54] 4.6/2.7 3.5/1.7 2.5/1.6 2.3/1.7 2.7/1.1 2.6/1.4 3.9/2.8 3.3/1.8 4.6/3.4

Fan et al. [22] 2.6/1.6 2.5/1.7 2.4/1.4 2.1/1.2 - - 2.9/2.2 2.4/2.9 4.4/3.9

Gilani et al. [27] 2.5/1.9 2.4/1.2 2.5/1.5 2.2/1.8 3.4/1.1 3.0/2.4 2.5/1.8 2.4/3.1 3.5/3.7

Ours 2.1/1.9 1.9/1.0 2.4/1.2 1.8/1.2 1.8/0.9 1.9/0.9 2.8/2.5 2.0/2.2 4.3/3.1

Improvement 16%/-19% 21%/17% 0%/14% 14%/0% 33%/18% 27%/36% -12%/-39% 17%/-22% -23%/6%

Fig. 9. Examples for problematic data. The top row shows the

raw scans with noise (e.g. stripe, spike, and Gaussian) and missing

parts, and the bottom row shows the fitted results.

5.3. Practical issues

The proposed method has been successfully applied to

problematic data with large noise and missing parts, as well

as data with large expressions. One of the key reasons is that

we devise a shape-motion formulation which is both stable

for extrapolation and flexible for large deformation. The

other reason lies in our strategy for correspondence of seed

points: it matches local patches hierarchically and avoids

searching for correspondence of each individual point.

Fitting to noisy and partial data. Fig. 9 shows some cor-

responded results for noisy and partial data. We can see that

this method can handle problematic data with different type-

s of noise and large missing regions. Furthermore, it is not

difficult to generalize this method to data with occlusions,

since occlusions and missing parts are similar problems.

Fitting to expressions. Fig. 10 shows the fitted result (with

detailed mesh structure) of a face with an extreme expres-

sion in the BU-3DFE database. We also apply our algorith-

m to the whole database and build an expression-PCA mod-

el as shown in Fig. 11. Our method is not fully automatic in

this case. It involves the manual annotations (guided by tex-

tures) of four landmarks around the mouth region as shown

in Fig. 4 (b), but only for the first iteration. We suggest that

this process can be automated by incorporating the state-of-

Fig. 10. An example for large expression.

Fig. 11. Variations (±2SD) of the first three components of the

expression-PCA model for the BU-3DFE database.

the-art 2D landmark detection methods based on the texture

information. Note that it is even not possible for humans to

identify the correct locations of these landmarks based on

shapes only for many samples in this database.

6. Conclusion

We present a robust algorithm for dense correspondence

of 3D face in this paper. This algorithm models dense point-

to-point correspondence as deformation guided by a num-

ber of seed points, and the seed points are augmented to

boost shape matching step by step, to finally achieve dense

correspondence. Extensive experiments on several datasets,

and in different perspectives, demonstrate the effectiveness

of the proposed algorithm. Since 3D face is representative

in the field of 3D shape analysis, it is possible to generalize

this algorithm to the common non-rigid registration prob-

lem.

10951



References

[1] B. Allen, B. Curless, and Z. Popović. The space of hu-
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