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Abstract

The need for efficiently finding the video content a

user wants is increasing because of the erupting of user-

generated videos on the Web. Existing keyword-based or

content-based video retrieval methods usually determine

what occurs in a video but not when and where. In this pa-

per, we make an answer to the question of when and where

by formulating a new task, namely spatio-temporal video

re-localization. Specifically, given a query video and a ref-

erence video, spatio-temporal video re-localization aims to

localize tubelets in the reference video such that the tubelets

semantically correspond to the query. To accurately local-

ize the desired tubelets in the reference video, we propose

a novel warp LSTM network, which propagates the spatio-

temporal information for a long period and thereby cap-

tures the corresponding long-term dependencies. Another

issue for spatio-temporal video re-localization is the lack

of properly labeled video datasets. Therefore, we reorga-

nize the videos in the AVA dataset to form a new dataset for

spatio-temporal video re-localization research. Extensive

experimental results show that the proposed model achieves

superior performances over the designed baselines on the

spatio-temporal video re-localization task.

1. Introduction

Video sharing websites or APPs are becoming more pop-

ular than ever before. Besides the traditional video-sharing

websites, including YouTube1 and Facebook2, the recently

emerged short video sharing APPs, such as SnapChat3 and

TikTok4, arouse the passion of ordinary users for creating

and sharing video contents. With more and more videos

generated every day, exploring so many videos becomes in-

creasingly challenging. It is necessary to build tools which

∗This work was done while Yang Feng was a Research Intern with Ten-

cent AI Lab.
†Corresponding author.
1https://www.youtube.com
2https://www.facebook.com
3https://www.snapchat.com
4https://www.tiktok.com

query

reference

Figure 1. The query is a video containing an action performed

by two characters. The reference video contains two boys per-

forming the same action. Given the query, spatio-temporal video

re-localization aims to localize the tubelets in the reference video

such that the tubelets express the same visual concept as the query.

The desired tubelet in the reference is marked by green. Best

viewed in color.

can help users find the video contents they want efficiently.

Keyword-based video search is prevalent among users

when they want to find some videos. Although it is a

powerful method, keyword-based video search results are

largely determined by the text information associated with

the videos. As such, content-based video retrieval (CBVR)

methods [2, 3, 5, 11, 23, 30, 44, 47, 51] are proposed for

tackling this problem. With the indexing and retrieval tech-

niques, a large list of videos is returned by the CBVR sys-

tem. Only the top results will be viewed by a user, as it is

time-consuming to browse the whole video from the begin-

ning to the end and thereby determine the relevance.

Two kinds of methods are designed to avoid browsing the

whole video. The first kind is video summarization meth-

ods [32, 58], which generate a short synopsis for a long

video. The second kind of methods [7, 8, 13, 14, 19, 22,

31, 37, 41] try to trim the video segment of interest. Us-

ing natural language as a query, [14, 19] retrieve a specific

temporal segment in a video, which shares the same seman-

tic meaning as the query. By replacing the query sentence

with a sample video clip, video re-localization [13] aims

to temporally localize video segments, which semantically

correspond to the query video clip.

In this paper, we extend the temporal video re-

localization [13] to the spatio-temporal domain. Specif-
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ically, given a query video, spatio-temporal video re-

localization (STVR) aims to localize tubelets in a reference

video such that the tubelets are semantically coherent with

the query video. Figure 1 illustrates an example pair of

query and reference videos. There are several advantages

in localizing tubelets over temporal localization based on

whole frames. First, localizing tubelets can handle the cases

where multiple events are happening at the same time in the

reference video. When using whole video frames for recog-

nition or temporal detection tasks, it usually assumes that

only one event is undergoing. The assumption rarely holds

in unconstrained environments. Second, the recognition ac-

curacy will substantially increase because the influence of

background regions is reduced by only focusing on specific

regions. STVR is also a more challenging task than tempo-

ral video re-localization. First, the training videos should be

labeled with bounding boxes over a long period, which con-

sumes more human labors than temporal annotation only.

Second, detecting the bounding boxes at each frame is more

difficult than only localizing the starting and ending bound-

ary points.

To address the STVR task, we propose a matching

framework consisting of three modules: query encoding,

reference encoding, and query-reference interaction. The

query encoding module encodes a query video of arbitrary

resolution into a series of fixed size feature cubes. The ref-

erence encoding module encodes the given reference video

in a different manner. To keep the detailed spatio infor-

mation in the reference, the shape of the reference feature

cube is proportional to the resolution of the reference video.

In the query-reference interaction module, several bounding

box proposals are generated for the reference and then each

proposal is matched with the query to determine whether a

proposal and the query are semantically corresponding to

each other.

To accurately localize the tubelets in the reference, the

long-term spatio-temporal information needs to be mod-

eled. We propose a novel warp LSTM network for this

purpose. Warp LSTM is a variant of ConvLSTM [39]. In

ConvLSTM, the previous hidden state is concatenated with

the current input for further computation. Different from

ConvLSTM, the previous hidden state in warp LSTM is

warped before the concatenation to make the previous hid-

den state be aligned with the current input if any movement

in the video makes them unaligned. The warp of the hid-

den state at a previous time-step can compensate for small

movements in the video, which accurately aggregates the

spatio history information of moving objects.

In order to train the matching model for STVR, we create

a new dataset by reorganizing the videos in the AVA dataset

[16]. The AVA dataset is originally used for spatio-temporal

action localization. Each action tubelet is annotated with

one or several atomic action labels. We use one action

tubelet as the query and find the tubelets with the same ac-

tion labels in the reference video. Two action tubelets are

semantically corresponding to each other if the action labels

of the two tubelets are exactly the same. The AVA dataset

provides a subset of videos for training and another subset

of videos for validation. We further split the action tubelets

into training, validation, and test subsets according to their

action categories. Such a splitting guarantees that the vali-

dation and testing categories do not overlap with the train-

ing categories.

In summary, our contributions are four-fold:

• We make the first attempt to tackle the STVR task,

which aims to localize tubelets in the reference video

such that the tubelets semantically correspond to a

given query video.

• We propose a novel warp LSTM network to propa-

gate the spatio-temporal information between adjacent

frames for a long period and thereby capture the corre-

sponding long-term dependencies.

• We reorganize the videos in the AVA dataset [16] to

form a new dataset for the research on STVR.

• We conduct extensive experiments on the new dataset,

which shows that the warp LSTM performs better than

the competing methods.

2. Related Work

Video Representations. Convolutional Neural Net-

works (CNNs) have broken many records of computer vi-

sion tasks, such as image classification [18, 36], object de-

tection [24], semantic segmentation [9], facial expression

recognition [55], and captioning [10, 28, 48, 49, 53]. Due

to the great success of CNNs on images, many researchers

tried to apply CNNs on videos. [34, 42, 54] are mainly

based on 2D CNNs, in which the motion information is not

fully exploited. 3D CNNs are proposed in [27, 46, 56] to

capture more complex motion patterns. The recently pro-

posed I3D feature [4] has achieved state-of-the-art action

recognition results. Compared with 3D CNNs, the proposed

warp LSTM is able to model the long-term spatio-temporal

information of moving objects for classification and lo-

calization tasks by explicitly modeling the movements in

videos.

Video Re-localization. Video Re-localization [13] aims

to find segments in reference videos semantically corre-

sponding to a given query video. A more specialized task,

one-shot action localization [52], focuses on the tempo-

ral detection of actions in videos giving an example. The

STVR task to be solved in this paper is an extension of

temporal video re-localization. Besides predicting the start-

ing and ending points of a video segment, STVR also de-

tects the spatio localization of the video content that users

are interested in. Hoogs et al. [21] designed a system to

spatio-temporally retrieve people and vehicles in surveil-
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Figure 2. Comparison between ConvLSTM and warp LSTM. (a)

In ConvLSTM, the input xt and the hidden state at previous time-

step ht−1 are convolved with different filters and then added to

produce the new hidden state ht. (b) In warp LSTM, ht−1 is

warped by a differentiable spline interpolation before the convo-

lution to compensate for the small motion between consecutive

video clips.

lance videos. STVR is different in that it is not specialized

in certain categories or types of videos.

Spatio-temporal Detection. Two related vision tasks

are video object detection and spatio-temporal action detec-

tion. All the three tasks need to model long-term spatio-

temporal dependencies to predict tubelets in videos. Al-

though the temporal information inside a clip is considered

in [22, 31], the bounding boxes are predicted independently

of the frames outside the short clip. To solve this problem,

both [33, 37] extract tubelet proposals from videos in the

first stage and make the classification in the second stage.

One assumption used in both [33, 37] is that the reception

field of CNN features is large enough to handle the small

movements in a short time. With this assumption, the fea-

ture cropped at a previous anchor location is used to pre-

dict the bounding boxes at the current frame. Although

the reception field is large enough to cover the objects with

small movements, the bounding box prediction will become

a more difficult task on the feature map with offsets. Dif-

ferent from them, we align the previous feature maps with

the current feature map by warping. The proposed warp

LSTM can reduce the offset of the previous feature map

and thereby reduce the burden of the bounding box predic-

tion module.

3. Spatio-temporal Information Propagation

In this section, we present our proposed warp LSTM net-

work for modeling the long-term spatio-temporal informa-

tion in videos. Warp LSTM is a variant of ConvLSTM [39].

We first give the background knowledge of ConvLSTM.

3.1. ConvLSTM

ConvLSTM extends the fully-connected LSTM [20] to

have convolutional structures in both the input-to-state and

t¡ 1 t

Figure 3. An illustration of a moving object in two consecutive

time-steps. At time-step t − 1, the object is located at the bound-

ing box pt−1. In the following time-step, the object moves to the

location of bounding box pt. qt−1 is a bounding box at time-step

t − 1 having the same position as pt. Please note that the content

in qt−1 may be not semantically related to the object in pt.

state-to-state transitions:

it = σ(Wxi ∗ xt +Whi ∗ ht−1 + bi),

gt = σ(Wxg ∗ xt +Whg ∗ ht−1 + bg),

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 + bf ),

ot = σ(Wxo ∗ xt +Who ∗ ht−1 + bo),

ct = ft ⊙ ct−1 + it ⊙ gt,

ht = ot ⊙ φ(ct),

(1)

where xt, ht, ct, it, ft, and ot are the ConvLSTM input,

hidden state, memory cell, input gate, forget gate, and out-

put gate at time-step t, respectively. All the W s and bs are

the parameters of the ConvLSTM layer. ∗ is the convolu-

tion operation and ⊙ is the element-wise product. σ and

φ are sigmoid non-linearity and hyperbolic tangent nonlin-

earity, respectively. In Eq. (1), xt and ht−1 are convolved

with different filters and then added for later computation,

as shown in Figure 2. This operation is equivalent to first

concatenating xt and ht−1 along the channel dimension and

then computing the convolution.

3.2. Warp LSTM

If no movement happens in the video at the t-th time-

step, the concatenation of xt and ht−1 in ConvLSTM is per-

fectly fine. However, when motion happens at time-step t,

the concatenation of xt and ht−1 may cause errors in spatio-

temporal localization tasks. Figure 3 shows a moving object

at two consecutive time-steps. At time-step t−1, the object

is located at the bounding box pt−1. In the following time-

step, the object moves to the location of bounding box pt.

qt−1 is a bounding box at time-step t − 1 having the same

position as pt. The content in qt−1 may be depicting objects

other than the aforementioned object. As such, simply con-

catenating the features at the locations of qt−1 and pt may

introduce noises into the classification and localization of

pt.

We propose warp LSTM to address this issue by warping

the hidden state at the previous time-step before concatenat-

ing it with the input. Figure 2 illustrates the proposed warp
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LSTM, where the warp is implemented by the differentiable

spline interpolation [12], as illustrated in Figure 4. Given

a set of 2-D control points {(x1, y1), . . . , (xn, yn)} on the

hidden state h, the warp operation tries to shift (xi, yi) to a

new position (xi + dxi, yi + dyi), where n is the number

of control points and (dxi, dyi) is the desired displacement

of the i-th control point. Let h′ denote the warped hidden

state, then we have:

h′[xi + dxi, yi + dyi] = h[xi, yi], ∀i ∈ {1, . . . , n}. (2)

Besides shifting the control points, the warping is continu-

ous on the whole 2D space of h, resulting in a dense flow

field. The flow field is estimated by the polyharmonic inter-

polation [26]:

s(x, y) =

n
∑

i=1

wiφk(‖(x, y)− (xi, yi)‖) + v1x+ v2y+ v3,

(3)

where φk is a set of radial basis functions. wi, v1, v2, and v3
are interpolation parameters. After optimization, the poly-

harmonic interpolation s will shift the control points exactly

to their desired locations. In addition, the warped h′ is a dif-

ferentiable function of h, (xi, yi), and (dxi, dyi).
In practice, the control points are fixed in advance. We

evenly put horizontal lines and vertical lines in the 2D space

of h and put control points on the intersections of horizontal

and vertical lines. The displacement (dxi, dyi) is predicted

by an additional convolutional layer. We also add extra con-

trol points with zero displacements at the boundary. Two ra-

dial basis functions, i.e., φ1(r) = r and φ2(r) = r2 log(r),
are chosen for the interpolation. The proposed warp LSTM

is defined as:

dt−1 = Wxd ∗ xt +Whd ∗ ht−1 + bd,

h′

t−1
= warp(ht−1, dt−1),

c′t−1
= warp(ct−1, dt−1),

it = σ(Wxi ∗ xt +Whi ∗ h
′

t−1
+ bi),

gt = σ(Wxg ∗ xt +Whg ∗ h
′

t−1
+ bg),

ft = σ(Wxf ∗ xt +Whf ∗ h′

t−1
+ bf ),

ot = σ(Wxo ∗ xt +Who ∗ h
′

t−1
+ bo),

ct = ft ⊙ c′t−1
+ it ⊙ gt,

ht = ot ⊙ φ(ct),

(4)

where dt−1, h′
t−1

, and c′t−1
are the displacement, warped

hidden state, and warped memory cell at time-step t − 1,

respectively. warp(·, ·) is the sparse image warping func-

tion5, which warps an image based on control point dis-

placements.

Discussion. The closest work to our proposed warp

LSTM is TrajGRU [40], which also warps the feature map

5https://www.tensorflow.org/api_docs/python/tf/

contrib/image/sparse_image_warp

t1 ! t2 t2 ! t3 t3 ! t4 t8 ! t9

...

Figure 4. The illustration of the warp obtained by polyharmonic

interpolation. It can be observed that the spatio-temporal informa-

tion of a moving object is propagated for a long period.

at a previous time-step to the current time-step. However,

there are two major differences between the two methods.

The motivation of TrajGRU is to learn a dynamic connec-

tion structure, e.g., replacing the fixed 3 × 3 convolution

with 5 learned dynamic links. Our motivation is to align the

previous feature map with the current feature map. Several

dense flow fields are predicted by convolutional layers in

TrajGRU for warping, while the displacements of a set of

control points are predicted in the warp LSTM. The warp

computed by polyharmonic interpolation is continuous ev-

erywhere, while the dense flows generated by convolutional

layers in TrajGRU may be not. TrajMF [29] is also designed

for explicit motion modeling. Compared with TrajMF, the

proposed warp LSTM is not handcrafted and is thus bene-

fiting from the feature learning ability of deep neural net-

works.

4. Spatio-temporal Video Re-localization

Given a query video and a reference video, STVR aims

to localize tubelets in the reference video such that the

tubelets semantically correspond to the query video. To

achieve the goal, we design a novel model detecting bound-

ing boxes in the reference video based on the matching re-

sults between the query and reference videos. Our proposed

model is shown in Figure 5.

4.1. Video Feature Extraction

For the STVR task, both the temporal and spatio infor-

mation should be captured in the raw video feature. Hence,

we choose inflated 3D ConvNet (I3D) [4] as the feature ex-

tractor. The I3D model is originally trained on 64-frame

video snippets and tested on 250-frame video snippets. Us-

ing many frames together to extract video features is fine for

video classification task, but it may not be a good idea for

the spatio-temporal localization task because the regions we

want to locate may move over a long distance. Therefore,

we reduce the number of frames of the video snippets to 8.
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Figure 5. The architecture of our proposed model for STVR. The inputs are a query and a reference video. Both query and reference are

split into clips and then fed into a 3D CNN to extract video features. Later, the long-term spatio-temporal information in the reference video

is aggregated by the warp LSTM to produce a new reference feature. Region proposal network [38] is applied on the new reference feature

to generate several proposals. For each proposal, we use an attention mechanism to select the most related query feature and concatenate

the proposal feature with the attention weighted query feature. The concatenated feature is used for the second stage prediction, which

outputs a refined bounding box and a binary label indicating whether the query and the proposal are semantically corresponding to each

other. A© denotes the attention mechanism, and the dashed rectangle means concatenating along the channel dimension.

We also re-sample all the videos at the FPS of 24 so that

each snippet is just 1

3
second long. We choose the activa-

tion values at the “Mixed 4c” layer in the I3D model as the

video feature, which has a spatio stride of 16 and a temporal

stride of 4.

Let ri ∈ R
8×H×W×3 denote the i-th reference clip,

where H and W are the height and width of the reference

video, respectively. The feature extraction for the reference

is given by:

f̂r
i = I3D(ri), (5)

where f̂r
i ∈ R

2×
H

16
×

W

16
×512 is the extracted feature for the

i-th reference clip. The 4D feature is transformed to 3D

by flattening along the temporal dimension and the channel

dimension:

fr
i = flatten(f̂r

i ), (6)

where fr
i ∈ R

H

16
×

W

16
×1024 is the flattened feature. For the

j-th clip in the query video qj , we apply 2D RoI pooling

after 3D convolution to generate a fixed size feature:

f
q
j = RoI

(

flatten
(

I3D(qj)
))

, (7)

where f
q
j ∈ R

7×7×1024 is the j-th query feature.

4.2. Reference Propagation

The extracted fr
i only contains the spatio-temporal in-

formation within the 8-frame clip. To propagate the spatio-

temporal information from previous clips of the reference

video to the i-th clip for better re-localization, we add a

warp LSTM layer to update the reference feature.

hi = warpLSTM(fr
i , hi−1), (8)

where hi ∈ R
H

16
×

W

16
×1024 is the hidden state of the warp

LSTM, which also serves as a new reference representation.

4.3. Proposal Generation

The proposal generation module aims to find all the

bounding boxes containing the content of potential inter-

est in one clip. The generation of reference proposals is

designed following Faster RCNN [38]. hi is fed into the

region proposal network (RPN) to generate proposals:

pk = RPN(hi),

f
p
k = RoI(hi, pk),

(9)

where pk is the predicted bounding box for the k-th pro-

posal and f
p
k ∈ R

7×7×1024 is the feature of the k-th pro-

posal obtained by RoI pooling.

4.4. Query and Reference Matching

We match every proposal in the reference clip with the

query video. The query video may be much longer than one

clip in the reference, which has only 8 frames. As such,

some parts in the query video may not well correspond to

a short proposal. Motivated by [13, 50], we design an at-

tention mechanism to select which part in the query video

should be matched with the proposal. For the k-th proposal,

the features of the query video are attentively summarized

as:

ek,j = tanh(W qavg(fq
j ) +W ravg(fp

k ) + bp),

αk,j =
exp(w⊤ek,j + bs)

∑

i exp(w
⊤ek,i + bs)

,

f̄
q
k =

∑

j

αk,jf
q
j ,

(10)

where f̄
q
k is the weighted query representation. W q , W r, w

are the weight parameters in the attention model with bp and
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Figure 6. The distribution of the number of samples for each com-

bined label. The combined labels belonging to training, validation,

and testing sets are marked by green, blue, and red, respectively.

The combined labels with less than 32 tubelet samples in the train-

ing set are omitted for clarity.

bs denoting the bias terms. avg(·) means average pooling

along the spatio dimensions.

4.5. Label and Bounding Box Predictions

The proposal feature f
p
k and the attentively weighted

query feature f̄
q
k are concatenated along the channel dimen-

sion for the final label prediction and bounding box refine-

ment. The final label is binary, indicating whether the query

video and the k-th proposal are semantically corresponding

to each. The ground-truth label will be “true” if the query

video and the k-th proposal are indeed semantically corre-

sponding to each other. Otherwise, the ground-truth label

will be “false”. The bounding box regression layers are de-

signed following [38]. Please refer to [38] for more details.

5. The Reorganized Datasets

Existing video datasets are designed for other vision

tasks, such as classification [35], temporal localization [1],

action recognition [43], captioning [6], and video sum-

marization [17]. None of them is suitable for the STVR

task, which requires pairs of query and reference videos.

The query should semantically correspond to some labeled

tubelets in the reference video. It will require a huge expen-

sive labor to collect and annotate such a video dataset.

As such, we propose to reorganize the AVA dataset for

the STVR task. The AVA dataset [16] is originally designed

for the spatio-temporal action localization task. There are

430 15-minute video clips with per second action bound-

ing box annotations. The annotated actions are 80 cate-

gories of atomic actions, including “stand”, “watch”, “lis-

ten”, etc. The actions are exhaustively annotated, which

results in 1.58 million action annotations with multiple la-

bels per person. The first step of the reorganization is to

generate tubelets by linking the labeled bounding boxes at

each second. We will link two bounding boxes if they are

the consecutive bounding boxes of the same subject with

all the action labels being the same. After linking, the

tubelets with exactly the same action labels are regarded

as semantically corresponding to each other. For example,

a tubelet labeled with “stand + talk to” semantically corre-

sponds to other tubelets labeled with “stand + talk to” as

well. The tubelet does not correspond to the tubelets la-

beled with “stand” only, “talk to” only, or “sit + talk to”. It

can be understood as that the multiple atomic action labels

annotated with one bounding box are combined together.

Different from spatio-temporal action detection, STVR

aims to semantically match video tubelets beyond a prede-

fined category list. Thus, we further split the video tubelets

according to their combined labels following [13], so that

the training categories have no overlap with the validation or

testing categories. We first choose 54 combined labels hav-

ing over 100 tubelet samples from the 64 validation videos.

27 of them are used for validation and the other 27 are used

for testing. After fixing the 54 combined labels, we remove

all the frames overlapping with the tubelets belonging to

the 54 combined labels in the 235 training videos. The

left tubelets in the 235 training videos are used to train our

STVR model. The numbers of tubelets belonging to differ-

ent combined labels are shown in Figure 6.

We describe how to create the query and reference pairs

in the following. The combined action labels having only

one tubelet sample are all discarded because no pair can be

formed for this combined label. For any query tubelet, we

randomly find another tubelet having the same combined la-

bel as the target. Then we crop the whole segment contain-

ing the target tubelet as the reference video. Such cropping

will simplify the STVR task because the temporal bound-

ary is known. To avoid this, we crop a segment longer than

the target tubelet so that the reference video contains some

background before and after the target tubelet. One thing

to mention is that the cropped reference video may contain

more than one tubelet having the same label as the query.

All of the tubelets in the reference sharing the same label as

the query are regarded as target tubelets. During training,

the query tubelet and reference video are randomly paired,

while the pairs are fixed for validation and testing.

Following the same intuition, we also reorganize the

videos in the UCF-101-24 dataset [43] for experiments.

Among the 24 action categories, 14, 5, and 5 classes are

used for training, validation, and testing, respectively.

6. Experiments

We conduct several experiments to verify the effective-

ness of warp LSTM in solving the STVR problem. First,

three baseline methods are designed and introduced. Then

we introduce our experimental settings including evaluation

criteria and implementation details. Finally, we report the

quantitative results and show the visualizations.
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Figure 7. The visualization of the warped grids with different methods. Only one of the five links in TrajLSTM is shown here.

6.1. Baseline Methods

Existing spatio-temporal localization methods mainly

focus on localizing objects or actions in videos. As far as we

know, there is no method specifically designed for STVR.

So we design three baseline models for comparison.

Clip Independent Baseline. Clip independent baseline

is designed based on the spatio-temporal action localization

methods [22, 31]. The reference video is divided into a se-

ries of 8-frame clips and the bounding box prediction only

depends on the information within the current clip. The clip

independent baseline can be implemented by just removing

the warp LSTM layer in our proposed model in Figure 5.

Other ConvLSTM Variants. The proposed warp

LSTM can be viewed as a variant to ConvLSTM [39]. So

we create a baseline to compare with the original ConvL-

STM by replacing warp LSTM with ConvLSTM. Similarly,

we also create a baseline for the comparison with Traj-

GRU [40]. We replace the polyharmonic interpolation with

the structure generating network in [40] and name this base-

line as TrajLSTM.

Optical Flow Baseline. Warping images by optical flow

has been widely used in computer vision research. It is also

possible to warp the hidden state of ConvLSTM by the ac-

cumulated optical flow. We create another baseline in which

the hidden state of ConvLSTM is warped according to opti-

cal flow.

6.2. Experimental Settings

We resize all the videos to the resolution 320 × 320 be-

fore feeding them into the CNN models. The I3D model

we use is first initialized by training on the Kinetics dataset

[4] and then fine-tuned during the training of our model. To

form a batch during the training process, the length of the

reference video needs to be fixed. The reference video is

fixed to be 2 seconds long by randomly cropping or padding

zeros. During testing, the query and reference video in

full length are fed into the model without batching. For

warp LSTM, we put three horizontal and three vertical lines

on the 20 × 20 feature map, which leads to nine control

points: {(5, 5), (5, 10), (5, 15), (10, 5), (10, 10), (10, 15),
(15, 5), (15, 10), (15, 15)}. The displacements of the con-

trol points are predicted by one CNN layer with a kernel size

of 1 × 1. To reduce the number of model parameters, the

input-to-state and state-to-state convolutions in warp LSTM

are designed following the bottleneck block [18]. The 1024-

channel feature map is first projected to 128-channel and a

skip connection is also added from the input to the output

of warp LSTM. The following region proposal layers and

bounding box regression layers are implemented by Ten-

sorflow Object Detection API [24]. The number of links for

TrajLSTM is set to be 5. FlowNet2 [25] is used for optical

flow extraction in the optical flow baseline. The optical flow

is resized and rescaled by a factor of 1

16
to fit the size of the

feature map.

All the models are trained using stochastic gradient de-

scent (SGD) with momentum value 0.9. The initial learning

rate is 0.03 and is divided by 10 after 10k iterations. The

batch size we use is set to be 8. It takes about five hours to

train one model on four Tesla P40 until the convergence.

6.3. Evaluation Metrics

The frame-mAP computed using a modified version of

the code6 released by official the AVA dataset website is

reported for evaluation. As described in Sec. 5, there are

27 combined labels for testing. Given a pair of query and

reference video, all the labeled bounding boxes in the refer-

ence belonging to the same combined label with the query

are regarded as ground-truth. The bounding boxes predicted

with positive labels are regarded as predictions. The aver-

age precision (AP) for one combined label is computed over

all the ground-truths and predictions belonging to that com-

bined label with IoU over 0.5. We report the mAP, which is

the average of the AP values over the 27 testing combined

labels.

6https://github.com/activitynet/ActivityNet/

blob/master/Evaluation/get_ava_performance.py
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Figure 8. The visualization of the re-localization results. The bounding boxes with the largest confidence of different methods are shown

in different colors.

Table 1. The frame-mAP computed with IoU threshold 0.5 of all

the methods.

Method AVA UCF-101-24

Clip 18.8 52.9

ConvLSTM [39] 20.8 53.5

Optical Flow 20.2 52.0

TrajLSTM [40] 21.0 54.8

Warp LSTM 21.8 59.4

6.4. Quantitative Results

The quantitative results of all the methods are shown in

Table 1. Meanwhile, Figure 7 shows the warp visualization

of two videos in the test split. By comparing the mAP of

“Clip” and “’ConvLSTM’ baseline, we find that propagat-

ing the spatio-temporal information at previous time-steps

to current time-step is better than doing the prediction in-

dependently for each clip. Using accumulated optical flow

to warp the hidden state of the previous time-step leads to

worse results than ConvLSTM, which may be because the

error is too large in the accumulated optical flow. It can be

seen in Figure 7 that the girds warped by optical flow are

noisy. The mAP values of TrajLSTM and ConvLSTM are

very similar. The links learned by TrajLSTM on complex

action videos seem to be some fixed offsets. The perfor-

mance of the warp LSTM is the best of all the methods. The

results show that propagating the long-term spatio-temporal

information by warp LSTM is helpful to STVR.

6.5. Qualitative Results

In the second row in Figure 7, it can be observed that

warp LSTM is able to detect the moving actor and warp

the previous feature maps to compensate for the movement.

The black in the third and fourth row means that these two

methods try to warp some regions outside the feature map

into the outputs. Figure 8 is the visualization of two STVR

results. The combined label of the first and second queries

are “walk + talk to + watch” and “stand + answer phone”,

respectively. In the second clip of the first reference video,

the person in the ground-truth bounding box is totally oc-

cluded. “Clip” and “Optical flow” baseline fail to localize

correctly because of the occlusion. However, the other three

methods are able to handle the short occlusion because they

can use the spatio-temporal information in previous clips.

In the second example, the two men in the reference video

are both standing. The man on the left is labeled with “stand

+ answer phone” and the man on the right is labeled with

“stand + touch + listen to”. It is difficult to distinguish the

combined label of these two men because their actions look

similar. “Clip”, “ConvLSTM”, “Optical Flow” and “TrajL-

STM” make at least one error among the six clips, while the

proposed warp LSTM correctly localizes the left man all the

time.

7. Conclusion

In this paper, we tackled the spatio-temporal video re-

localization problem for the first time. Given a query video,

spatio-temporal video re-localization aims to find tubelets

in a reference video such that the tubelets are semanti-

cally corresponding to the given query. Spatio-temporal

video re-localization is a natural extension of the tempo-

ral video-relocalization [13] which can be applied to video

retrieval and surveillance. To make spatio-temporal video

re-localization research possible, we created a new dataset

by reorganizing the videos in the AVA dataset [16]. Fur-

thermore, we proposed a matching model to capture the se-

mantic relationship between the query and reference videos.

The long-term spatio-temporal information is propagated

by a warp LSTM to generate better bounding box predic-

tions. The extensive experimental results show that our pro-

posed method is superior to baseline methods on the spatio-

temporal video re-localization task.

In the future, we plan to integrate the warp operation into

more sophisticated models such as [15, 45, 57].
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