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Abstract

We introduce a self-supervised learning method that fo-

cuses on beneficial properties of representation and their

abilities in generalizing to real-world tasks. The method

incorporates rotation invariance into the feature learning

framework, one of many good and well-studied proper-

ties of visual representation, which is rarely appreciated

or exploited by previous deep convolutional neural net-

work based self-supervised representation learning meth-

ods. Specifically, our model learns a split representation

that contains both rotation related and unrelated parts. We

train neural networks by jointly predicting image rotations

and discriminating individual instances. In particular, our

model decouples the rotation discrimination from instance

discrimination, which allows us to improve the rotation pre-

diction by mitigating the influence of rotation label noise, as

well as discriminate instances without regard to image rota-

tions. The resulting feature has a better generalization abil-

ity for more various tasks. Experimental results show that

our model outperforms current state-of-the-art methods on

standard self-supervised feature learning benchmarks.

1. Introduction

Deep neural networks, especially convolutional neural

networks (ConvNets), have led to breakthroughs in the field

of computer vision. Given large scale manually labeled im-

age datasets, e.g. ImageNet, ConvNets can be well trained

by back propagation and achieve state-of-the-art perfor-

mance on many tasks such as image classification [25, 45]

and object detection [31]. Rich representations extracted

by these networks often serve as good general-purpose fea-

tures not only for the task where the network was trained,

but also for many other vision tasks like semantic segmenta-

tion [33] and visual question answering [2]. However, train-

ing deep neural networks in a fully supervised manner re-

quires a tremendous amount of efforts on manual labeling,

which could be infeasible in some real-world scenarios.

As an alternative to supervised feature learning, unsu-

pervised methods that do not rely on expensive and time-

Figure 1: Examples of some rotation agnostic images in ImageNet.

The default orientations of these images are ambiguous.

consuming human labeling are receiving increasingly more

attention. The recently emerged self-supervised learning

paradigm [10, 43, 52, 27, 37] is a scalable and promising

solution for learning useful general-purpose visual repre-

sentations. These methods used to exploit the structural in-

formation of data itself and define pretext tasks that relates

to the final application of the learned features to train neural

network. In pretext tasks, supervisory signals can be easily

developed without significant human efforts, and thus mas-

sive readily available images can be applied for training.

Over the last few years, many different pretext tasks have

been proposed for self-supervised learning. For example,

one category of these methods tries to recover one part of

the data from the other part itself [43, 28, 53]. While a

shortcoming of these approach is the requirement of re-

constructing and predicting image pixel values, which of-

ten need significant computational resources. Deep neural

networks can also be trained to differentiate original images

from restored incomplete images [21]. However, generating

synthetic images is not always an easy feat. Siamese net-

work architecture has been investigated in self-supervised

learning [2, 36, 53], but memory consumption is usually

huge. Another different but popularly adopted strategy is to

discover supervisory signals in videos like tracking image-

patches [47] and sorting frame sequences [30].
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Most of existing works focus on designing various pre-

text tasks, while seldom caring about what properties are

owned by the learned representations and whether they are

indeed beneficial for the generalization in real-world tasks.

For example, high-level representations should convey a

clear explanation or certain dependencies of factors of vari-

ation [5]. A recent attempt is to predict image rotations [17].

Features learned in this method can generalize well in var-

ious tasks, and achieve state-of-the-art performance. How-

ever, these features are discriminative with rotation trans-

formation and therefore cannot benefit vision tasks that are

in favor of rotation invariance. Moreover, it is instructive to

note that not all examples are rotation determinable in prac-

tice. The orientation of an image is ambiguous not only for

round objects, but also for many other objects in images that

are orientation agnostic, for instance, some objects viewed

from top or in symmetrical shape, as shown in Figure 1.

Rotating these objects would not significantly influence our

description or understanding.

In this paper, we present a new self-supervised learning

algorithm that decouples representations through a rotation

prediction task and an instance discrimination task. The

learned example feature consists of two ingredients that are

rotation discriminative and rotation unrelated, respectively.

Rotation discriminative features can be discovered by pre-

dicting image rotations, which is simple yet effective and

achieves state-of-the-art results on some benchmarks [17].

Regarding those orientation agnostic images in the dataset,

automatically assigned rotation labels usually contain noise,

which naturally leads to a positive unlabeled learning prob-

lem. Original images in the default orientation are positive

instances while the rotated copies are unlabeled instances,

which can be positive or negative. If the transformation of

a rotated copy cannot be recognized unequivocally, we treat

it as a positive instance with default orientation in the unla-

beled set (See Figure 1 in supplementary material). On the

other hand, we learn rotation unrelated features by penal-

izing the distance difference between features of the same

image under different rotations. Non-parametric method is

applied to distinguish different instances based on these ro-

tation unrelated features. Hence, the features would have

the discriminative ability on instance level.

To demonstrate the effectiveness of our self-supervised

learning method, we conduct experiments on standard fea-

ture transfer learning benchmarks. We perform ablation

studies to examine individual components in our model and

different configurations. We also test the features on rotated

dataset. Experimental results suggest that it is necessary to

investigate rotation related and unrelated features. Features

learned in our method outperform those of the state-of-the-

art methods on many tasks including linear classification on

ImageNet and Places, as well as classification, detection and

segmentation on PASCAL VOC.

2. Related work

This work relates to several topics in machine learning

and computer vision: self-supervised learning, positive un-

labeled (PU) learning and image rotation invariance.

Self-supervised learning. Self-supervised learning con-

structs some supervisory signals directly computed from the

input data. For example, some methods try to recover part

of the data itself, such as image completion [43], image col-

orization [52, 27, 28] and channel prediction [53]. Others

leverage concept information in images and then construct

constraints, such as image patch position [10, 36], solv-

ing jigsaw puzzle [37], counting [38], rotation [17] and in-

stance discrimination [13, 48]. Methods relying on adver-

sarial training include [12] and [21]. Noroozi et al. [39] and

Caron et al. [6] use clustering approach to generate pseudo-

labels. Apart from single task, Doersch and Zisserman [11]

and Ren and Lee [44] also consider using several tasks to-

gether to obtain performance boost. For videos, some exam-

ples of supervisory signals are: egomotion [1, 42], temporal

coherence [47, 30] and sound [41]. Our method is based

on predicting image rotations [17] and considers properties

owned by the learned representations. We focus more on

rotation related and unrelated property.

Positive unlabeled learning. Unlabeled data in PU

learning are generally treated as negative examples, which

means only the observed negative examples contain noisy

labels [14]. Many methods look into the relationship

between the conditional probability and its estimation to

model the mislabeled rate [46, 40]. Then the mislabeled

rate can be used to handle noisy observed negative ex-

amples by various ways such as excluding examples with

low confidence [40], labeling examples with high confi-

dence [49, 23, 19] or reweighting examples [14, 35, 32].

However, PU learning methods that possess good theoreti-

cal properties may not properly scale up to deep networks

trained with millions of examples. In this work, we formu-

late the task of predicting image rotations as a PU learning

problem and deal with the label noise by applying weights

to unlabeled examples.

Rotation invariance. Many classical hand-crafted fea-

tures like SIFT [34] and RIFT [29] for computer vision are

insensitive to certain rotation transformations. For recent

ConvNets based feature learning, some carefully designed

network structure, such as G-CNNs [7] and Warped Convo-

lutions [20], exhibit excellent results in learning rotational

invariant features. Invariance to arbitrary set of transforma-

tions can be realized through data augmentation. Laptev et

al. [26] extract max-pooled activation of multiple rotational

copies of images. Dieleman et al. [9] expand the feature

maps by combining various transformed features. These in-

variant representation learning methods are mainly trained

in supervised tasks. We aim to learn compound features that

contain rotation unrelated part in an unsupervised way. Our
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Figure 2: Illustration of the proposed method. The neural network outputs a decoupled semantic feature containing rotation related and

unrelated parts. The first part is trained by predicting image rotations. Noises in rotation labels are modeled as a PU learning problem,

which learns instance weights to reduce the influence of rotation ambiguous images. The other part is trained with a distance penalty loss

to enforce rotation irrelevance together with an instance discrimination task by using non-parametric classification.

method also relies on multiple rotational copies of the data,

while we utilize this rotation information efficiently for two

decoupled unsupervised tasks.

3. Rotation feature decoupling

In this section, we first review the method of predicting

image rotations (RotNet) [17], and then reformulate it as

a positive-unlabeled learning problem that mitigates the in-

nate defects in the design of this pretext task. We describe in

detail of our rotation feature decoupling approach and give

our complete model (See Figure 2).

3.1. Image rotation prediction

ConvNets are particularly powerful in mapping raw im-

age to a semantically meaningful feature vector, but they are

often trained using images and their corresponding ground

truth labels. To obtain a general-purpose feature for an im-

age in an unsupervised way, RotNet investigates geometric

transformations of image, specifically rotations of image by

multiples of 90 degrees, as supervisory signals, and trains

ConvNet to predict their transformation [17]. Semantically

meaningful representation can therefore be encoded in the

feature maps of higher layers of the ConvNet.

Given a training dataset S = {Xi}
N
i=1 of N images,

the RotNet defines a set of rotational transformation G =
{g(X; y)}Ky=1 for each image X . We denote the i-th image

with the y-th rotation by Xi,y , where Xi,y = g(Xi; y). A

ConvNet model F (·;θ) is trained to classify each rotated

image to one of the transformations. The objective is:

min
θ

1

NK

N
∑

i=1

K
∑

y=1

l(F (Xi,y;θ), y), (1)

where l is the cross-entropy loss for classification problem.

The transformations are defined as rotations by multiples of

90 degrees, i.e. K = 4, and g(X; y) means rotating image

X counterclockwise by (y − 1) · 90 degree.

The basic premise of RotNet is that rotating an image

will change the orientation of objects in the image, which

should be easily identified. To predict image rotation, the

neural network has to recognize and localize salient object

parts in the image. The well-trained neural network can

therefore produce an accurate feature for salient object in

the image and these features can be easily transferred to

real-world tasks, such as detection and segmentation.

3.2. Noisy rotated images

The prerequisite introduced in the rotation prediction

model could be satisfied for most natural images, which

generally have objects in an up-front posture. This kind of

images usually have a default orientation. Any rotations of

the image will result in an unusual object orientation, which

can be specified by human eyes without any doubt. Many

instances in datasets like ImageNet have such observations,

and are appropriate for the rotation prediction task.

Despite of its simplicity and effectiveness, this premise

will fail for many objects in images that are orientation ag-

nostic, for instance some objects viewed from top or in sym-

metrical shape (see Figure 1). Recognizing the exact ro-

tation transformation for these images would be meaning-

less in practice, and applying ConvNets in any case with-

out thinking will only introduce confounders to the model

training. Moreover, features learned in RotNet are discrim-

inative toward the rotation angle. They are not favored in a

rotation agnostic image dataset like plankton [8] and ISBI

2012 electron microscopy segmentation challenge [3]. Here
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we first describe ways to reduce the influence of noisy ro-

tation labels and introduce learning rotation unrelated fea-

tures in the next subsection.

We regard original images in the dataset as being in

default orientation and label them as positive examples.

The unlabeled examples include all rotated copies, some

of which are still in the default orientation after rotation.

Therefore, the automatically assigned rotation labels of

these images are noisy for RotNet. Predicting whether

an input image is rotated is hence a binary classification

problem if all unlabeled data are treated as negative exam-

ples [4]. In PU learning, it is shown that the estimated con-

ditional probability is related to the noise rate and the con-

fidence of an example being clean [40, 19]. We propose to

weight each rotated image using estimated probability, and

reduce the relative loss of rotation ambiguous images.

At first, a ConvNet model is trained to conduct binary

classification. We denote by F̃ (Xi,y) the probability of an

image being positive estimated from this pre-trained model.

We add a weight for each instance to the cross-entropy loss

with tunable parameter γ, i.e.

wi,y =

{

1 y = 1

1− F̃ (Xi,y)
γ

otherwise.
(2)

The objective (1) can be reformulated using the calcu-

lated instance weights,

min
θ

1

NK

N
∑

i=1

K
∑

y=1

wi,yl(F (Xi,y;θ), y), (3)

which predicts image rotations while mitigating the influ-

ence of noisy examples.

3.3. Feature decoupling

Image features that solely relate to image rotations are

not practical for downstream tasks involving rotation agnos-

tic images. An alternative solution is to complement rota-

tion related feature with additional feature that is unrelated

to image rotations. We achieve this goal by developing a

feature decoupling algorithm, which learns a semantic fea-

ture that is partly discriminative with respect to image rota-

tions and partly unrelated to it. The first part of the feature

enjoys the benefits inherited from the task of estimating im-

age rotations. Being unrelated to image rotations, the other

part is suitable for some orientation agnostic tasks.

Rotation classification. We suppose that the high-

level feature of an image X can be represented as f =
[

f (1)
⊺

, f (2)
⊺]⊺

, where f (1) is explicitly related to image ro-

tation while f (2) is responsible for information that are unre-

lated to rotation transformation. We denote by the ConvNet

based feature extractor Ff (·;θf ) with parameters θf , which

maps an input rotated image Xi,y into a fixed size vector

fi,y = Ff (Xi,y;θf ). A classifier Fc(·;θc) takes feature

f
(1)
i,y as the input to estimate the rotation type of the image.

The rotation classication loss function can be expressed as

Lc =
1

NK

N
∑

i=1

K
∑

y=1

wi,yl(Fc(f
(1)
i,y ;θc), y), (4)

which is different from Eq. (3) as only part of feature f are

used here to recognize the rotation.

Rotation irrelevance. Toward the goal of rotation un-

related feature, we enforce similarity between features of

the same image with different rotation angles. Formally,

given rotated copies of an image: {Xy}
K
y=1, their features

{f
(2)
y }Ky=1 are expected to be similar with each other as

much as possible. We address this by minimizing the dis-

tance between each feature {f
(2)
y }Ky=1 and their mean fea-

ture vector f̄ = 1
K

∑K
y=1 f

(2)
y , and write the objective as

Lr =
1

NK

N
∑

i=1

K
∑

y=1

d(f
(2)
i,y , f̄i). (5)

For calculation efficiency, we adopt Euclidean distance, i.e.

d(x,y) = ‖x− y‖2.

However, this objective alone will lead to a trivial solu-

tion. Although features of the same image under different

rotations are similar, the network could simply output the

same vector (e.g. zero vector) regardless of the input im-

age. Hence beyond Eq. (5), we expect rotation unrelated

features to be discriminative w.r.t. image instances rather

than rotation types. Non-parametric classification [48] can

be applied to avoid such degenerate solution.

Image instance classification. The feature f (2) is ex-

pected to be more similar with each other for the same im-

age under different rotations than those for different images.

Since features of rotated copies of an image have already

been constrained to be close to their mean feature vector

in Eq. (5), we proceed to distinguish and spread out these

mean features.

In non-parametric classification, the probability of pre-

dicting image X as the i-th instance in the dataset is:

P (i | f̂) =
exp(f̂⊺i f̂/τ)

∑N
j=1 exp(f̂

⊺

j f̂/τ)
, (6)

where f̂ is the L2-normalized version of f̄ and τ is the tem-

perature parameter. Given the training dataset S, we are

interested in minimizing the negative log-likelihood:

Ln = −

N
∑

i=1

logP (i | f̂i). (7)

To alleviate the time and space in demand to calculate

Eq. (7) over large scale datasets, we linearly map the mean
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feature to a 128-dimentional vector before normalization as

well as adopt noise constative estimation (NCE) and prox-

imal regularization [48]. The objective is to minimize the

following loss function:

Ln =− EPd

[

log h(i, f̂
(t−1)
i )− λ

∥

∥

∥
f̂
(t)
i − f̂

(t−1)
i

∥

∥

∥

2

2

]

−m · EPn

[

log(1− h
(

i, f̂ ′(t−1))
)

]

,

(8)

where h(i, f̂) := P (i | f̂)
/[

P (i | f̂)+mPn(i)
]

. Pd denotes

the actual data distribution and Pn denotes the uniform dis-

tribution for noise in NCE. f̂ ′ is the normalized feature from

another image.

The resulting model comprises three core modules: ro-

tation classification (Eq. (4)), rotation irrelevance (Eq. (5))

and image instance classification (Eq. (8)), and can be writ-

ten as

min
θf ,θc

λcLc + λrLr + λnLn. (9)

We concatenate f (1) and f (2) to represent an input image.

The image feature consists of rotation related and unrelated

components, both of which contain rich high-level sematic

image representation. f (1) will contain necessary informa-

tion, for example salient object location and its default ori-

entation, to predict image rotations. On the other hand, f (2)

has no information related to rotation and focuses more on

the differences of every single images.

4. Experiments

In this section, we conduct experiments to demonstrate

the effectiveness of our approach. If the visual represen-

tations learned in unsupervised manner are effective and

general-purpose, they will generalize well to various tasks.

We first qualitatively analyze the network learned with the

proposed algorithm. Then we report the results on several

standard transfer learning benchmarks.

4.1. Implementation details

For comparison with previous works, we use a standard

AlexNet architecture implemented by pytorch [24] with re-

duced number of channels as the feature extractor Ff (·;θf ).
It consists of five convolutional layers and two fully con-

nected layers. We leave out the Local Response Normal-

ization (LRN) layers and add Batch Normalization (BN)

after each linear layers, which is a common procedure in

recent self-supervised learning approaches [10, 52, 12, 53,

17, 48, 44, 6]. The decoupled features f (1) and f (2) are sim-

ply set to have same dimension, i.e. the representation f is

split into two halves. We implement the rotation classifier

Fc(·;θc) as a one-layer linear network. The value of hyper-

parameters γ, τ and m in our model are 2, 0.07 and 4096,

respectively. We simply set the parameters λc, λr and λn

for loss balance all as 1. We train the model for 200 epochs

in total on ILSVRC 2012 training set. The learning rate is

set to 0.01 initially and then decayed by a factor of 10 every

40 epochs after the first 90 epochs. The network is trained

with momentum of 0.9, a batch size of 192 and an l2 penal-

ization of the weights θ with 5 · 10−4.

4.2. Qualitative analysis

Nearest-neighbor retrieval. Self-supervised training is

expected to assign similar features to semantically similar

images. We first perform nearest-neighbor retrieval on Im-

ageNet ILSVRC 2012 validation set to test the ability of

learned features in capturing semantic meanings. We com-

pare to the RotNet baseline to see the effect of feature de-

coupling. For our model, we obtain features from the 4,096

dimensional vector outputted by the feature extractor net-

work Ff (·;θf ). Accordingly, for RotNet the features are

extracted from the fc7 layer. We use cosine-similarity to

calculate the distance between features.

Retrievals of some examples are arranged from left to

right in order of increasing distance in Figure 3. Both Rot-

Net and the proposed model are able to capture semantics

in images for some categories. The results of randomly

selected images, which contain salient objects and are ro-

tation unambiguous, are satisfactory for both RotNet and

our model. Our model can sometimes capture more fine-

grained similarity. For example, on second row, the Rot-

Net retrieves some similar background plants rather than

the foreground object bird. For bullet train, our model suc-

cessfully find images in the same category rather than just

general vehicles. Additionally, for some rotation agnostic

image queries, the RotNet fail to extract latent information

for objects in images. Many images retrieved by RotNet

are totally unrelated to the query (marked with red bor-

der). This is likely because the RotNet focuses more on the

shape of object and is less discriminative toward different

instances. On the contrary, our model can return more se-

mantically similar images for these queries, which confirms

our model’s discriminative ability on instance level.

Filter visualizations. To better understand the filers and

features learned in our approach, we use different network

visualization techniques. Figure 4 shows the filters from

the first layer [25], synthetic images that maximize some

activation [15, 50] and maximally activating images [51]

for some channel of each convolutional layers. We find that

deeper layers in our model seem to capture more complex

and abstract textural structures.

4.3. Linear classification on activations

Following Zhang et al. [52], we train linear classifiers

on top of the features extracted by different convolutional

layers. This classification result represents the task spe-
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Query RotNet retrievals Ours retrievals

Figure 3: Nearest-neighbor retrieval results. We show the seven nearest neighbors of RotNet and our feature decoupling network on

ImageNet validation set. Queries contain both randomly selected images (upper four rows) and rotation agnostic ones (lower four rows).

Semantically unrelated retrievals are marked with red border.

(a) conv1 filters (b) conv1

(c) conv2 (d) conv3

(e) conv4 (f) conv5

Figure 4: Filter visualization. We plot the filters from conv1 layer

and show synthetic images that maximally activate specific fea-

ture map of some channel in different convolutional layers. Cor-

responding top 9 activated images from ImageNet training set of

that channel are on the right.

cific power of the learned representation, specifically the

discriminative power over object class. As usual, we per-

form this study on both ILSVRC 2012 [45] and the Places

dataset [54]. All weights of the feature extractor network

are frozen and feature maps are spatially resized (with adap-

tive max pooling) so as to have around 9,000 elements. Re-

sults are reported in Tables 1 and 2, respectively. All ap-

proaches in table use AlexNet based network and were pre-

trained on ImageNet without labels except the ImageNet-

labels, Places-labels, and Random entries.1 We report the

best numbers for each method reported in [36, 39]. We also

provide results of non-linear classification on ImageNet in

the supplementary material.

On ImageNet, our approach outperforms the state-of-

the-art from conv3 to conv5. Our results on conv1

and conv2 are comparable to previous results and the

ImageNet-label entry. Note that the lower layers of the net-

work usually capture low-level information like edges or

contours in images, and with relatively low transfer accu-

racies, these features are generally less often used directly.

It is important to note that the performance of most previ-

ous works degrades along the neural network depth. In stark

contrast, we successfully diminish the gap with ImageNet-

label on higher layers. The largest improvement (7.8%) is

achieved on conv5 layer, which usually extracts abstract

semantic information. This suggests that high-level features

extracted by our method are more promising for practical

use.

On Places dataset, the results of our approach exhibit

similar trends with that on ImageNet. We achieve best accu-

1Methods marked with ∗ use a bigger version of AlexNet that do not

have group or reduced number of channels, which will have 50% more pa-

rameters in convolutional layers and typically cause a performance boost.

In this paper we also report results on this network.
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Method\Layer conv1 conv2 conv3 conv4 conv5

ImageNet-labels [25, 52] 19.3 36.3 44.2 48.3 50.5

Random [53] 11.6 17.1 16.9 16.3 14.1
Krähenbühl et al. [22] 17.5 23.0 24.5 23.2 20.6

Pathak et al. (Inpainting) [43] 14.1 20.7 21.0 19.8 15.5
Noroozi & Favaro (Jigsaw) [37] 18.2 28.8 34.0 33.9 27.1
Zhang et al. (Colorization) [52] 13.1 24.8 31.0 32.6 31.8
Donahue et al. (BiGANs) [12] 17.7 24.5 31.0 29.9 28.0
Zhang et al. (Split-Brain) [53] 17.7 29.3 35.4 35.2 32.8
Noroozi et al. (Counting) [38] 18.0 30.6 34.3 32.5 25.7
Gidaris et al. (RotNet) [17] 18.8 31.7 38.7 38.2 36.5
Jenni & Favaro [21] 19.5 33.3 37.9 38.9 34.9
Mundhenk et al. [36] 19.6 31.8 37.6 37.8 33.7
Noroozi et al. (CC+) [39] 18.9 30.5 35.7 35.4 32.2
Noroozi et al. (CC+vgg-) [39] 19.2 32.0 37.3 37.1 34.6
Wu et al. [48] 16.8 26.5 31.8 34.1 35.6

Doersch et al. (Context) [10]∗ 16.2 23.3 30.2 31.7 29.6
Ren & Lee [44]∗ 16.5 27.0 30.5 30.1 26.5

Caron et al. (DeepCluster) [6]∗† 13.4 32.3 41.0 39.6 38.2

Ours 19.3 33.3 40.8 41.8 44.3

Ours (bigger AlexNet)∗ 20.8 35.2 41.8 44.3 44.4

Ours (bigger AlexNet)∗† 22.2 38.2 45.7 48.7 48.3

Table 1: Top-1 linear classification accuracies on ImageNet vali-

dation set using activations from different convolutional layers as

features. ∗ indicates the use of a bigger AlexNet. † indicates re-

porting accuracies averaged over 10 crops.

racies on conv4 and conv5 layer, as well as comparable

accuracies from conv1 to conv3. On conv5 layer we

outperform the state-of-the-art by 3.7%.

4.4. Multilabel classification, object detection and
semantic segmentation on PASCAL VOC

We test the transferability of the learned feature on PAS-

CAL VOC dataset [16]. We use our unsupervised trained

network Ff (·;θf ) as the initialization model for tasks on

PASCAL. Performance is measured by mean average preci-

sion (mAP) for classification and detection, and by mean in-

tersection over union (mIU) for segmentation. During trans-

fer, we absorb the batch normalization parameters into their

preceding linear layers and do not use BN layers during

fine-tuning. The data-dependent rescaling method proposed

by Krähenbühl et al. [22] is used to rescale the weights in

all experiments as is standard practice. Table 3 summarizes

the comparison of our approach with other methods. We

outperform previous methods on all these three tasks.

Classification on PASCAL VOC 2007. We use the

open source protocol provided by Krähenbühl 2 to perform

multi-label classification. We fine-tune either the whole net-

work or only fc6-8 layers on trainval set and evaluate on

test set. Our approach can improve upon RotNet, the cur-

rent best method on classification. It can be observed that

2https://github.com/philkr/voc-classification

Method\Layer conv1 conv2 conv3 conv4 conv5

Places-labels [54, 53] 22.1 35.1 40.2 43.3 44.6
ImageNet-labels [25, 52] 22.7 34.8 38.4 39.4 38.7

Random [53] 15.7 20.3 19.8 19.1 17.5
Krähenbühl et al. [22] 21.4 26.2 27.1 26.1 24.0

Pathak et al. (Inpainting) [43] 18.2 23.2 23.4 21.9 18.4
Noroozi & Favaro (Jigsaw) [37] 23.0 31.9 35.0 34.2 29.3
Zhang et al. (Colorization) [52] 16.0 25.7 29.6 30.3 29.7
Donahue et al. (BiGANs) [12] 22.0 28.7 31.8 31.3 29.7
Zhang et al. (Split-Brain) [53] 21.3 30.7 34.0 34.1 32.5
Noroozi et al. (Counting) [38] 23.3 33.9 36.3 34.7 29.6
Gidaris et al. (RotNet) [17] 21.5 31.0 35.1 34.6 33.7
Jenni & Favaro [21] 23.3 34.3 36.9 37.3 34.4
Mundhenk et al. [36] 23.7 34.2 37.2 37.2 34.9
Noroozi et al. (CC+) [39] 22.5 33.0 36.2 36.1 34.0
Noroozi et al. (CC+vgg-) [39] 22.9 34.2 37.5 37.1 34.4
Wu et al. [48] 18.8 24.3 31.9 34.5 33.6

Doersch et al. (Context) [10]∗ 19.7 26.7 31.9 32.7 30.9

Caron et al. (DeepCluster) [6]∗† 19.6 33.2 39.2 39.8 34.7

Ours 22.9 32.4 36.6 37.3 38.6

Ours (bigger AlexNet)∗ 24.0 33.8 37.5 39.3 38.9

Ours (bigger AlexNet)∗† 25.5 36.0 40.1 42.2 41.3

Table 2: Top-1 linear classification accuracies on Places valida-

tion set using activations from different convolutional layers as

features. ∗ indicates the use of a bigger AlexNet. † indicates re-

porting accuracies averaged over 10 crops.

the bigger AlexNet model will lead to a performance im-

provement.

Detection on PASCAL VOC 2007. For object detection

our self-supervised trained network is used as the initial-

ization of Fast-RCNN [18]. We use the publicly available

testing framework provided by Girshick [18] and use multi-

scale training and single-scale testing. The weights of the

first layer are fixed during fine-tuning as it is the default set-

ting in Fast-RCNN. With a mAP of 57.5% we achieve the

best result. Per class detection performance of our method

is also provided in the supplementary material.

Segmentation on PASCAL VOC 2012. We fine-tune

our model using FCN [33] on PASCAL VOC 2012 train set

and evaluate on val set. Our approach outperforms state-of-

the-art by 2.7%.

4.5. Discussion

Ablation studies. To see the influence of each compo-

nent in our model, we conduct ablation studies on ImageNet

linear classification with fixed features. We compare the

individual performance of the rotation prediction task (Ro-

tation), rotation unrelated instance classification (Instance),

the combination of these two tasks (Rotation + Instance),

and the full model taking into consideration noisy labels in

the unlabeled set (PURotation + Instance). The middle four

rows in Table 4 shows the resulting performance of differ-

ent components. The model performs best when rotation
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Method\Task
Class. Det. Seg.

fc6-8 all all all

ImageNet-labels [25, 52, 43] 78.9 79.9 59.1 [39] 48.0

Random [43] – 53.3 43.4 –
Autoencoder [12] – 53.8 41.9 –
Krähenbühl et al. [22] 39.2 56.6 45.6 32.6

Pathak et al. (Inpainting) [43] 34.6 56.5 44.5 29.7
Noroozi & Favaro (Jigsaw) [37] – 67.6 53.2 37.6
Zhang et al. (Colorization) [52] 61.5 65.6 46.9 35.6
Donahue et al. (BiGANs) [12] 52.3 60.1 46.9 35.2
Larsson et al. (Colorization) [28] – 65.9 – 38.4
Zhang et al. (Split-Brain) [53] 63.0 67.1 46.7 36.0
Noroozi et al. (Counting) [38] – 67.7 51.4 36.6
Gidaris et al. (RotNet) [17] 70.9 73.0 54.4 39.1
Jenni & Favaro [21] – 69.8 52.5 38.1
Mundhenk et al. [36] – 69.6 55.8 41.4
Noroozi et al. (CC+) [39] – 69.9 55.0 40.0
Noroozi et al. (CC+vgg-) [39] – 72.5 56.5 42.6
Wu et al. [48] – – 48.1 –

Doersch et al. (Context) [10]∗ 55.1 65.3 51.1 –
Ren & Lee [44]∗ – 68.0 52.6 –
Caron et al. (DeepCluster) [6]∗ 72.0 73.7 55.4 45.1

Ours 72.3 74.3 57.5 45.3

Ours (bigger AlexNet)∗ 72.5 74.7 58.0 45.9

Table 3: Transfer learning results for classification, detection and

segmentation on PASCAL compared to state-of-the-art feature

learning methods. We report the best numbers for each method

reported in [36, 39]. ∗ indicates the use of a bigger AlexNet.

discrimination, noisy labels and instance discrimination are

all considered.

Different configurations. We evaluate the effect of var-

ious design choices by linear classification on ImageNet.

We compare different structures of the feature extractor

network Ff (·;θf ): the convolutional layers of AlexNet

(conv5), conv5 with one fully connected layer (fc6),

and conv5 with two fully connected layers (fc7). Results

are summarized at the lower three rows in Table 4. Higher

layers learn better feature when feature decouples at higher

layers. It is interesting to notice that performance of lower

layers tend to decrease. This might because effective gra-

dient information help less on lower layers when the loss

function is applied on higher layers.

Rotation feature evaluation. We finally demonstrate

that the decoupled feature is better suitable when the images

in downstream tasks exhibit rotational symmetry. To do

this, we rotate the images in PASCAL VOC 2007 by multi-

ples of 90 degrees (specifically 90, 180 and 270) and eval-

uate on classification task. The rotated dataset has 20,044

images for training and 19,808 for test (4 times as many as

the original dataset). Each instance with different rotation

angles shares the same class label. We train a linear classi-

fier directly on top of the first half (rotation related) features

f (1), second half (rotation unrelated) features f (2) and the

Method Decouple conv1 conv2 conv3 conv4 conv5

ImageNet-labels – 19.3 36.3 44.2 48.3 50.5

Rotation – 18.8 31.7 38.7 38.2 36.5
Instance – 18.3 28.6 33.0 32.7 32.9
Rotation + Instance fc7 19.3 33.0 40.7 41.6 44.0
PURotation + Instance

fc7 19.3 33.3 40.8 41.8 44.3
(Full model)

Full model conv5 19.6 33.4 40.2 40.4 41.0
Full model fc6 19.4 33.5 40.8 41.5 42.6
Full model fc7 19.3 33.3 40.8 41.8 44.3

Table 4: Comparison of different components and design choices

in our model on ImageNet linear classification task.

Method\Task Class. (fc8) Class. (fc6-8)

ImageNet-labels 66.5 71.6

RotNet 42.2 66.3

Ours (rotation related half f (1)) 38.6 –

Ours (rotation unrelated half f (2)) 57.7 –
Ours (decoupled feature f ) 59.2 68.0

Table 5: Rotation feature evaluation results on Rotated PASCAL

classification.

compound decoupled features. Results for ImageNet-labels

and baseline RotNet are produced by us and are reported for

reference. We also consider fine-tuning fc6-8 for three

different methods. As shown in Table 5, the learned feature

of RotNet and our rotation related half performs poorly. The

reason is that they are discriminative w.r.t. image rotations

and do not have a good generalization ability in a rotated

dataset. This result reveals that it is beneficial to consider

both rotation related and unrelated features. Our method

is more suitable in vision tasks that are in favor of rotation

invariance.

5. Conclusion

In this paper, we have presented an unsupervised repre-

sentation learning method that learns semantically mean-

ingful features containing rotation related and unrelated

parts. Our approach decouples predicting image rotations

from discriminating individual instances. The transfer of

features achieves improved performance over state-of-the-

art methods on standard self-supervised learning bench-

marks. The advantages of decoupled feature are further

demonstrated in rotation agnostic tasks. We believe that

incorporating more well-analyzed properties of representa-

tion for self-supervised learning is beneficial to generaliza-

tion and is a promising future direction.
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Berger, Dan Cireşan, Alessandro Giusti, Luca M. Gam-

bardella, Jürgen Schmidhuber, Dmitry Laptev, Sarvesh

Dwivedi, Joachim M. Buhmann, Ting Liu, Mojtaba Seyed-

hosseini, Tolga Tasdizen, Lee Kamentsky, Radim Burget,

Vaclav Uher, Xiao Tan, Changming Sun, Tuan D. Pham,

Erhan Bas, Mustafa G. Uzunbas, Albert Cardona, Johannes

Schindelin, and H. Sebastian Seung. Crowdsourcing the cre-

ation of image segmentation algorithms for connectomics.

Frontiers in Neuroanatomy, 9:142, 2015.

[4] Jessa Bekker and Jesse Davis. Learning from positive and

unlabeled data: A survey. arXiv:1811.04820, 2018.

[5] Y. Bengio, A. Courville, and P. Vincent. Representation

learning: A review and new perspectives. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(8):1798–

1828, Aug 2013.

[6] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In Vittorio Ferrari, Martial Hebert, Cris-

tian Sminchisescu, and Yair Weiss, editors, Computer Vision

– ECCV 2018, pages 139–156, Cham, 2018. Springer Inter-

national Publishing.

[7] Taco Cohen and Max Welling. Group equivariant convo-

lutional networks. In Maria Florina Balcan and Kilian Q.

Weinberger, editors, Proceedings of The 33rd International

Conference on Machine Learning, volume 48 of Proceed-

ings of Machine Learning Research, pages 2990–2999, New

York, New York, USA, 20–22 Jun 2016. PMLR.

[8] Robert K Cowen, S Sponaugle, K Robinson, and J Luo.

Planktonset 1.0: Plankton imagery data collected from fg

walton smith in straits of florida from 2014–06-03 to 2014–

06-06 and used in the 2015 national data science bowl (ncei

accession 0127422). NOAA National Centers for Environ-

mental Information, 2015.

[9] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu.

Exploiting cyclic symmetry in convolutional neural net-

works. In Maria Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine

Learning Research, pages 1889–1898, New York, New York,

USA, 20–22 Jun 2016. PMLR.

[10] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsu-

pervised visual representation learning by context prediction.

In The IEEE International Conference on Computer Vision

(ICCV), December 2015.

[11] Carl Doersch and Andrew Zisserman. Multi-task self-

supervised visual learning. In The IEEE International Con-

ference on Computer Vision (ICCV), Oct 2017.
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